
HAL Id: hal-04228115
https://hal.science/hal-04228115v1

Submitted on 4 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SNAKE challenge: Sanitization Algorithms under
Attack

Tristan Allard, Louis Béziaud, Sébastien Gambs

To cite this version:
Tristan Allard, Louis Béziaud, Sébastien Gambs. SNAKE challenge: Sanitization Algorithms un-
der Attack. ACM International Conference on Information and Knowledge Management, Oct 2023,
Birmingham, United Kingdom. �10.1145/3583780.3614754�. �hal-04228115�

https://hal.science/hal-04228115v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


SNAKE challenge: Sanitization Algorithms under Attack
Tristan Allard

Univ Rennes, CNRS, IRISA
Rennes, France

tristan.allard@irisa.fr

Louis Béziaud
Univ Rennes, CNRS, IRISA, UQÀM

Rennes, France
Université du Québec à Montréal

Montréal, Canada
louis.beziaud@irisa.fr

Sébastien Gambs
Université du Québec à Montréal

Montréal, Canada
gambs.sebastien@uqam.ca

ABSTRACT

While there were already some privacy challenges organized in
the domain of data sanitization, they have mainly focused on the
defense side of the problem. To favor the organization of successful
challenges focusing on attacks, we introduce the Snake frame-
work that is designed to facilitate the organization of challenges
dedicated to attacking existing data sanitization mechanisms. In
particular, it enables to easily automate the redundant tasks that are
inherent to any such challenge and exhibits the following salient
features: genericity with respect to attacks, ease of use and extensi-
bility. We propose to demonstrate the main features of the Snake
framework through a specific instantiation focusing onmembership
inference attacks over differentially-private synthetic data genera-
tion schemes. This instance of the Snake framework is currently
being used for supporting a challenge co-located with APVP 2023
(the French workshop on the protection of privacy).
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• Security andprivacy→Privacy protections;Data anonymiza-
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1 INTRODUCTION

Competitions and challenges are commonly used both in the ma-
chine learning community – for boosting the design and devel-
opment of practical and efficient solutions to hard or new prob-
lems – and in the security community – for training purposes or
for the evaluation of existing infrastructures. In contrast, in the
privacy community, there is not a long tradition of holding such
challenges. However, in recent years several competitions focusing
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on data sanitization algorithms (also called data anonymization
algorithms or privacy-preserving data publishing algorithms) have
been launched [1, 10, 15, 17, 20].

Some of them, like the 2018 Differential Privacy NIST Chal-
lenge [20], have focused primarily on the defense aspect. Their
main requirements were that the proposed algorithms have to meet
formal guarantees such as differential privacy [2], achieve high util-
ity levels on real-life cases while being efficient enough to be run on
today’s off-the-shelf computer systems. Others, like the Hide-and-
Seek challenge [10], the INSAnonym competition [1] or PWSCUP [17]
additionally consider attacks on the sanitized datasets generated by
the participants. More precisely, these competitions were generally
composed of two phases, in which the first one is dedicated to the
design of sanitization algorithms (usually focus on a data type and
use case) while the second one usually consists in attacking the
data sanitized with the algorithms developed during the first phase.

While the sanitization phases of past challenges have been suc-
cessful, in the sense that they provided insights on the privacy/u-
tility trade-offs or that it has lead to implementations of state-of-
the-art or novel sanitization algorithms, the outcomes of the attack
phases were usually more mitigated. For example, the organizers of
theHide-and-Seek challenge have reported attack results equivalent
to random guesses [10]. The recent Microsoft Membership Inference
Competition (MICO) [15] consisted only in an attack phase and is
therefore an exception to this observation.

We believe that facilitating the organization of attack challenges
over sanitization algorithms can greatly benefit the research com-
munity – essentially the privacy-preserving database and privacy-
preserving machine learning fields – by stimulating research, con-
tributing to strengthening the implementation of sanitization algo-
rithms as well as by generating open source implementations of
state-of-the-art attacks. This is precisely the overarching goal of the
Snake framework. Snake allows managing and easy automation
of the redundant tasks that are inherent to any such challenge (e.g.,
preparing datasets or running the sanitization algorithms).

More precisely, Snake exhibits the following salient features.
First, Snake is generic in the sense that it is agnostic with respect
to the sanitization mechanisms under attack (e.g., aggregated data,
𝑙-diverse partitioning algorithms or differentially private synthetic
data generation), supports the specification of a wide range of
parameters (e.g., privacy levels and hyperparameters) and allows
participants to compete in various adversarial settings (e.g., back-
ground knowledge and success metrics). Second, Snake is easy to
use both for participants and for organizers thanks to the Snake-
make software [12]. This facilitates both the organization of chal-
lenges (for the organizers) and the creation of tasks for local tests
during challenges (for the participants). Third, Snake is extensible
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as it can support various challenge designs (e.g., tracks, timelines,
enabling code submission or not), threat models with respect to
participants and the organizers (e.g., colluding participants or not,
covert organizers) as well as reproducibility features. As a result,
we believe that Snake can help nicely complement the current
sanitization competitions that focus on the sanitization part, thus
resulting in a complete defense-attack pipeline. To the best of our
knowledge, Snake is the first framework of its kind.

We propose to demonstrate the genericity, usability and exten-
sibility properties of the Snake framework through a complete
scenario focusing on membership inference attacks [5, 7, 8] over
differentially-private synthetic tabular data generation schemes [13].
This instantation of the Snake framework is currently being used
for supporting a challenge1 co-located with APVP 2023 (the French
workshop on the protection of privacy).

2 RELATED CHALLENGES

The closest related challenges to ours are the Hide-and-Seek privacy
challenge [10] from the Van Der Schaar laboratory, the INSAnonym
competition [1], the PWSCup [17] series of competitions as well as
the Microsoft Membership Inference Competition (MICO) [15].

The three former challenges differ on the rules, the data and
tasks they propose, but they follow the same two-phase structure:
(1) a sanitization phase during which the participants implement a
sanitization algorithm and run it on the given dataset and (2) an
attack phase during which the sanitization algorithms are attacked.
The attack phase of these competitions is often short (either by
design or in practice) and the algorithms attacked are chosen by the
participants. With the Snake framework, we aim at facilitating and
thus strengthening the attack phase. Compared to Hide-and-Seek,
INSAnonym or PWSCup, the sanitization algorithms attacked can
be chosen from the literature and/or from the latest sanitization
challenges (e.g., the NIST differential privacy challenges) and the
number of algorithms under attack can remain small. This gives the
opportunity to stress-test state-of-the-art sanitization algorithms
and helps participants to focus on their attack algorithm. In partic-
ular, we believe that the Snake framework complements nicely the
other challenges dedicated to designing sanitization algorithms.

Finally, the recentMICOCompetition differs from the other three
challenges mentioned above in that it consists in a single attack
phase. More precisely, it focuses on membership inference attacks,
as does the first edition of Snake, but differs from Snake1 on the
algorithms attacked (classifiers rather than synthetic tabular data
generators) and on the background knowledge given to participants
(disclosure of the learned model rather than disclosure of only
its outputs and hyperparameters). In addition, another difference
between MICO and Snake1 is the use of Snake to facilitate the
creation and management of Snake1. As the objective of Snake is
precisely to facilitate challenges such as MICO, instantiating the
Snake framework for obtaining a follow-up of MICOwould both be
easy and provide various benefits (e.g., automation, reproducibility
and participant-side tools).

Besides the use in academia, challenges could be also a way
forward for companies to validate their approach in a soundmanner.
Such examples include the 2006 Netflix challenge, in which privacy

1https://www.codabench.org/competitions/879/

issues were highlighted [18], or the 2018 Aircloak bug bounty in
which a new class of privacy attacks was proposed [3]. Snake can
be used to ease the organization of such events, strengthening data
sanitization mechanisms and as a first step towards a systematic
evaluation of commercial privacy solutions.

3 SNAKE FRAMEWORK

Snake is not a one-size-fits-all standalone tool that would integrate
numerous and heterogeneous sanitization algorithms or scoring
measures. This would both be non-exhaustive and lead to a heavy
and complex tool. Rather, Snake consists of a set of abstractions and
a flexible technical foundation. We describe these two levels below
before describing in Section 4 Snake1, the first edition of Snake,
provided as a reference implementation.

Original data Prepare data Base data

Create taskConfiguration

Task

Public

Private

Create bundlePrivate bundle

Public bundle

Codabench bundle

Private

Custom

Public

Figure 1: High level view of the workflow. Trapezoids repre-

sent rules (i.e., programs) and rectangles data (i.e., files).

Abstractions. The abstractions defined in Snake consist in a
workflow and its functional specifications. Figure 1 describes the
Snake workflow. The rule Prepare data creates the main dataset
of the challenge, called Base data, from some existing source of
data, called Original data. Each task of the challenge is created by
Create task, as a set of Public and Private files, with the former
shared to participants, and the latter used by the organizers for the
evaluation of the attacks submitted by participants. The third rule
Create bundle packages all the competition files into (1) a bundle
that can be uploaded to the CodaBench competition platform [21]
to instantiate the full competition, (2) a public bundle that contains
all the data needed by participants (e.g., available online during the
competition) and (3) a private bundle that contains the solutions
(e.g., available to participants exclusively after the challenge).

Technical Foundations. Snake leverages (1) the Snakemake work-
flow management system [12] for its inner working and (2) the
CodaBench competition platform [21] for all the features necessary
for running a competition in real-life (e.g., user registration, sub-
mission management, leaderboard). Snakemake is a bioinformatics
workflow engine which provides a domain specific language imple-
mented as an extension to Python to describes pipelines. Workflows
are specified as a directed acyclic graph of rules which transform
input files into target files, similar tomakefile directives. Snake uses
Snakemake to prepare all files required to define the challenge and
outputs a “bundle” which can be uploaded to CodaBench to build
a complete challenge. Thanks to the simple rule-based interface

https://www.codabench.org/competitions/879/
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provided by Snakemake, the computational overhead of organizing
a challenge using Snake is negligible compared to without it.

Key properties. The design of the Snake framework adheres to
the following key goals. These minimal set of properties are both
necessary to the successful organization of attack challenges target-
ing sanitization algorithms and general enough to adapt smoothly
to the advances of the field.

Genericity. The Snake workflow (see Figure 1) is high-level
and generic enough to allow the design of most challenges in which
participants attack the privacy properties of a sanitization algorithm.
Indeed, any sanitization algorithm inputs prepared data and output
sanitized data (e.g., a perturbed model), and any task consists in
a challenge available to the participants (public part) and in the
answer to the challenge (private part). In particular, the definition
of a task as a pair of public and private data allows the framework
to support a broad range of attacks scenarios (e.g., varying the
background knowledge or sanitization algorithm attacked).

Extensibility.The Snake framework provides the two following
levels of extensibility. First, it offers a simplistic challenge overview,
which allows for further specification. For example, considering
multiple attacks or allowing online attack evaluation is possible
without deviating from the framework. Second, steps of the work-
flow are organized as Snakemake rules that (1) allow for generic
input, output, script, execution environment, and parameters and
(2) can be broken down into sub-rules if the need arises.

Usability. By leveraging the Snakemake workflow management,
the Snake framework does not require strong development skills
to be used and can be run on commodity hardware. It can thus
be used easily by participants during a competition for building a
complete local competition environment allowing local executions
of the sanitization algorithms and of the participants’ attacks. On
the organizer side, existing challenges can easily be framed within
Snake. Note that using Snake does not generate any computational
overhead compared to preparing a challenge without using Snake.
Moreover, the Snake framework outputs a packaged bundle com-
pliant with the CodaBench platform, which allows for user-friendly
participation (documentation, live ranking and automated scoring
using a Python script).

Reproducibility. Snake allows a challenge to be reproduced
in full, thanks to the functionalities offered by Snakemake. For ex-
ample, inputs, outputs, execution environments, parameters and
scripts are tracked through hashing. Random seeds used by Create
task are saved in the private part of the related task. They can
be kept by the organizers and disclosed to participants after the
competition. The genericity and reproducibility properties allow
the framework to support different threat models over both partici-
pants and organizers. For example, our framework is designed to
allow participants to verify locally that their scores, given by the
organizer, are indeed correct. This can simply be done by the par-
ticipants, through local evaluations of the submissions, performed
after the distribution of the private part of the tasks. Preventing any
tampering of the private part of tasks could be done for instance by
storing their hash in the public bundle and by letting participants
check that they match with the private parts distributed by the
organizers after the competition.

4 SNAKE1: THE FIRST EDITION

Snake1 is the first challenge based on the Snake framework. It
focuses on membership inference attacks [5, 7, 8]) over differentially
private synthetic data generation algorithms [13]), is co-located
with APVP 2023, which is taking part during summer 2023. Figure 2
describes the workflow of the challenge for a single task2.

Original data Base data

Targets Train-data

Membership Synthetic data

GuessesScores Attack

prepare sample

synthesize

Public

Private

Input

Submission computed on
CodaBench

executed locally
by the participant

Figure 2: High level view of the workflow implementation

for the first edition. Rectangles represent data with rules as

edge labels.

First, the data used by the challenge is prepared as described
afterwards. Each execution of a sanitization algorithm takes as
input a private dataset consisting of random samples from the
base dataset. The attack used as input the synthetic data, a set
of targets for which membership is to be guessed, the base data
and the parameters of the sanitization algorithm. The participants
then perform their attack locally3 and submit their guesses to the
CodaBench space of Snake1. The CodaBench platform scores the
tasks by comparing the submission with the (private) ground truth.

The following is an excerpt of the task creation rule (with irrele-
vant parts removed), with task_prep creating most of the public
and private files, while synthetic data is generated by a separate
rule that uses a specific Conda environment.
rule task_prep:

input: rules.prepare_data.output.data ,
output:

targets =...,

train =".../{ gen}_{eps}_train.feather",

seed =..., # for reproducibility
truth =..., # private answers

script: "scripts/task_prep.py"

Attacks algorithm. Each team has to design an attack algorithm
as follows.

Input. Attacks algorithms are provided with (1) the synthetic
dataset generated by an execution of the targeted sanitization
algorithm over a private dataset, (2) the targets to attack, (3)
the base dataset from which the private dataset is sampled,
and (4) the parameters of the execution of the sanitization
algorithm attacked;

Output. The output of the attack algorithm is a real number
in [0, 1] indicating the predicted probability of each target
being within the private dataset or not.

2Full implementation available at https://github.com/snake-challenge/snake1.
3Participants can use the framework to generate their own versions of the tasks locally
and therefore can evaluate their submission on their side before submission.

https://github.com/snake-challenge/snake1
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We detail below the computation of the private datasets, the
targets, the sanitization algorithms as well as the attack success
measure.

Base dataset and private datasets. Snake1 makes use of the pub-
licly available EPI CPS Basic Monthly data provided by the Economic
Policy Institute [9]. The CPS dataset is divided in years in which a
yearly dataset contains more than 106 records and 125 columns4. A
record contains information about a single individual in a house-
hold. Our base dataset is built by using a pre-processed sample
of columns and rows from the original dataset. Full details are
available in the competition online documentation. From this base
dataset, we generate one private dataset for each parameterized
sanitization algorithm attacked.

Targets and background knowledge. In Snake1, any household
that contains at least 5 individuals might be a target, with the tar-
get consisting of the full set of records of the household. Snake1
considers the following background knowledge about each target.
The adversary knows (1) the exact records of the household tar-
geted, and (2) the full base dataset5. The adversary is also given
the information about the sanitization algorithm targeted as well
as the parameters used for the executions and has access to its
implementation. However, the randomness generated internally
during the execution of the algorithm is unknown to the adversary.

Sanitization algorithms under attacks. The sanitization algorithms
under attack during Snake1 are differentially-private synthetic data
generation algorithms. More precisely, we have selected a set of
algorithms according to the following two criteria: technical sound-
ness assessed by a rigorous peer-selection process (e.g., published
at top-tier conferences or winner of a dedicated competition) and
available open-source implementation. In particular, we have used
the implementations available in the Reprosyn package [16]. Except
for parameters related to differential privacy, we use the default
values set in their implementations. The PrivBayes algorithm [23]
generates synthetic data by capturing the underlying distribution of
the private data through a specific Bayesian network. The MST algo-
rithm [13] is a generalization of the NIST-MST algorithm, which has
won the 2018 NIST Differential Privacy Synthetic Data challenge. It
generates synthetic data by perturbing the marginals that capture
the data distribution through the Gaussian mechanism and by post-
processing them through the Private-PGM algorithm [14]. The
PATE-GAN algorithm [11] is an extension of generative adversarial
networks [4] based on the private aggregation of teacher ensembles
framework [19].

Success measure. The success of a team is computed by first mea-
suring the successes of its attack on each parameterized algorithm
attacked (e.g., MST parameterized by 𝜖 = 1.0 and 𝛿 = 10−5) and
second by aggregating the success measures in a single final score.
The success of a given attack for a given parameterized algorithm
is evaluated based on the well-known membership advantage mea-
sure [22]. The number of targets must be at the same time large
enough for obtaining a sufficiently stable estimation and small
enough for being practical (e.g., 𝑟 = 100).
4Full description available at https://microdata.epi.org/variables/.
5It provides teams with the knowledge of the population distribution commonly
assumed in membership inference attacks.

Execution environment. The design, coding, and executions of
attacks are performed locally by each team with its own resources.
As a result, there is no restriction on the computing environment
used to develop the attacks and the choice of the programming lan-
guage and the available resources are unconstrained. Note however
that we provide to participants the Snake1 Python environment.

5 DEMONSTRATION

We propose to demonstrate the key features of the Snake frame-
work on several datasets along the following three scenarios.

Organizer side: creating a competition.We demonstrate how
one can create a competition with Snake, highlighting the benefits
of Snake for automating the creation of tasks and bundles.

Participant side: overview of the first edition.We use the
first edition of Snake to give an interactive view of participating
in a running competition (e.g., accessing the tasks generated by
Snake, running a baseline attack and submitting the results).

Extension: code submission. We demonstrate how the frame-
work can be extended with minimal changes using the example of
the ekans toy competition (available on CodaBench6) which is the
“reverse” of Snake1. The objective of ekans is to propose a way
to sample targets that are the easiest to attack. ekans asks partici-
pants to submit Python code in charge of sampling “good” targets for
membership inference attacks. The CodaBench platform runs the
code submitted and performs a basic attack on the sampled targets
using the TAPAS package [6]. The score of the participant is the
success score of the attack. We believe that the ekans competition
helps illustrate the genericity of the Snake framework.

6 CONCLUSION

The Snake framework is dedicated to facilitating the organization
of challenges stress-testing sanitization algorithms. Snake allows to
easily automate the redundant tasks that are inherent to any such
challenge and exhibits the following salient features: genericity
with respect to attacks, ease of use and extensibility.

We illustrate Snake through Snake1, a specific instantiation fo-
cusing on membership inference attacks over differentially-private
synthetic data generation schemes. We propose in this paper to
showcase Snake from the points of view of the organizer and of
participants. Overall, we hope that the Snake challenges can help
gain understanding of the empirical privacy guarantees of saniti-
zation algorithms and of their parameters and pave the way to a
greater democratization of sanitization algorithms providing strong
privacy guarantees.
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