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ABSTRACT

or a highly sensitive detection of chemical
oupled to an evaporation of a gold layer.

The hybrid nanoskittles obtained with this technique are disordered on the 4-in. wa
reproducibility of SERS signal are obtained on the whole wafer. Moreover, we studied expe
sensing. Finally, enhancement factors in the range of 107 — 1.1 x 108 were found for the detecti
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1. Introduction

O The use of silicon nanowires (SiNW) coupled to metallic
nanoparticles is now very well-studied as SERS substrates for their

Actually, the development of Surface Enha a atter- high EFs in order to obtain a better detection limit [20-22]. In
ing (SERS) substrates having high enhance s (EF) is the addition, Maiolo et al. have obtained a performing electro-
key aspect for the biological and chemi dvances in chemical biosensor from a highly disordered array of SiNWs

nanofabrication techniques have led t
substrates, such as colloidal metallicgh

demonstrated a large Raman
fabrication technique
xpensive for a mass produc-tion
, like Deep UV lithography [7],
BL) [5,8-11]. In addition, other

Lithog , NanoSphere Lithography (NSL) [15-19].
However, types of fabrication techniques can have a
limit on t ition of nanostructures obtained on large
surfaces.
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covered by a gold film characterized by electrochemical
impedance spectroscopy [23]. Another advantage of disordered
SiNWs is their fabrication with large-surface techniques.

The aim of this paper is to present a simple, quick and low-cost
way to realize highly sensitive SERS substrates composed of hybrid
(Au/Si) nanoskittles at the 4-in. wafer-scale. To do that, the native
oxide layer of a silicon wafer is used as etch mask, which is followed
by an anisotropic process of Reactive Ion Etching (RIE) through this
native oxide layer and the last step is a gold evaporation. These SERS
substrates can be easily integrated into existing Raman spectropho-
tometers. The ability of Au/Si nanoskittles to be highly sensitive
SERS sensors is investigated by using the interaction between gold
and thiophenol molecules.

2. Experimental
2.1. Low-cost fabrication of SERS substrate

The fabrication process of large area of hybrid nanoskittles (NSs)
is divided into two parts: (i) etching through the mask obtained by
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the native oxide layer, (ii) deposit of titanium and gold layers under
vacuum by Electron Beam Evaporation (EBE).

Nanoskittle fabrication process does not require pre-patterning
of the surface as it uses the native oxide layer as a physical etch
mask. The samples are undergone an anisotropic RIE process with
C4Fg, O, and SFg passivation and etching steps for a few tens of
cycles. The process is known as switched process in which fluorine
from SFg etches the Si while C4Fg passivates the surface. By vary-
ing the process parameters such as cycle times, number of cycles,
platen and coil power and substrate temperature the formation
of the nanostructured Si features on the Si substrate can have the
appropriate size distribution, depth and density. Then, for the last
step of fabrication, a 2 nm titanium layer used as adhesion layer,
and a gold layer of 30 nm are deposited by EBE.

2.2. Thiophenol functionalization on SERS substrates

Thiophenol molecules are used in order to study the sensitivity
of these SERS substrates. The functionalization protocol is described
as follows: (i) preparation of a 0.1 mM solution of thiophenol in
ethanol, (ii) dipping the sample in the solution during 2.5 h, (iii)
washing thoroughly with pure ethanol, (iv) drying with nitrogen.
For SERS studies, thiophenol molecules are mainly chosen as probe
molecule for their ability of grafting on metallic surface. Indeed,
thiophenol molecules have a similar behavior to other alkanethi-
ols, i.e. the formation of a self-assembled monolayer. In addition,
the thiophenol concentration used for the Raman experiments in
solution is 1 M.

2.3. Optical characterization

A Labram spectrophotometer from Horiba Scientific is used
for the Raman measurements. The excitation waveleng
(Aexc=633nm) was used for all experiments with a poweigof
~1mW. The acquisition time was fixed to 20s. The la
focused on the substrate using a microscope objeéctive
N.A.=0.9). The Raman signal from the SERS substrat

spectrophotometer has a spectral resolution of
for classical Raman measurements in soluti
with a focal length of 40 mm (N.A.=0.18 yand th

length was also used. All obtained spectra e been normalized
by the acquisition time and the las rder to compare
them.

zed Au/Si nanoskittles with
in the Section 2.1. The

/' SpotMagn Det WD f————— 20um
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cross-sectional and top-view SEM images of these hybrid nano-
structures are displayed in Fig. 1. A good definition of Au/Si
nanoskittles is achieved at the 4-in. wafer-scale. The diameter and
the height of the hybrid NSs are determined to be 220 + 10 nm,
and 750 + 90 nm, respectively. The homogeneity of hybrid
nanoskit-tles is relatively correct in terms of dimensions. However,
this homogeneity can be improved by controlling better the
thickness of the native oxide layer. To evaluate the NS sensitivity,
thio-phenol molecules are grafted on hybrid nanoskittles by using
the protocol described previously. Then, the SERS substrates are
char-acterized by Raman measurements. Fig. 2(a) and (b) reveals
the SERS spectrum of Au/Si nanoskittles obtained at the excitation
wavelength of 633 nm. Fig. 2(c) represents the R
reference obtained in solution (ethanol).
Raman shifts of thiophenol molecules [24] are

stretch, 1025 cm~! correspondingde the
ing, 1075 cm~! corresponding to the
S stretching, and at 1575 cm™!
ing. Some exceptions are obse
substrate (SiNW arrays),
located at 520 cm~! [25,26] and i
and 900-980 cm~! | r Fig. 2(c), other Raman peaks are
to peaks of ethanol. In order to
ybrid nanoskittles and to compare it
hich are gold nanodisks on gold film

ng equation:

NRaman
X ——— 1
Nsgrs (1)

£rs, Iraman rTepresent the SERS and Raman intensities,
ly. Nsgrs, Nraman are the number of excited molecules in

RS and Raman experiments, respectively. Nsggs is given by this
expression:

Nsers = Na X Siluminated X Osurf (2)

where Ny is the Avogadro’s number (mol=1), Sjuminated iS €qual to
the sum of the lateral and top surfaces of one nanoskittle (NS sur-
face: S = 5.6 x 10° nm?) multiplied by the number of nanoskittles
determinated in the zone illuminated by the laser (~1 wm?). The
number of nanoskittles is around 2. Indeed, the average nanoskit-
tle density, which is calculated on several different zones of the
substrate, is 2 NS/um?. Finally, osuy is the surface coverage of
thiophenol, which is around 0.544 nmol/cm? [28,29]. Thus, thio-
phenol molecules, which are taken into account, are adsorbed on
both lateral and top sides of the nanoskittles, and the number of
excited molecules Ngggsis 3.67 x 108. Indeed, no SERS signal is

>

a
Det WD —— 2um
TLD 69

Fig. 1. SEM images: (a) large area of hybrid nanoskittles obtained with our fabrication technique, and the inset of (a) is a zoom of one nanoskittle (scale bar=250nm). (b)

Zoom of Au/Si nanoskittle: D ~220 nm and h ~750 nm.
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d with hybrid NSs at Aex: = 633 nm, and the red rect-
e zone from 975 cm~" to 1650 cm~', which is displayed
in (b). (c) Ram of reference obtained in solution (ethanol). Characteris-
tic Raman shifts erved at419/1000/1025/1075 and 1575 cm~! for thiophenol
molecules. All spectta have been normalized by the laser power and the acquisition
time.

observed from the smooth gold layer (not represented in Fig. 2,
and as observed in Refs. [9,10]).

In addition, for the Raman experiments in solution, the number
of excited molecules Nggman is 945 x 10! obtained by the following
formula [14]:

NRaman = Na x C x Vscq (3)
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Table 1

For the five Raman peaks studied here, enhancement factors (EF) at the excitation
wavelength of 633 nm for the two types of nanostructures: (a) Au/Si nanoskittles
and (b) Au nanodisks on gold film from our Ref. [10] (nanodisk diameter ~210 nm
and periodicity of 400 nm).

Raman shift (cm™") EF (a) EF (b)

419 1.1x108 1.5 x 106
1000 3.1x107 1.4x106
1025 5.6 x 107 9.5 x 10°
1075 3.6 x 107 2.8 x 106
1575 7.0 x 107 2.4 % 10°

where C is the concentration used for thiophe
and Vi is the scattering volume. This volumedi
equation: Vg =A x H, where A = scatteringa

lecules (1 M),
following
iskarea of which
m (scattering

From the results of Table 1,
found for the hybrid nanoski

with Au/Si nanoskittl
12.9 and 29.2 for peaks at 419, 1000, 1025, 1075 and
improvement of the SERS signal is
t “hot spots” from two aspects: (i) the

een gold balls and the semiconducting

1,31,32]. Moreover, the reflectivity of substrate
can be also pplementary explanation of the enhancement of
RS signal. Indeed, several groups have demonstrated that the
S intensity increased with the reflectivity [15,33]. In our
riments, we have a gold layer of 30 nm at the bottom of
kitlles, which has a better reflectivity (around 74%, see Ref.
han silicon (around 40% or less, see Ref. [33]) at the
tion wavelength of 633 nm. Thus, this gold layer could
increase the SERS signal. In addition, Akin et al. have obtained EFs
of ~ 10% with Ag nanoparticles on sil-icon nanowires [32]. By
comparison, our hybrid nanoskittles are more simple, quick and

low-cost to fabricate and also have a better sensitivity (EF = 107 —
1.1Qmgsher hand, the low reproducibility of SERS signals is the

major constraint that should be considered in order to realize a
good SERS substrate. To assess the reproducibility of our hybrid
nanoskittles, SERS spectra of thiophenol molecules were collected
from several randomly selected zones on the whole wafer under
same experimental conditions. Fig. 3 displays an example of SERS
spectra obtained from two different zones, which are opposite
compared to the center of the wafer. We have observed a good
reproducibility for all spectra obtained on the whole wafer.

To quantify the reproducibility, the relative standard deviation
(RSD) is calculated for all the five peaks studied here. Table 2
reveals the RSD values concerning to the SERS intensity of five
Raman peaks. According to these RSD values, we can conclude that
a good reproducibility (RSD <7%) is achieved across the 4-in. wafer
of the hybrid nanoskittles.

Table 2
RSD values for the five peaks of thiophenol molecules studied with our hybrid
nanoskittles.

Raman shift (cm~1) RSD (%)
419 6.6
1000 2.8
1025 2.5
1075 1.3
1575 49
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Fig. 3. Example of SERS spectra obtained with hybrid NSs at A =633 nm for two different zone

4. Conclusion

In this paper, we demonstrated the low-cost and quick fab-

rication of highly sensitive SERS substrates for chemical sensing.
Indeed, the important point of this fabrication technique is the use
of a native oxide layer as a physical etch mask in order to real-
ize the nanoskittles. Then, we have studied the sensitivity of thes
SERS substrates and compared these results to those obtained fo
gold nanodisks on a gold film, and also for Ag nanoparticles g

con nanowires. The highest EF values have been achieved

Au/Si nanoskittles (EF=107 — 1.1 x 108) fabricated )

cost and quick technique. To finish, highly defined 'n

ski

realized by this technique were obtained at the 4 ,as
well as reproducibility of SERS signal (RSD <7% e impor-
tant points for industrial applications. Despi evements

demonstrated here, several important ch
domain are to solve: the tunable fabrieati

the exploration of the SERS sensing b
tles for practical applicai
nanoskittle-based SERS se
lytical tool for a great numb

brid nanoskitlles
ution), as well as
ese hybrid nanoskit-

serve as a reliable and ana-
cations in a close future.
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