
HAL Id: hal-04228262
https://hal.science/hal-04228262v1

Submitted on 4 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comment on “Fickian Non-Gaussian Diffusion in
Glass-Forming Liquids”

L. Berthier, E. Flenner, G. Szamel

To cite this version:
L. Berthier, E. Flenner, G. Szamel. Comment on “Fickian Non-Gaussian Diffusion in Glass-Forming
Liquids”. Physical Review Letters, 2023, 131 (11), pp.119801. �10.1103/PhysRevLett.131.119801�.
�hal-04228262�

https://hal.science/hal-04228262v1
https://hal.archives-ouvertes.fr


ar
X

iv
:2

21
0.

07
11

9v
3 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

6 
Ja

n 
20

23
1

Comment on ‘Fickian Non-Gaussian Diffusion

in Glass-Forming Liquids’.

A recent Letter [1] examined the statistics of individ-
ual particles displacements ∆x(t) over time t in two-
dimensional glass-formers and concluded that the cor-
responding probability distribution Gs(∆x, t), called the
van-Hove distribution, is non-Gaussian in a time regime
where the mean-squared displacement (MSD) is Fickian,
〈∆x2(t)〉 ∝ Dst, where Ds is the self-diffusion constant.
If this analysis were correct, glass-formers would be ‘Fick-
ian non-Gaussian’ materials [2, 3].
Here, we clarify that the multiple lengthscales and

timescales reported in [1] have either been characterized
before, or are not well-defined. This leads us to dis-
pute the conclusions that glass-formers display Fickian
non-Gaussian behaviour and that this analogy fruitfully
addresses the central questions regarding the nature of
dynamic heterogeneity in these systems.
The main features of self-diffusion in supercooled

liquids are explained by invoking two characteristic
timescales [4–7]. The self-diffusion coefficient Ds con-
trols the first one, τD = σ2/Ds, where σ is the particle
size. The second one is the structural relaxation time
τα determined from usual time correlations, such as the
self-intermediate scattering function. The adimensional
ratioX = τα/τD plays a special role. It controls both the
amount of decouplingX(T ) ∼ Dsτα (akin to violations of
the Stokes-Einstein relation [8])), and the Fickian length-
scale ℓF ∝

√
X [4]. Known results [4–10] paint a picture

that is inconsistent with several conclusions reported in
[1, 3] as we now show.
Let us start with the van Hove distribution. It was

found in [9] that Gs(∆x, t) approaches a Gaussian dis-
tribution only for times much longer than τD, a result
rediscovered in [1] with equivalent tools. However, the
non-Gaussian parameter α2(t) used in [1] to reveal Gaus-
sianity decays as a power law at large times. Hence, the
gradual emergence of Gaussian behaviour from α2(t) is a
scale-free process and there is no characteristic timescale
after which self-diffusion is Gaussian, although of course
empirically α2(t) will be small when 〈∆x2〉 ≫ ℓ2F . It
was found numerically [8] and explained theoretically [4]
that ℓF in fact controls the crossover in the wavevector
dependence of the self-intermediate scattering function,
a result ignored in [1].
For times t < τα, Gs(∆x, t) is characterized by a

Gaussian core at small ∆x and a nearly exponential tail
Gs ∝ exp(−|∆x|/λ) at large ∆x [5]. Refs. [1, 3] discuss
the existence and possible universality of a power law
description of the time evolution of the exponential tail,
λ(t) ∼ tα. As noticed in [5, 6, 11], the exponential tail is
generically explained by a large deviation argument, but
asymptotic convergence is so slow that the actual value
of λ depends on the fitted range (see [6] for an explicit
test and [11] for quantitative statements suggesting that
α = 0), which may explain reported discrepancies [1, 3].

More fundamentally λ(t) is difficult to measure, and α is
not a novel characteristic exponent.

Linear behaviour of the MSD is visually detected [1] in
log-log representations after a time τD which grows more
slowly than τα at low temperature, but the approach to
linearity is again algebraic [12]. This power law approach
to Fickian behaviour is again scale free and no charac-
teristic timescale controls the emergence of Fickian be-
haviour in 〈∆x2(t)〉.
Even though glass-formers may appear empirically

close to Fickian non-Gaussian materials, there is no char-
acteristic timescales or lengthscales controlling the ap-
proach to either Fickian and Gaussian dynamics, and
the existence of a Fickian non-Gaussian regime cannot
be decided. Instead, the salient features of self-diffusion,
including algebraic approach to Fickian and Gaussian
behaviours as well as nearly exponential van Hove dis-
tributions, are analytically captured by (effective) non-
interacting continuous time random walk models [4–7, 10]
based on the only two important and well-defined char-
acteristic timescales τD and τα. The multiple time and
length scales determined empirically in [1, 3] are either
related to those, or conceptually ill-defined.

The complexity of glass-formers is that the timescales
τD and τα emerge from many-body interactions (disorder
is self-induced) and have non-trivial temperature depen-
dencies which are not fully understood, but from which
the very rich statistics of single particle displacement nat-
urally follows. The behaviour of supercooled liquids is
very different from several Fickian non Gaussian materi-
als, which are described by interesting, but quite differ-
ent, models [15].

We end by noting that the use of two-dimensional sim-
ulations to study the statistics of particle displacements
in glass-formers is profoundly influenced at all timescales
by Mermin-Wagner fluctuations [13, 14], which presum-
ably adds to the profusion of timescales reported in [1].
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pellier, CNRS, 34095 Montpellier, France
2Yusuf Hamied Department of Chemistry, University of

Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom

3Department of Chemistry, Colorado State University, Fort

Collins Colorado 80523, USA

[1] F. Rusciano, R. Pastore, and F. Greco, Phys. Rev. Lett.
128, 168001 (2022).

[2] B. Wang, S. M. Anthony, S. C. Bae, and S. Granick,
Proc. Natl. Acad. Sci. USA 106, 15160 (2009).

[3] J. M. Miotto, S. Pigolotti, A. V. Chechkin, and S.
Roldan-Vargas, Phys. Rev. X 11, 031002 (2021).

[4] L. Berthier, D. Chandler, and J.P. Garrahan, Europhys.
Lett. 69, 320 (2005).

http://arxiv.org/abs/2210.07119v3


2

[5] P. Chaudhuri, L. Berthier, and W. Kob, Phys. Rev. Lett.
99, 060604 (2007).

[6] P. Chaudhuri, Y. Gao, L. Berthier, M. Kilfoil, and W.
Kob, J. Phys.: Condens. Matter 20, 244126 (2008).

[7] L. O. Hedges, L. Maibaum, D. Chandler, and J. P. Gar-
rahan, J. Chem. Phys. 127, 211101 (2007).

[8] L. Berthier, Phys. Rev. E 69, 020201(R) (2004).
[9] G. Szamel and E. Flenner, Phys. Rev. E 73, 011504

(2006).
[10] J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago,

A. Blumen, and J. Baschnagel, Phys. Rev. E 89, 042604

(2014).
[11] E. Barkai and S. Burov, Phys. Rev. Lett. 124, 060603

(2020).
[12] T. B. Schroder and J. C. Dyre, J. Chem. Phys. 152,

141101 (2020).
[13] E. Flenner and G. Szamel, Nature Comm. 6, 7392 (2015).
[14] E. Flenner and G. Szamel, Proc. Natl. Acad. Sci. U.S.A.

116, 2015 (2019).
[15] A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov,

Phys. Rev. X 7, 021002 (2017).


	 References

