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Abstract—Software-Defined Radio (SDR) represents a move
from dedicated hardware to software implementations of dig-
ital communication standards. This approach offers flexibility,
shorter time to market, maintainability, and lower costs, but
it requires an optimized distribution of SDR tasks in order to
meet performance requirements. In this context, we study the
problem of scheduling SDR linear task chains of stateless and
stateful tasks. We model this problem as a pipelined workflow
scheduling problem based on pipelined and replicated parallelism
on homogeneous resources. Based on this model, we propose
a scheduling algorithm named OTAC for maximizing through-
put while also minimizing the number of allocated hardware
resources, and we prove its optimality. We evaluate our approach
and compare it to other algorithms in a simulation campaign,
and with an actual implementation of the DVB-S2 communication
standard on the AFF3CT SDR Domain Specific Language. Our
results demonstrate how OTAC finds optimal schedules, leading
consistently to better results than other algorithms, or equivalent
results with much fewer hardware resources.

Index Terms—software-defined radio, pipelined worfklow
scheduling, pipelining, replication, optimal algorithm, task chains

I. INTRODUCTION

Digital communication standards have traditionally been
implemented on dedicated hardware in order to meet real-time
constraints. These implementations achieve high performance
and low energy consumption at the expense of flexibility and
high development costs [1]. Such issues have been increas-
ing in importance as communications standards, such as the
5G mobile standard, evolved to handle usage profiles in a
versatile manner [2], fueling a transition from hardware to
software implementations.

Software implementations offer flexibility, maintainability,
shorter time to market, and lower costs (e.g., by sharing
hardware). This approach is seen in the notion of Software-
Defined Radio (SDR), where components of a digital com-
munication chain responsible for the physical layer (layer 1 in
the OSI model) and the media access control sublayer (layer
2) are implemented in software and executed on traditional
processors or reconfigurable hardware [3]–[8]. A challenge in
this scenario lies in distributing these computations over the
available hardware while meeting performance requirements.

The computations of digital communications are imple-
mented as a series of processing blocks, called tasks, con-

nected in a directed graph (linear chains, in our context).
These tasks can be grouped and partitioned in a sequence of
stages in a pipeline, where each stage is mapped to a different
core, to improve throughput. Nonetheless, pipelining alone
may not be sufficient to maximally use the available hardware
parallelism.This limitation can be overcome by replicating
some pipeline stages on different cores and distributing frames
in a round-robin fashion among replicas [9]. Still, replication
is limited to stages composed of stateless1 tasks only, to ensure
consistency with the original sequential task execution.

The combination of pipelining and replication provides
a framework to achieve high throughput when scheduling
tasks [7], but also economic and (indirect) environmental
benefits. For instance, by making the best use of the available
multicore hardware on antennas, one may avoid or delay
the expenses and emissions related to acquiring new specific
computing hardware to handle new digital communication
standards. However, finding the best schedule is challenging.
Automatic approaches have so far been limited to: Applying
only pipelining [10], [11] or replication [12]; Using Integer
Linear Programming [9], [13], [14], with potential prohibitive
computation time; Using heuristics [14], [15] and trading
optimality for a faster computation time; Or avoiding these
decisions altogether by assigning a single task per thread and
leaving the scheduling work to the operating system [16].

We propose an optimal algorithm, named OTAC, for
scheduling pipelined and replicated task chains on ho-
mogeneous computing resources for SDR. The schedule
first maximizes throughput and then minimizes the number
of required cores, based on the characteristics of the commu-
nication chain and a given maximum number of cores. Our
main contributions are the following:

⋆ We provide a formulation of this throughput optimization
problem (Section III).

⋆ We propose a new pseudo-polynomial time algorithm
named OTAC, and we prove its optimality (Section IV).

⋆ We evaluate its schedule using simulated task chains and
an implementation of the Digital Video Broadcasting –
Second Generation (DVB-S2) standard [17] (Section V).

1Stateless tasks depend only on their current input (e.g., a filter), while
stateful tasks are also influenced by their internal state (due to previous inputs).



The remaining sections of this article are organized as
follows: Section II provides an overview of related work, and
Section VI provides concluding remarks.

II. RELATED WORK

We break the discussion into two parts: pipelined workflow
scheduling problems, and solutions for SDR.

A. Pipelined workflow scheduling problems

Our scheduling problem is related to pipelined workflow
scheduling problems focused on throughput optimization. A
survey by Benoit et al. [18] distinguishes four kinds of
parallelism in these problems: (i) Task parallelism, two or
more independent tasks execute simultaneously on the same
data; (ii) Pipelined parallelism, two dependent tasks execute
on different data; (iii) Data parallelism, multiple resources
execute the same task on parts of the same data; iv Replicated
parallelism, several copies of a single task operate on different
data. We focus only on pipelined and replicated parallelism.

When only pipelining is possible (all tasks are stateful),
the problem becomes a classical chains-to-chains partition-
ing (CCP) problem with known optimal solutions [10], [11],
[19], [20]. For instance, Nicol’s algorithm [11], [20] optimally
minimizes the duration of the longest pipeline stage by means
of a dichotomic search on the possible maximal stage duration
and of a greedy approach to partition the tasks among the
pipeline stages. Meanwhile, when replication is possible and
all tasks are stateless, an optimal solution can be found by cre-
ating a single partition with all tasks and replicating it among
all available resources [12]. However, no optimal solution has
been proposed so far using pipelining and replication when
both stateless and stateful tasks are present.

In the related (but different) context of latency minimization,
it is known that pipelining and replication have no positive
effect on latency for task chains [12], [18]. For more generic
directed acyclic graphs (DAGs), the problem is known to be
NP-Complete. Kwok and Ahmad [21] provide an extensive
survey on the topic. Finally, heuristics proposed for related
objectives and DAGs are usually not applicable in our context.
For instance, Vydyanathan et al. [22] propose a heuristic for
optimizing both latency and resources used under throughput
constraints using pipelining and replication. Nonetheless, the
solution assumes that all tasks can be replicated, which is not
possible in our context because stateful tasks are not replicable.

B. Solutions employed on SDR or signal processing systems

There are multiple frameworks and tools dedicated to the
design and implementation of SDR or signal processing sys-
tems. Each framework implements and schedules tasks in its
own way, which has led to different optimization solutions.

GNU Radio [23] is the most widely used open source
framework in this domain. It provides an extensible library
of signal processing blocks (tasks) to be combined in a flow-
graph. In its current implementation (version 3.0), GNU Radio
employs Thread Per Block scheduling [16]. Thus, each task is
assigned to its own thread, and thread management is left to the

operating system (or to another runtime such as CEDR [24] for
exploring heterogeneous architectures). Although simpler, this
approach can lead to performance problems related to locality,
to thread priorities and scheduling policies [16], or even related
to the overhead of managing too many threads per core [25].
For these reasons, future plans for GNU Radio 4.0 include the
removal of this constraint, allowing more than one block per
thread and better scheduling policies [25]. In this sense, we
believe GNU Radio can benefit from OTAC in the future.

StreamIt is a Domain Specific Language (DSL) that pro-
vides an environment for developing SDR chains [26]. Unlike
GNU Radio, StreamIt has its own scheduling algorithm built
into its compiler [27]. It is based on a greedy algorithm that ap-
plies pipelined parallelism (vertical fusion in its context) when
fewer cores than tasks are available, or replicated parallelism
(horizontal fission) when cores are abundant [27]. Meanwhile,
OTAC uses both kinds of parallelism to maximize throughput
while using the least number of cores possible.

Other approaches have been proposed for StreamIt. Kudlur
and Mahlke [9] use Integer Linear Programming (ILP) to
model the problem of scheduling StreamIt stream graphs. As
ILP is NP-Hard and the model makes individual decisions for
each task, this approach is not considered scalable [15]. Yi et
al. [13] proposed grouping non-contiguous tasks together into
batches that are then scheduled using ILP. This approach trades
optimality for faster decisions. Che, Panda, and Chatha [14]
apply a similar ILP formulation but also propose a heuristic
that fuses stateful batches to free resources for replicating the
slowest batches. Gayen et al. [15] avoid batching tasks by
relaxing the ILP formulation into a Mixed Integer Linear Pro-
gramming format and combining it with a rounding heuristic
in order to accelerate decisions. These approaches have the
drawback of trying to assign all available resources, which can
lead to performance losses due to overhead [15]. Additionally,
by bunching together non-contiguous tasks, communication
overhead is increased by having to transfer data extraneous
times between cores. In contrast, OTAC provides optimal
schedules and fast decisions for digital communication chains
while also avoiding additional communication overhead and
resorting to the minimal amount of resources.

Array-OL is a DSL for processing multidimensional
streams for video streaming [28]. Similarly to StreamIt [27],
it leaves the scheduling optimization process to its compiler.
Nonetheless, one of its main contributions comes from explor-
ing the data parallelism in the multidimensional streams. This
kind of parallelism is not considered in this work.

Finally, AFF3CT is a DSL that provides pipelined and
replicated parallelism for SDR [7], [29]. When a contiguous
sequence of tasks is assigned to the same pipeline stage,
AFF3CT’s precompiler is able to fuse these tasks to avoid
unnecessary data transfers and synchronization. Nonetheless,
choosing which tasks go in the same pipeline stage and which
stages are replicated is left to the designer [30]. We overcome
this issue by proposing an automatic and optimal schedule.



III. PROBLEM DEFINITION

The optimization of SDR communication chains’ through-
put can be depicted as a pipelined workflow scheduling
problem with special constraints. These problems can be char-
acterized by their workflow model, system model, performance
model, and mapping strategy [18].

The workflow can be described as a linear chain of N tasks
T = {τ1, . . . , τN}, meaning τi can only execute after τi−1. A
task τi has a computation weight wi (i.e., its latency). Com-
munication weights are not explicitly considered. All tasks are
sequential. Regarding their execution, tasks are partitioned into
two subsets TF and TL for stateful and stateless tasks.

Our system is composed of P homogeneous resources (e.g.,
cores) that are fully-connected. Other network characteristics
do not play a role in this problem. Regarding performance,
our main objective is to maximize throughput (T ) while
also minimizing the number of resources assigned P ′. As
throughput is related to the stages’ weight, the notation T−1

is used to represent the reciprocal throughput to be minimized.
The mapping strategy of our problem is known as interval

mapping and can be defined as a vector composition (n,p)
of (N,P ): n and p are finite suites n = (n1, . . . , nk) and
p = (p1, . . . , pk) verifying

∑k
i=1 ni = N and

∑k
i=1 pi ≤ P .

n defines sub-sequences of ni consecutive tasks and p defines
the number pi of resources dedicated to a sub-sequence. We
use si to represent the subset of tasks in sub-sequence ni. For
example, if n1 = 3 and n2 = 2, then s1 = {τ1, τ2, τ3} and
s2 = {τ4, τ5}. We call the pair (si, pi) a stage. si is defined
as stateless if all its tasks are stateless, otherwise it is stateful.
Stateful sub-sequences can only benefit from one resource.

We define the successor of a task τi as the task τi+1

(1 ≤ i < N ). The successor of a sub-sequence si is the task
immediately following the last task of si, if any.

The weight of a stage is defined by the function w (Eq. (1)).
It is equal to the sum of the weights of its tasks. This value
is divided by the number of resources on stateless stages. The
reciprocal throughput T−1 of the vector composition is the
greatest weight among all stages (Eq. (2)). Our objective is to
find a composition of (N,P ) minimizing T−1 and P ′.

w(si, pi) =


∑

τ∈si
wτ if si ∩ TF ̸= ∅, pi ≥ 1,

1
pi

∑
τ∈si

wτ if si ∩ TF = ∅, pi ≥ 1,

∞ otherwise
(1)

T−1 = T (n,p) = max
i=1,...,k

w(si, pi) (2)

The optimal solutions to two extreme cases are known (see
Section II-A). If all tasks are stateful, the problem becomes
a classical CCP problem [11]. If all tasks are stateless, it is
optimal to have a single partition using all resources [12].

A. Communication Chain and Scheduling Example

Consider the simple case of the SDR digital communication
standard (chain) in Fig. 1a composed of N = 5 tasks with
computations weights w1 = 1, w2 = 3, w3 = 4, w4 = w5 = 2.
Tasks τ1, τ2, and τ5 are stateful, while τ3 and τ4 are stateless

(i.e., TF = {τ1, τ2, τ5} and TL = {τ3, τ4}). Its optimal
schedule is studied in two situations with 3 or 6 resources.

1 4 2 23

(a) Chain composed of 5 tasks. Each box represents a task. The
number inside represents its weight. Boxes with solid lines represent
stateful tasks, while dashed lines represent stateless tasks.

1 4 2 23

(b) Optimal schedule for P = 3. Vertical lines represent the
separation in stages.

1 23
4 2

4 2

(c) Optimal schedule for P = 6. Tasks in s3 are duplicated to
represent p3 = 2. Only P ′ = 5 is necessary for the optimal solution.

Fig. 1: Example of a task chain and its optimal schedule for
3 and 6 resources.

An optimal schedule for P = 3 is found by putting the
first two tasks together in one stage, the third one by itself,
and the last two ones in another stage — i.e., (n,p) =
((2, 1, 2), (1, 1, 1)). This solution is illustrated in Fig. 1b. In
this case, w(si, pi) = 4, ∀i ∈ [1, 3], so T−1 = 4. Any other
partition (or using fewer resources) would lead to a higher
reciprocal throughput, so this solution is optimal.

An optimal schedule for P = 6 is illustrated in Fig. 1c. The
optimal solution (n,p) = ((1, 1, 2, 1), (1, 1, 2, 1)) leads to a
reciprocal throughput T−1 = 3. Notice that s2 and s3 have
the same maximal weight in this solution. Using an additional
resource in s3 would reduce its weight. However, this would
not improve the reciprocal throughput of the chain, so the
optimal solution uses only P ′ = 5 resources. These optimal
solutions can be found by OTAC, as shown in the next section.

IV. OPTIMAL SCHEDULING USING OTAC

We have discovered an optimal solution to the pipelined
workflow scheduling problem described in Section III by
extending a technique previously employed for the CCP prob-
lem [11]. As the CCP problem considers only stateful tasks, its
solution cannot benefit from the replication of stateless tasks to
improve throughput, whereas our new algorithm handles both
kinds of tasks. We present our new algorithm in Section IV-A
and its optimality proof in Section IV-B.

A. OTAC

OTAC (for Optimal maximal-packing for TAsk Chains) is
based on two functions, PROBE and SOLVE. The latter finds
a solution that minimizes the reciprocal throughput T−1 and
the resources used P ′. We explain them below.
PROBE is responsible for finding a solution with a reciprocal

throughput equal or below T−1 for the linear chain of N tasks



Algorithm 1: PROBE(T−1)
Result: TRUE if there is a solution, FALSE otherwise
Output: T−1 updated if there is a solution, P ′ used

resources, composition solution (n,p)
1 i← 0; /* current sub-sequence index */
2 b← 0, e← 1; /* sub-sequence in [b, e[ */
3 /* Loop to create packings */
4 while e ≤ N do
5 i← i+ 1, b← e, e← b+ 1;
6 si ← {τb}, ni ← 1;
7 /* Adds tasks to si while they fit */
8 while e ≤ N and w(si ∪ {τe}, 1) ≤ T−1 do
9 si ← si ∪ {τe}, ni ← ni + 1, e← e+ 1;

10 end
11 /* Resources necessary for a packing */

12 pi ←
⌈
w(si, 1)

T−1

⌉
;

13 /* Has not fitted all tasks and si is stateless*/
14 if e ≤ N and si ∩ TF = ∅ then
15 /* Searches for the first stateful tasks τf
16 and adds other stateless tasks to si */
17 f ← e;
18 while f ≤ N and τf ∈ TL do
19 si ← si ∪ {τf}, ni ← ni + 1, f ← f + 1;
20 end
21 /* Resources necessary for a packing */

22 pi ←
⌈
w(si, 1)

T−1

⌉
;

23 if f > N then /* No more successors */
24 e← f ;
25 if e ̸= f then
26 /* Successor sub-sequence */
27 stemp ← τf , e← f ;
28 /* Takes predecessor tasks */
29 while w({τe−1} ∪ stemp, 1) ≤ T−1 do
30 si ← si \ {τe−1}, ni ← ni − 1 ;
31 stemp ← {τe−1} ∪ stemp, e← e− 1;
32 end
33 if w(si, pi − 1) ≤ T−1 then
34 pi ← pi − 1;
35 while w(si ∪ {τe}, pi) ≤ T−1 do
36 si ← si ∪ {τe};
37 ni ← ni + 1, e← e+ 1;
38 end
39 else /* No benefit from taking tasks */
40 while e ̸= f do
41 si ← si ∪ {τe};
42 ni ← ni + 1, e← e+ 1;
43 end
44 end
45 P ′ =

∑
i=1,...,k pi; /* Number of used resources */

46 if P ′ ≤ P then /* Checks if the solution is valid */
47 T−1 ← maxi=1,...,k w(si, pi);
48 return (TRUE, T−1, P ′, (n, p));
49 else
50 return (FALSE, T−1, P ′, (n, p));

using at most P resources. It achieves this solution by greedily
packing the most tasks together in one stage while respecting
T−1 and without wasting resources that could be better used
in the next stage. Algorithm 1 shows how PROBE works in a
loop (lines 4–44) creating stages.

While being computed, sub-sequence si starts at the task
index b and ends at e − 1. The sub-sequence receives the
most tasks while respecting T−1 (lines 5–10). It is assigned
one resource, unless its first task is stateless and has a weight
greater than T−1, which would require more resources (line
12). We prevent any situations with a stateful task with a
weight greater than T−1 in the SOLVE function, which will
be explained later in Algorithm 2.

In the case that si is stateful, nothing more is to be done to
it (line 14). For stateless sub-sequences, otherwise, our novel
approach is employed (lines 17–44). Using the insight that the
best solution for stateless tasks is to have them all in a single
partition [12] using enough resources to respect T−1, we try to
pack the whole sequence of stateless tasks together (lines 17–
22). As this new sub-sequence would require pi resources
(line 22), we check if it is possible to cover more tasks with
them by limiting si to the stateless tasks that fit into pi − 1
resources and leaving the remaining tasks for the next stateful
sub-sequence si+1. This is done in three steps:

1) We try to construct si+1 with the successor stateful task
plus tasks from si, while respecting T−1 (lines 29–32).

2) If we are able to assign pi − 1 resources to the new si
and still respect T−1, we add any additional consecutive
tasks from si+1 back in si that would still fit in pi − 1
resources (lines 33–38).

3) Else, si remains with pi resources and it receives back
all stateless tasks that were taken by si+1 in the previous
steps (lines 39–43).

After creating all stages, we check if PROBE’s solution
requires at most P resources (lines 45–50). If the solution
is valid, the value of T (n, p) is returned in T−1 (line 48).
PROBE is employed by the SOLVE function in order to find

an optimal solution. SOLVE (Algorithm 2) follows basically
the same binary search procedure that would be applied for
the CCP problem [11]. The single difference here comes in the
form of its stop criterion (line 4). It has to take into account
that the final reciprocal throughput may be fractional due to a
division of the longest stage by up to P resources.

The binary search is done within the limits where an optimal
solution can be found. The lower limit T−1

min is based on
a perfectly balanced pipeline (line 1), while the upper limit
T−1
max is affected by the task with the greatest weight (line 2).

At each iteration (lines 3–11), PROBE checks if a solution
exists for the middle value between these two limits (lines 4–
5). If so, then all possible solutions above this value can be
discarded from the search. Otherwise, all possible solutions
below it can be discarded. The search continues until the
stop criterion is met and the minimal reciprocal throughput
is returned (line 12). Using this value, we can use the PROBE
function to compute the composition of (N,P ) with maximal
throughput and minimal number of resources.



B. Proof of Optimality

Our optimality proof is built upon the proofs of previous
solutions for the CCP problem [10], [11], [19], [20]. They
have shown that our kind of solve function based on binary
search always finds the minimal reciprocal throughput. Pinar
and Aykanat [11] have shown that the optimal solution lies
between the values of T−1

min and T−1
max that we employ. Mean-

while, Iqbal [19] has proven that our kind of greedy probe
function always finds a solution for a given target reciprocal
throughput, if one exists. The proof is based on the idea that,
by creating stateful maximal packings (a concept explained in
Section IV-B1), the least amount of work possible is left for
the next stages. We extend this idea to also work with stateless
maximal packings in order to complete our optimality proof.

Our proof is organized as follows. We first introduce the
concepts of tight, full, and maximal packings in Section IV-B1,
and we prove that maximal packings cover the most tasks
with the fewest resources possible. We show in Section IV-B2
that PROBE always finds maximal packings. We show that
maximal packings are unique in Section IV-B3 and we prove
that, if solutions exist, there exists a unique solution based
solely on maximal packings. Thus, the compositions found by
PROBE are optimal, so our solution is optimal.

1) Packing Concepts:

Definition 1 (Packing). A stage (si, pi) is considered a pack-
ing for the reciprocal throughput T−1 if and only if its duration
is smaller than or equal to T−1, i.e., w(si, pi) ≤ T−1.

Definition 2 (Tight packing). A packing (si, pi) is considered
tight for the reciprocal throughput T−1 if and only if no
resource can be removed, i.e., w(si, pi − 1) > T−1.

For the next definition, we assume that the sub-sequence si
includes tasks {τb, . . . , τe−1} (b < e).

Definition 3 (Full packing). A packing (si, pi) is considered
full for the reciprocal throughput T−1 if and only if it can

Algorithm 2: SOLVE(N,P )
Result: Minimal reciprocal throughput T−1

1 T−1
min ← 1

P

∑
τ∈T wτ ;

2 T−1
max ← T−1

min +maxτ∈T wτ ;
3 while T−1

max − T−1
min ≥

1

P
do

4 T−1
mid ←

T−1
max +T−1

min

2 ;
5 done, T−1

mid , P , (n,p)← PROBE(T−1
mid ); /* TRUE

if a valid solution is found */
6 if done then
7 T−1

max ← T−1
mid ; /* T−1 can only get smaller */

8 else
9 T−1

min ← T−1
mid ; /* T−1 can only get bigger */

10 end
11 end
12 T−1 ← T−1

max;

include no more tasks, i.e., given successor τe ∈ T , w(si ∪
{τe}, pi) > T−1.

Definition 4 (Maximal packing). A packing (si, pi) is consid-
ered maximal for the reciprocal throughput T−1 if and only
if it is full, tight, and it meets one of the following criteria:

1) si is stateful;
2) si is stateless and has no successor; or
3) si is stateless and there exists a successor stateful sub-

sequence si+1 such that (si+1, 1) is a maximal packing.

Theorem 1.1. A maximal packing (si, pi) for reciprocal
throughput T−1 always includes the largest number of tasks
possible using the smallest number of resources possible.

Proof. We split the proof for stateful and stateless sub-
sequences. For stateful sub-sequences, Definition 3 means that
the sub-sequence includes the largest number of tasks possible.
Meanwhile, Definition 2 and Eq. (1) make it that the stage
needs only one resource, the smallest number possible.

For stateless sub-sequences, Definitions 3 and 2 specify that
no more tasks can be included nor resources removed. What
remains to be proven is that including more tasks while also
including additional resources does not improve the solution.
This can be proven by considering three different scenarios
for the successor sub-sequence:

1) There is no successor sub-sequence, which is trivial.
2) There is a stateless sub-sequence, which is impossible.

By Definition 4, a stateless maximal packing only exists
if its successor is stateful or does not exist. This happens
because the optimal solution for a sequence of stateless
tasks is to replicate them using the available resources,
not to split them into multiple sub-sequences [12].

3) There is a stateful sub-sequence si+1 such that (si+1, 1)
is a maximal packing. Together, they include ni + ni+1

tasks using pi + 1 resources. If m < ni+1 stateless
tasks were to be moved from si+1 to si, then at least
pi + 1 resources would be necessary to pack ni + m
tasks (Definition 3). This is less tasks than before
(m < ni+1). Furthermore, if both sub-sequences were
to be merged into one, then the merged sub-sequence
would be stateful and it would not be a packing anymore.

Therefore, stateless maximal packings always include the
largest number of tasks possible using the smallest number
of resources possible.

2) Maximal Packings in PROBE:

Theorem 1.2. PROBE always finds maximal packings.

Proof. By Definition 4, maximal packings have to be tight,
full, and respect one of three other conditions.

Any stage (si, pi) computed by PROBE has a duration
w(si, pi) ≤ T−1. This is ensured by the tests in lines 8, 33,
and 35, and by the values of pi computed in lines 12, 22, and
34, so the stage is a packing. Additionally, the value of pi
cannot be reduced, so the packing is tight (Definition 2).

The tests in lines 8, 18, 35, and 40 ensure that no more
tasks can be added to the packing, so it is full (Definition 3).



Finally, the three final conditions for a maximal packing are
covered as follows:

1) We verify if si is stateful in line 14.
2) We see if si is stateless and has no successor in line 23.
3) We check if si is stateless and there exists a succes-

sor maximal packing (si+1, 1) in lines 25–43. si+1 is
ensured to be stateful by the tests in lines 18 and 25
when computing si. It is ensured to be maximal in the
next iteration of the outer loop (lines 4–44) (si+1 meets
condition (1) to be maximal).

Consequently, all packings computed by PROBE are maximal.

3) Maximal Packing Solution Uniqueness: Given a starting
task τb and a reciprocal throughput T−1, there exists a single
maximal packing (si, pi) with si = {τb, . . . , τe−1}. This
comes naturally from Theorem 1.1. It proves that a maximal
packing always includes the largest number of tasks possible
using the smallest number of resources possible. For instance,
it would be absurd to have two different solutions with these
properties. This idea is employed in Theorem 1.3.

Theorem 1.3. If there are valid solutions for (N,P ) and a
target T−1, then there exists a unique solution (n∗, p∗) with
T (n∗, p∗) ≤ T−1 composed only of maximal packings and
that uses a minimal number of resources.

Proof. First, if all stages are maximal packings, then, by defi-
nition, all stages have w(si, pi) ≤ T−1, so T (n∗, p∗) ≤ T−1.

Second, for each task τb starting a stage, there is only a
single maximal packing. So the solution is unique.

Third and final, assume there is another solution (n′, p′)
composed only of maximal packings that requires fewer re-
sources than (n∗, p∗). They must differ in one of two ways:

• (n′, p′) has a stateless stage (si, p′i) with fewer resources
than the equivalent (si, pi) in (n∗, p∗); or

• They have stages starting at different tasks.
The first scenario is a contradiction because (si, pi) must be
tight to be maximal. So there cannot be a solution that takes
less than pi resources for stage si. The second scenario is also
a contradiction. Indeed, for a stage to start at a different task
in both solutions requires a previous stage to have finished
at a different task. Moreover, there is only a single maximal
packing starting at a given task. So one of the solutions is
not composed only of maximal packings. Consequently, the
solution is unique and uses a minimal number of resources.

By combining Theorems 1.2 and 1.3, we can conclude
that our PROBE function always finds optimal compositions.
Again, as our kind of solve function based on binary search
always finds the minimal (i.e., optimal) reciprocal throughput,
we can conclude that the solution found by OTAC to this
pipelined workflow scheduling problem is optimal.

4) Complexity: In the PROBE function, we can notice that
no task will be considered more than once at the initial part of
the main loop (lines 4–12 in Algorithm 1). When handling a

stateless sub-sequence, the additional tasks will only be added
or removed from the sub-sequence a constant number of times.
They will not be considered again later. Thus, the main loop
(lines 4–44) computes O(N) operations. As k ≤ N , the loop
on line 45 also computes O(N) operations, so the final time
complexity of PROBE is in O(N).

The SOLVE function calls PROBE until its stop criterion
is met. Given that the range of values considered is equal to
wmax = maxτ∈T wτ , and that the loop stops when their dif-
ference is smaller than 1

P , this loop is executed O(logwmax+
logP ) times. Combined with the complexity of PROBE, the
time complexity of SOLVE is in O(log(wmaxP )N).

5) Extension for Weight Variations: Due to its low com-
plexity, it is possible to adapt OTAC in cases where task
weights change in time, for instance when the signal rate
ratio changes. Starting with an optimal configuration computed
by OTAC, the approach simply consists in detecting that the
solution is no longer optimal and recomputing an optimal one.

To detect that a schedule is no longer optimal, it is sufficient
to test if the current stages are still tight and full packings
(Definitions 2 and 3). Indeed, Theorem 1.3 shows that the
optimal solution can only be defined by maximal packings,
using a minimal number of resources. When the weight of
a task changes in time, the initial maximal packing may no
longer be a packing, tight, or full. Checking these properties
can be done in O(N) during execution. By checking the
current solution repeatedly, we may trigger OTAC whenever
we need a new solution. The practical evaluation of this
approach is left for future work.

V. EXPERIMENTAL EVALUATION

With the interest of fully exploring OTAC’s capacity to
optimize the throughput of communication chains, while min-
imizing resource usage, we have organized an experimental
evaluation in two parts. In the first part, we explore the effects
of scheduling a thousand different synthetic task chains using
simulation. In the second part, we present a concrete use
case using a Digital Video Broadcasting – Second Generation
(DVB-S2) implementation [17] on AFF3CT [7]. We detail
our workloads, tested scheduling algorithms, and experimental
environment in Sections V-A, V-B, and V-C, respectively.
Section V-D covers our simulation results, while Section V-E
presents the results for the DVB-S2 communication chain.

A. Workloads

For the simulation experiments, we have generated a
thousand synthetic task chains of 20 tasks each. Each task has
a weight in µs taken randomly from a uniform distribution in
the interval [100, 35000]. This interval was chosen based on
performance measurements over the original DVB-S2 chain.

For each chain, we also create variations by changing their
stateless ratio (SR) between zero and one, where zero (resp.,
one) means all tasks are stateful (resp., stateless). An increase
in stateless ratio of 0.1 means that two tasks are changed from
stateful to stateless. We explore the schedule of all these task
chains over P = {5, 10, 15, 20, 25} resources in Section V-D.
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Fig. 2: Illustration of the DVB-S2 reception chain. Each box
represents a task. Task names (adapted from [30]) and task
weights (rounded values in µs) are given with each task. Solid
(resp., dashed) lines represent stateful (resp. stateless) tasks.

Our concrete use case is based on a preexisting open-source
implementation of the DVB-S2 communication chain [31].
DVB-S2 is a standard used for satellite transmission of video
contents [17]. Thanks to its wide range of channel coding
and modulation options, the DVB-S2 standard can be used
for broadcasting services and television transmission.

Our evaluation focuses on DVB-S2’s reception chain, as
forward error code decoding is the most compute-intensive
part of its process. We illustrate this chain in Fig. 2. The
task weights were measured in our experimental platform for
a frame interleaving I = 16 (16 frames are processed by
each task during each step) and K = 14232 information bits
transmitted per frame (MODCOD 2) [30]. The signal ratio is
fixed to 4dB. Each execution decodes 1.28 GB of data. We also
consider a pipelined and replicated schedule of the reception
chain as a baseline for comparison. It was manually optimized
for a different multicore machine [30].

B. Scheduling Algorithms

We have chosen to employ algorithms from the state of the
art (Nicol) or to adapt greedy approaches seen in practical
contexts (see Section II-B) in order to evaluate the benefits of
OTAC. We have avoided the ILP approaches proposed in the
context of StreamIt due to their complexity and their difference
in constraints (DAGs instead of chains, grouping together non-
contiguous tasks). The chosen schedulers are the following:

• Nicol [11], [20]: optimal algorithm when only pipelining
is possible (does not consider replication).

• RPT: scheduler that tries to set one resource per task. If
P < N , it greedily fuses together the neighboring stages
that have the smallest combined weight.

• RB: recursive-bipartitioning-based scheduler. It partitions
the chain into two parts with similar weight, and provides
a proportional part of the resources to each partition (⌊P2 ⌋
and ⌈P2 ⌉). It stops when a partition contains a single
task or resource. A stage with a single stateless task can
benefit from multiple resources for replication.

• RPTm: as RPT, but neighboring stateless stages are
merged together at the end of the algorithm to share the
same pool of resources during replication.

• RBm: as RB with the merging optimization of RPTm.
As our results have shown us that the schedulers with the

merging optimizations (RPTm and RBm) always outperform
their standard counterparts, we fill focuses our analysis on
OTAC, Nicol, RPTm, and RBm only.

C. Hardware and Software Environments

Experiments were executed on a single server with two 18-
core Intel Xeon Skylake Gold 6240 processors at 2.6 GHz (36
cores in total), 192 GB of DDR4 DRAM at 2933 MT/s, and
1 TB of local storage with a SATA Seagate ST1000NX0443
at 7.2krpm. The server runs CentOS release 7.6.1810 with
kernel 3.10.0-957.el7.x86 64. We used AFF3CT v3.0.2, GCC
v12.2.0, and Python v3.8.0. For the DVB-S2 experiments,
threads were pinned using hwloc v2.7.0. No other users or
applications were using the server during the experiments.
Data was kept local to the server to avoid network interference.

D. Simulation Results

1) Optimal Solutions: Our simulation experiments aim at
comparing schedulers in terms of throughput and resource
utilization. Throughout these simulation with 1000 task chains,
11 stateless ratio values, and 5 different numbers of re-
sources, OTAC always obtained the maximum through-
put with minimal resource utilization. We summarize the
55000 schedules per algorithm in Fig. 3 in comparison to
the optimal schedules of OTAC. Each row holds the results
for a given scheduler. Each figure presents the results for
a given P . Each column in a figure counts the number of
optimal schedules, schedules with maximal throughput that
use resources in excess, and suboptimal schedules, adding up
to 1000 schedules (one per chain).

Fig. 3 provides several insights on the schedulers’ behavior.
RPTm finds more solutions with maximal throughput (opti-
mal + excess) as the number of available resources increases.
In general, it is easier to find the best solutions when fewer
stages have to be merged due to a lack of resources. RPTm
tends to find fewer maximal throughput solutions when SR
increases. RPTm bases the number of replicas of a pipeline
stage on the number of stateless tasks in it (instead of the
tasks’ weights), leading to suboptimal schedules.

RPTm found excess solutions for all task chains with
SR = 0 and P = 20 or 25. Putting each of the 20 tasks on their
own stage ensures that the highest stage weight is minimal in
these cases. Nonetheless, these solutions were always using
resources in excess because there were always neighboring
stages of lower weight that could be fused together, freeing
resources without affecting throughput. We can also see that
RPTm always finds optimal solutions when all tasks are
stateless (except when P = 25). This happens because it
merges all stages into a single one replicated P times, which
is known to be optimal [12]. This is not the case for P = 25
because RPTm uses only up to P ′ = N = 20 resources.
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Fig. 3: Simulation: number of solutions of different qualities for different schedulers, numbers of processors, and stateless
ratios compared to OTAC. Optimal means maximum throughput with minimum number of resources. Excess means maximum
throughput with extra resources. Suboptimal means suboptimal throughput.

RBm behaves similarly to RPTm in many ways: merging
improves performance, fewer maximal throughput solutions
are found when SR increases, optimal solutions are found
when all tasks are stateless. In the tested scenarios, RBm is
less effective than RPTm in general, with the exception of the
cases with very few resources (P = 5). Here, RBm is able
to find 2074 optimal solutions (18.9% of the cases) whereas
RPTm only finds 1393 (12.7%). These results are biased by
the 1000 optimal solutions found when all tasks are stateless.
Meanwhile, OTAC always finds optimal solutions.

Nicol shows a very different behavior. Firstly, Nicol tends
to find optimal solutions less often when P increases. With
more resources, the potential for performance gains through
replication is higher, leading to more suboptimal solutions by
Nicol. This also explains the decrease in optimal solutions

found with the increase in SR (with zero optimal solutions
for SR = 1.0). Still, in situations where pipelining is more
important than replication (few resources or low SR), Nicol
finds optimal solutions. For instance, for P = 5, Nicol finds
all optimal solutions for SR < 0.5, and about 97.7% of them
for scenarios in this SR range and P = 10.

Overall, these results quantify how difficult it can be to
find an optimal schedule when pipelining and replication
are involved, but they do not qualify how good or bad the
other schedules are. We explore their differences in terms of
resources used and throughput in the next sections.

2) Resources Used: We study the different numbers of
resources used by OTAC, RBm, and Nicol for P = 20 and SR
= 0.5 and 0.9 in Fig. 4. In these histograms, each bar counts
the number of optimal, excess, and suboptimal solutions found
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Fig. 4: Simulation: histograms of number of resources used
(P ′) for the schedules computed by OTAC, RB, RBm, and
Nicol for P = 20 and SR = 0.5 (left) and 0.9 (right). Vertical
axes at different scales for different schedulers.

with a given number of resources. We chose two different
stateless ratios to illustrate how they affect solutions (i.e., the
more stateless tasks, the more resources the task chain can
benefit from). RPTm solutions are not illustrated. In these
circumstances, they consistently use 20 resources.

When considering the solutions obtained with OTAC, we
can notice that the majority of solutions require fewer than 20
resources. For SR = 0.5 (resp., 0.9), OTAC uses an average
of 14.8 (resp., 16.3) resources, with only 23 (resp., 330)
schedules using all 20 resources available. When the SR is
higher, OTAC profits from the higher replication potential and
ends up using more resources for a higher throughput.

RBm, meanwhile, tends to use many more resources than
necessary in its schedules. For SR = 0.5, it uses an average of
18.4 resources, while only achieving 431 maximal throughput
solutions. This represents about 3.6 (24.3%) more resources
than OTAC. For SR = 0.9, these values increase to an average
of 19.7 resources for 461 maximal throughput solutions.

Nicol, for its part, tends to underutilize resources. As shown
in Fig. 4, it computes the same schedule independently from
the task chains’ SR. As SR increases, more of these schedules
become suboptimal. On average, Nicol uses 14.2 resources
here. This leads to 516 maximal throughput solutions for SR
= 0.5, but only 92 such solutions for SR = 0.9.

These results reinforce the importance of scheduling with
the right number of resources: too many resources lead to

wastage, while too few lead to suboptimal throughput.
3) Comparing Throughput: Considering that each task pro-

cesses only one frame at a time (differently from DVB-S2),
we explore the throughput achieved for the task chains with
SR = 0.5 in two scenarios: with P = 10 and P = 20.
We illustrate these results in Fig. 5, where the figures on
the left represent the throughput of OTAC in frames per
second (FPS), while the other figures represent the throughput
difference between OTAC and other schedulers when consid-
ering suboptimal schedules only2. We can see that the average
throughput obtained by OTAC increases when more resources
are available (from 223 to 315 FPS — a factor of 1.41). While
it uses almost all resources for scheduling tasks when P = 10,
the situation changes when P = 20 (see Fig. 4). As schedules
become more limited by the stateful tasks’ weights, the results
become more concentrated to the left of the histogram.

RBm finds the fewest maximal throughput solutions in both
scenarios, while showing a broad distribution of performance
losses, with an average of 57.17 and 62.38 fewer FPS than
OTAC for P = 10 and 20, respectively, when only considering
suboptimal solutions. These differences improve to 56.42 and
35.49 fewer FPS when all solutions are considered, which is
still 11% fewer FPS in the best of cases.

Nicol found 804 optimal solutions when P = 10, leading to
a low count of suboptimal solutions. It achieved an average of
14.36 fewer FPS than OTAC on its suboptimal solutions, and
an average of 2.80 fewer FPS over all schedules. Yet, these
differences increased to 31.41 and 15.20 when P = 20 (about
5% fewer than OTAC), showing the importance of replication.

Finally, RPTm shows an improving performance with the
increase in the number of resources. Its solutions showed
an average of 21.52 fewer FPS than OTAC for suboptimal
solutions and of 18.40 fewer FPS over all solutions for
P = 10. These differences change to 31.50 and 7.59 fewer
FPS over the respective solutions when P = 20. Although the
range and magnitude of the performance differences increase
when more resources are available, more solutions achieve
maximal throughputs (from 145 to 759 in these cases), leading
to a smaller average difference. Still, in the case of RPTm,
these improvements come at the cost of resource wastage.

Overall, our simulation results have highlighted how
arbitrarily easy or difficult it can be for other schedulers to
find optimal solutions. The quality of their solutions strongly
depends on the characteristics of the task chain and the number
of resources available, while OTAC is able to handle all
scenarios optimally. We explore how these points translate to
a real communication chain in the next section.

E. DVB-S2 Standard Results

Fig. 6 shows the results obtained for DVB-S2’s reception
chain. Full lines represent the simulated maximum throughput
each scheduler could achieve based without overhead. Lines
with dots represent the average throughput obtained with
different numbers of resources over ten executions. A few

2Maximal throughput schedules would only increase the bar at zero.
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Fig. 5: Simulation: histograms of throughput in terms of frames per second achieved by OTAC (left) for P = 10 and P = 20
and SR = 0.5; throughput difference between OTAC and RPTm, RBm, and Nicol for the instances where they find suboptimal
schedules. Axes at different scales depending on the histogram.
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Fig. 6: DVB-S2: throughput in Mbps as a function of the
number of available resources for different schedulers.

points are missing for RBm (P = {10, 11, 14, 15, 16}) because
its schedules were not achievable. Some successive tasks in
DVB-S2 must remain in the same stage of the pipeline. But,
as this constraint is not visible at the scheduler level, RBm
is unable to enforce this rule. Additionally, as the maximum
throughput achievable by all schedulers plateaus after a certain
number of resources (e.g., at P = 18 for OTAC), we limited
our experiments to fewer than 36 resources in most cases to
avoid occupying the server unnecessarily.

Fig. 6 shows that OTAC and RBm achieve the highest
throughput, while RPTm and Nicol find suboptimal schedules.
The hand-tuned baseline achieves a performance similar to
OTAC but requires almost twice more resources. We can
also notice a 7% gap between the best expected throughput
(47.17 Mbps) and the one achieved by OTAC with P = 18
(43.86 Mbps, on average). Among the sources of this gap
is the synchronization overhead of managing a pipelined and
replicated task chain, not explicitly considered in our model.

Table I provides more details about the best results achieved

(n, p) Sim. T T (avg) T (med) P / P ′

OTAC
((4,1,5,7,2),
(1,1,1,14,1)) 47.17 43.86 43.95 18 / 18

RPTm
((1,1,1,1,1,1,1,1,2,8,1),
(1,1,1,1,1,1,1,1,1,8,1)) 26.21 25.26 25.23 18 / 18

RBm
((1,2,1,1,1,1,1,2,8,1),
(1,1,1,1,1,1,1,1,15,1)) 47.17 43.98 44.01 25 / 24

Nicol
((15,1,1,2), (1,1,1,1)) 6.66 6.58 6.58 4 / 4

Baseline
((1,3,1,3,3,2,5,1),
(1,1,1,1,1,1,28,1)) 47.17 42.3 44.58 35 / 35

TABLE I: DVB-S2: Best schedules, throughput (Mbps), and
number of resources for the different algorithms.

by the different algorithms (highest throughput with minimal
number of resources used). We include here their simulated
throughput, and also their average and median values. Nicol
achieves the lowest throughput by not replicating the task with
the highest weight (34183.9 µs in Fig. 2). Meanwhile, OTAC,
RBm and the baseline are limited by the highest weight among
stateful tasks (4861 µs), leading to a 7× higher throughput.

When comparing the best solutions found by the algorithms
using the Mann-Whitney U test with 5% confidence, we cannot
say that OTAC and RBm perform differently (p-value = 0.73),
in spite of RBm using 6 more resources (33% in excess).
OTAC and the baseline show statistically different results
(p-value = 0.009), with the baseline achieving a median
throughput 0.6 Mbps above OTAC. As OTAC only replicates
the fourth pipeline stage enough so that its weight (4790.8 µs)
is below the one of its second stage, we believe its solution to
be more sensitive to fluctuations in task latency and replication
overhead. However, this difference may not justify the 17



additional resources used by the baseline.

VI. CONCLUDING REMARKS

In this article, we considered the problem of scheduling
pipelined and replicated task chains on homogeneous comput-
ing resources for SDR applications. Based on the character-
istics of these tasks (stateless or stateful), we have proposed
OTAC, a scheduler that maximizes throughput while minimiz-
ing resource usage. We have shown that OTAC finds solutions
in O(log(wmaxP )N), and we have proved its optimality.

Through an extensive experimental evaluation using both
simulation and the DVB-S2 communication standard, we have
shown how OTAC outperforms other strategies. Our simulation
results have highlighted how arbitrarily easy or difficult it can
be for other schedulers to find optimal solutions, while OTAC
always does so. The experiments with DVB-S2 have shown
that OTAC achieves almost 44 Mbps over 18 cores, which is
7% from the limit without overhead, while it uses down to
51% of the resources of a hand-tuned solution.

For SDR systems, OTAC focuses on pipelined workflow
scheduling problems for linear task chains, a limited aspect
of these systems. It assumes that resources are identical,
so it cannot benefit from more heterogeneous platforms. In
addition, OTAC tries to avoid communication overhead (by
keeping neighboring tasks together), but it does not consider
them explicitly. Finally, OTAC has been evaluated as an offline
method, but we have shown that a more dynamic approach
for dynamic weight remains possible, combining a detection
of non-optimality with a restart of OTAC.

We thus plan to investigate how to adapt OTAC (or propose
new solutions) to different shapes of task graphs and for
more heterogeneous platforms (e.g., uniform resources with
different clock frequencies or platforms with accelerators). We
aim to integrate communication weights in our model based on
communication overhead profiled for different levels of task
replication, and to see how to use them within OTAC. Finally,
we will study the problem of scheduling multiple task chains
over shared resources with different optimization objectives
(e.g., maximum sum of throughput, max-min fairness).
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