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Abstract
Advanced geometric modelers require the detection of topological changes caused by modeling operations
such as edge creation, face splitting or volume merging... Such a detection can be dynamically performed
by comparing all topological cells (vertices, edges, faces, volumes) before and after each modification,
which can be very time consuming. Then, for some events generated in a systematic way, it can also
be performed statically before applying each operation, but it entails several hurdles due to the lack of
formalization of such events: while some events may seem obvious, others may not appear intuitively
or systematically, and this work of defining events needs to be done again for each newly developed
operation.
In this paper, we propose to formalize the static detection of events and to automate this process
based on automatic analysis of operations. To achieve this, we leverage on the formalism of graph
transformation rules to describe geometric operations, and on the topological model of G-maps that
enables homogeneous modeling of manifold geometric objects in any dimension. The syntactic analysis
of rules enables the detection of all events that can be detected statically and also specifies the cells on
which events that can only be detected dynamically could occur. With this approach, any new operation
can be developed faster within the modeler, ensuring a complete, accurate and automatic event detection.

Keywords: Topology-based modeling; Topological change detection; Static analysis; Graph transfor-
mation rules; Generalized maps;

1 Introduction

CAD-oriented systems rely on geometric model-
ing kernels which allow users to design and main-
tain control over complex geometric models [Das23;
Ope22; Sie22]. An essential feature of such kernels
is event detection: the ability to track topologi-
cal changes (creation, deletion, split, merging and
modification) of cells (vertices, edges, faces, vol-
umes) when a modeling operation is applied.

Event detection has a variety of purposes such
as, for example, the construction of event logs, per-

The definitive version of the paper is available at https:
//diglib.eg.org/xmlui/handle/10.2312/cgvc20231186

sistent naming schemes or modeling optimization.
An event log is an history-based data structure de-
scribing the evolution of cells during the construc-
tion of a model. Such data are required for the
internal execution of a number of operations pro-
vided by kernels and are also passed through the
API in order to help developers using those kernels
to maintain model consistency [ABC00; Bab+07;
Liu+18; Ope22]. A persistent naming scheme al-
lows the reevaluation of models regardless of pa-
rameter changes, or their transfer toward other sys-
tems, and directly or indirectly depends on events
detection to propose unique and persistent names
for cells [Kri95; MP02; Che+12; BNB05; FH18].
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Events detection is also useful for optimizing the
modeling process. For example, operation conflicts
in feature-based collaborative CAD systems can be
detected and resolved by tracking topological entity
changes [Che+16].

Most current tools detect events dynamically.
A dynamic detection requires comparing a model
before and after the application of any operation
[Ope22; Bab+07]. On complex models that con-
tain a significant number of cells, the cost in time
to fully perform event tracking can be relatively
high. To reduce this cost, it is possible to statically
detect some local events. For example, the triangu-
lation of a face generates vertex modifications, ver-
tex creations, face subdivision, and so on. Static
detection is based on analyzing operations and al-
lows events to be described and calculated before
those operations are actually performed. It is up to
the developer of the operation to manually define
and describe these events, which raises a number
of predicaments. First, there is currently no stan-
dard formalization for describing these events. For
instance, depending on the system, an edge flip op-
eration between two triangles may be interpreted
as a modification of both triangles or as a split
and/or merging of those triangles. Second, the task
of defining and describing events needs to be re-
peated every time a new operation is developed.
Third, this manual definition can introduce errors
because while some events may seem obvious, oth-
ers may not be intuitively apparent or can be for-
gotten. Event detection may then be incomplete or
erroneous. For example, consider the edge collapse
operation used in geology for studying soil erosion
[Béz+14]. This operation is illustrated in Fig.1.
Quite intuitively, the collapse of an edge results in
the merging of both vertices at its endpoints. This
can be observed in Fig.1b, where vertices V1 and
V2 are merged into a single vertex S1. However,
when the same operation is applied again (Fig.1c),
it leads to the merging of vertices S1 and V3 and
the subsequent split into two vertices S2 and S3, in
the case of a classical manifold representation. The
same operation applied to an edge of a cylinder can
even result in no vertex merging at all, but only a
split (Fig.1e).

In this paper, we propose to formalize the static
detection of local events and automate this pro-
cess based on automatic analysis of operations. To
achieve this, we use the formalism of graph trans-

(a) Initial flat
surface

(b) Collapse(e1) (c) Collapse(e2)

(d) Initial cylindrical sur-
face

(e) Collapse(e3)

Figure 1: Various edge collapses.

formation rules to describe geometric operations,
specifically using the Jerboa library [Bel+14] which
facilitates the development of modelers dedicated
to specific applications. Jerboa is based on the
Generalized Maps (or "G-maps") topological model
[Lie91; DL14], which corresponds to a specific class
of labeled graphs and enables homogeneous mod-
eling of oriented or non-oriented manifold geomet-
ric objects in any dimension. The rules are con-
structed through the Jerboa interface, which allows
for rapid development of modeling operations while
ensuring the topological consistency of the underly-
ing geometric model. As we show in the following,
a syntactic analysis of each rule enables the de-
tection of local events and also specifies the cells
on which global events could occur (events that
can only be detected dynamically). This detection
becomes much faster, as only these cells need to
be verified during the application of the operation.
With this approach, any new operation can be de-
veloped within the modeler, ensuring an automatic,
complete and accurate event detection.

Section 2 introduces the concepts of general-
ized maps and Jerboa’s graph transformation rules,
along with their associated vocabulary. Section 3
formalizes topological events and details the static
analysis to perform in order to automatically de-
tect these events. Section 4 presents an example
of event log integrating a list of automatically de-
tected events. Section 5 provides a time cost com-
parison between static and dynamic event detec-
tion. Section 6 concludes and proposes some per-
spectives.
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2 Main concepts

In this section, we present the generalized maps,
the graph transformation rules, and the concepts
upon which our method is based.

2.1 Generalized maps

Generalized maps (or G-maps) [Lie91; DL14] al-
low the representation of manifold geometric ob-
jects (with or without boundaries), based on some
cellular n-dimensional topological structure.

The representation of an object as a G-map in-
tuitively comes from its decomposition into topo-
logical cells (vertices, edges, faces, volumes, and so
on). For example, the 2D geometrical object shown
in Fig. 2a is represented as a 2-dimensional G-map
(or 2-G-map) as follows. The object is first decom-
posed into faces (Fig. 2b). These faces are linked
along their common edge with a 2-link, drawn in
blue. Each edge on the border of the object is
connected to itself (the blue 2-link forms a loop).
The index "2" means that the link connects two 2-
dimensional (possibly a single one) faces. In order
to simplify the reading, 2 labels will not be writ-
ten in every subsequent figure. In the same way,
faces are split into edges connected with red 1-links
(Fig 2c). Lastly, edges themselves are split into
vertices with black 0-links (Fig 2d) to produce the
2-G-map describing the objects shown in Fig. 2a.
A G-map is therefore a graph, the nodes of which
are the vertices (named darts) obtained at the end
of the process and the edges are i-links.

G-maps have conditions guaranteeing objects
consistency: for example, two faces are always
linked along an edge.

Topological cells are not explicitly represented in
G-maps but only implicitly defined as subgraphs.
They can be computed using graph traversals de-
fined by an originating node and by a given set of
link labels named orbit. For example, the 2-cell ad-
jacent to some dart a (or the object face matching
a) (Fig. 3a) is the subgraph which contains a and
all darts reachable from a, using links labeled 0 or
1 (i.e. darts a, b, c, d, e, f , g and h) and the links
themselves. This subgraph is denoted by G⟨0, 1⟩(a)
and models the face BCED (Fig. 2a). ⟨0, 1⟩ is the
type of the orbit. The 1-cell adjacent to a (or the
object edge matching a) (Fig. 3b) is the subgraph
G⟨0, 2⟩(a) which contains a and all reachable darts

using links labeled 0 or 2 (i.e. darts a, b, l and m)
and the corresponding links. It represents the topo-
logical edge BC. Thanks to 2-loops on the object
border, G⟨0, 2⟩(c) (Fig. 3c) also represents the edge
CE matching dart c. The 0-cell adjacent to a (or
the object vertex matching dart a) (Fig. 3d) is the
subgraph G⟨1, 2⟩(a) and represents vertex B. Note
that orbits are more general than cells. For exam-
ple, the face edge G⟨0⟩(a) (Fig. 3e) is an ⟨0⟩ orbit
adjacent to a.

2.2 Graph transformation rules

Jerboas’s [Bel+14] graph transformation rules al-
low the formalisation of operations over G-maps.

In a few words, a rule r : L −→ R and a match
m : L → G to a G-map G, describe the transforma-
tion G −→r,m H from G to H. m allows replacing
a sub-graph of G described by the left-hand side
of the rule L with another one described by the
right-hand side R, in order to produce H.

Informally, in the triangulation rule shown in
Fig. 4, the left side is made of only one node n0

labeled with the ⟨0, 1⟩ (i.e. face) type: this way,
it can match any face. Consider for instance the
node n0 from L and the dart a0 from G shown in
(Fig. 5a), respectively. Matching n0 with a0, the
whole face G⟨0, 1⟩(a0) is matched, highlighted in
orange in the figure. 0- (resp. 1-) links are repre-
sented by black (resp. red) segments. On the right
side, the node n0 has label ⟨0,_⟩. This means that
when applying this rule, 0-links of nodes n0 have
been preserved, while 1-links have been deleted.
Hence, in H (Fig. 5b), the 0-links of the matched
orange face have been preserved while 1-links have
been deleted. In other words, the edges of the or-
ange face are disconnected in H. The new node n2

of R creates, in H, darts copied from the matched
face. This is why there are eight blue darts (a2,
b2 . . .h2) created from orange darts (a0, b0 . . .h0).
Because n2 is labeled ⟨1, 2⟩, the orange 0- (resp. 1-)
links on the left side of the rule are relabeled to 1-
(resp. 2-) links in the blue copy. Therefore, the rule
creates a dual vertex to the matched face. Finally,
the node n1 of R creates a green copy with eight
darts (a1, b1 . . .h1), deletes the left-side 0-links and
relabels the left-side 1-links to 2-links.

All the highlighted links (Fig. 5) are referred to
as implicit links in the rule nodes. Conversely, the
links connecting the nodes together in R are re-
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Figure 2: Cell decomposition of a geometric 2D object
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Figure 3: Orbit decomposition of a geometric 2D object

<0, 1>

n0

<1, 2><0, _>

n0 n2

<_, 2>

n1

1 0

Figure 4: Rule L −→ R of face triangulation

ferred to as explicit links. For example, the explicit
0-links between n1 and n2 link one-to-one green
and blue darts. Therefore, the rule creates the four
new edges ⟨0, 2⟩ in the triangulation of the matched
square face. By the same token, the explicit 1-link
between n0 and n1 link one-to-one orange and green
darts.

The n0 node (Fig. 4) is a preserved node because
it belongs to both the left and right sides of the
rule. Nodes n1 and n2 are created nodes because
they belong only to the right side of the rule. This
rule does not contain any deleted node because none
of its nodes belongs only to the left side.

The concept of orbit is extended to patterns of

rules. For example, in the right-hand side of the tri-
angulation rule (Fig. 4), the ⟨0, 2⟩-orbit (an edge)
incident to node n0 contains the single node n0,
and the ⟨0, 2⟩-orbit incident to n1 contain the two
nodes n1 and n2 and the explicit 0-link which con-
nects them. Additionally, an ⟨o⟩-orbit is said to
be complete if each node in the orbit matches one
link per label of ⟨o⟩ either explicitly or implicitly.
For example, the ⟨0, 2⟩-orbit incident to node n0 in
the right-hand side of the triangulation rule (Fig.
3) is not complete, because node n0 has no 2-link,
neither implicitly nor explicitly. Conversely, the
⟨0, 2⟩-orbit incident to n1 is complete, because its
two nodes n0 and n1 are incident to the explicit 0-
link and both have an implicit 2-link. Note that an
⟨o⟩-orbit in a graph is entirely matched by a rule
pattern if and only if the corresponding ⟨o⟩-orbit
in the pattern is complete. For example, the ⟨0, 2⟩-
orbit incident to a0 in the graph H (Fig. 5b) is par-
tially matched by the triangulation rule (only darts
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Figure 5: Application of the triangulation rule
(Fig. 4) on matched dart a0

a0 and b0 are matched and not their 2 neighbors),
because the ⟨0, 2⟩-orbit incident to n0 in the rule is
not complete. Conversely, the ⟨0, 2⟩-orbit incident
to a1 in graph H is entirely matched by the trian-
gulation rule (both darts a1 and h1 are matched by
node n1 and darts a2 and h2 are matched by node
n2), because the ⟨0, 2⟩-orbit incident to n1 in the
rule is complete.

Jerboa’s rules provide syntactic properties guar-
anteeing the preservation of G-maps consistency.

3 Event detection
Basically, detecting an event occurring on an orbit
after the application of a rule implies comparing the
graph before and after this application [Tie+17].
However, many events can be statically detected
before the rule is applied. As seen previously, en-
trusting the developer with the task of detecting
and formalizing these events for each new operation
paves the way to various issues. We propose to for-
malize the different events (creation, deletion, split,
merging, modification, and non-modification) and
their detection in order to automate this process
through analysis and comparison of rules’ nodes.

3.1 Creation

Any node of a rule matches at least one dart. So
when a rule creates a node, it also creates the
corresponding darts. If the right-hand side of a

rule contains a created orbit, then applying this
rule on any object creates one or several orbits.
For example, the triangulation rule (Fig. 4) cre-
ates the edge orbit R⟨0, 2⟩(n1). Therefore, the ap-
plication of this rule on the square face (Fig. 5)
creates four edge orbits H⟨0, 2⟩(a1), H⟨0, 2⟩(c1),
H⟨0, 2⟩(e1) and H⟨0, 2⟩(g1) in H.

The creation of an orbit is defined as follows :

Definition 3.1.1 (Orbit creation) Let
r : L −→ R be a rule, m : L → G a match,
t : G −→r,m H the transformation of G by (r,m),
⟨o⟩ an orbit type, n a created node of R and d a
dart of H matched by n.

An orbit R⟨o⟩(n) is created in the rule r if all of
its nodes are created in r.

An orbit H⟨o⟩(d) is created in the transforma-
tion t if and only if all of its darts are created by
t.

From the syntactic analysis of a rule, it is then
possible to automatically detect the event of orbit
creation using the following proposition :

Proposition 3.1.1 Let r : L −→ R be a rule, m :
L → G a match, t : G −→r,m H the transformation
of G by (r,m), ⟨o⟩ an orbit type, n a created node
of R and d a dart of H matched by n.

The orbit H⟨o⟩(d) is created if and only if
R⟨o⟩(n) is created.

Idea of proof: Thanks to the syntactic conditions
on rules, the orbit R⟨o⟩(n) is complete. Thus, due
to the application of rules, H⟨o⟩(d) is included
in the image of R⟨o⟩(n). Therefore, all darts of
H⟨o⟩(d) are created. Conversely, if H⟨o⟩(d) is
created, then this orbit is included in the image of
R⟨o⟩(n) and R⟨o⟩(n) is created. □

Back to the example of face triangulation
(Fig. 4 and 5), we follow the creation of an edge.
The edge orbit R⟨0, 2⟩(n1) in the triangulation rule
is created because both its nodes n1 and n2 are
created. In the transformation, n1 matches eight
darts, including for example dart a1, and n2 also
matches eight darts including dart a2. The edge
orbit H⟨0, 2⟩(a1) is created as well as darts a2, h1

and h2 (Fig. 5b).
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Figure 6: Rule r : L −→ R of unsewing 2-links
along an edge (⟨0, 2⟩-orbit)

3.2 Split
When a rule explicitly splits an orbit, it also
splits the set of matched orbits. For example,
the unsewing rule (Fig. 6) splits the edge orbit
L⟨0, 2⟩(n0) into a pair of edge orbits R⟨0, 2⟩(n0)
and R⟨0, 2⟩(n1). Therefore, the first application of
this rule (Fig. 7b) splits the edge into two edges
H⟨0, 2⟩(a0) and H⟨0, 2⟩(a1).

A rule can also split an orbit implicitly. For
example, the triangulation rule (Fig. 4) splits the
face orbit L⟨0, 1⟩(n0) along the second implicit links
since on the right-hand side, every second implicit
link of the nodes n0, n1 and n2 belonging to the
face orbit R⟨0, 1⟩(n0) is either deleted or different
from 0 and 1. Hence, applying this rule (Fig. 5)
splits G⟨0, 1⟩(a0) into four face orbits H⟨0, 1⟩(a0),
H⟨0, 1⟩(c0), H⟨0, 1⟩(e0), H⟨0, 1⟩(g0).

The split of an orbit is defined as follows :

Definition 3.2.1 (Orbit split) Let r : L −→ R
be a rule, m : L → G a match, t : G −→r,m H the
transformation of G by (r,m), ⟨o⟩ an orbit type, n
a preserved node of r and d a preserved dart of t.

An orbit L⟨o⟩(n) is split in the rule r:

• Either explicitly if there exists a preserved
node n′ in L⟨o⟩(n) that does not belong to the
same orbit in R, i.e. R⟨o⟩(n) ̸= R⟨o⟩(n′);

• Or implicitly along the k-th implicit link if
there exists in L⟨o⟩(n) a node for which the k-
th implicit link belongs to ⟨o⟩ and for all nodes
n′ in R⟨o⟩(n), the k-th implicit link is renamed
outside of ⟨o⟩.

An orbit G⟨o⟩(d) is split in the transformation
t if and only if there exists a preserved dart d′ in
G⟨o⟩(d), such that H⟨o⟩(d) ̸= H⟨o⟩(d′).

From the syntactic analysis of a rule, it is then
possible to automatically detect the event of orbit
split using the following proposition :

Proposition 3.2.1 Let r : L −→ R be a rule , m :
L → G a match, t : G −→r,m H the transformation

of G by (r,m), ⟨o⟩ an orbit type, n a preserved node
of r.

If the orbit L⟨o⟩(n) is both complete and explicitly
split in r, i.e. if there exists a preserved node n′ in
L⟨o⟩(n) such that R⟨o⟩(n) ̸= R⟨o⟩(n′), then for any
preserved darts d and d′ of t respectively matching
R⟨o⟩(n) and R⟨o⟩(n′), G⟨o⟩(d) is split in t into two
orbits H⟨o⟩(d) ̸= H⟨o⟩(d′).

If the orbit L⟨o⟩(n) is both incomplete and implic-
itly split, the split may be confirmed dynamically on
G.

Idea of proof: As a reminder, a complete orbit
L⟨o⟩(n) entirely matches an orbit G⟨o⟩(d).

In the case of an explicit split in r from L⟨o⟩(n) to
R⟨o⟩(n) ̸= R⟨o⟩(n′), since L⟨o⟩(n) is complete, then
due to rules syntactic conditions, so are R⟨o⟩(n)
and R⟨o⟩(n′). Let d and d′ be two preserved darts
of t such that d (resp. d′) is matched by L⟨o⟩(n) and
R⟨o⟩(n) (resp. L⟨o⟩(n′) and R⟨o⟩(n′)). It follows
that G⟨o⟩(d) is split into H⟨o⟩(d) ̸= H⟨o⟩(d′).

If L⟨o⟩(n) is complete, and there is an implicit
split along the k-th implicit links of L⟨o⟩(n) in
r, then by definition, all the k-th implicit links
of R⟨o⟩(n) are deleted or renamed outside of ⟨o⟩.
Let n′ be a preserved node of L⟨o⟩(n) with a k-
th implicit i-link with i in ⟨o⟩, and d and d′ two
i-linked matched darts of n′ in G. Then d and
d′ may either belong to two different orbits in H
(H⟨o⟩(d) ̸= H⟨o⟩(d′)); belong to the same orbit
in H if the sub-orbit is folded along the split i-
link (H⟨o⟩(d) = H⟨o⟩(d′)); or be the same dart if
the link is a loop (d = d′ and therefore H⟨o⟩(d) =
H⟨o⟩(d′)).

Let us assume now that L⟨o⟩(n) is not complete.
Let d and d′ be two darts of G matched by L⟨o⟩(n)
which are potentially split. Because L⟨o⟩(n) is
not complete, G can contain some path between
d and d′ using only links labeled in ⟨o⟩ such that
this path is not entirely matched by L⟨o⟩(n).
Therefore, this path does not break during the
transformation t and both d and d′ remain in the
same orbit in H: H⟨o⟩(d′) = H⟨o⟩(d′′). □

Referring to the example of the unsewing rule
(Fig. 6), we follow the explicit split of an edge.
The rule splits the edge orbit L⟨0, 2⟩(n0) because
both its nodes n1 and n2 form two distinct edge
orbits R⟨0, 2⟩(n0) and R⟨0, 2⟩(n1). Rule applica-
tion (Fig. 7b) entails n0 (resp. n1) matching both
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Figure 7: (a) Initial graph G. (b) First application of the 2-unsewing rule (Fig. 6): pink darts. (c) Second
application of the 2-unsewing rule: green darts. (d) Application of the edge deletion rule (Fig. 9): red
darts.

darts a0 and b0 (resp. a1 and b1). The edge orbit
G⟨0, 2⟩(a0), containing the darts matched by both
n0 and n1, is split into a pair of orbits H⟨0, 2⟩(a0)
(i.e. a0 and b0) and H⟨0, 2⟩(a1) (i.e. a1 and b1).

Continuing with the face triangulation rule
(Fig. 4), we follow the implicit split event of a face
orbit type ⟨0, 1⟩. The orbit L⟨0, 1⟩(n0) contains
node n0 and matches a single set of darts which
form a face orbit. The first implicit link of n0 is 0
and the second implicit link is 1; both belong to or-
bit type ⟨0, 1⟩. However, the orbit R⟨0, 1⟩(n0) con-
tains nodes n0, n1, n2 and none of them has either 0
or 1 as a second implicit link. Under this condition,
we can state that the face triangulation rule splits a
face into two or more faces. Applying this triangu-
lation rule on the square face (Fig. 5), L⟨0, 1⟩(n0)
matches the face orbit G⟨0, 1⟩(a0)). Then, the
square face is split into the four faces matching
R⟨0, 1⟩(n0): H⟨0, 1⟩(a0), H⟨0, 1⟩(c0), H⟨0, 1⟩(e0)
and H⟨0, 1⟩(g0).

Note that both proposition 3.2.1 and its proof
idea mention that a split of an ⟨o⟩-orbit is guaran-
teed to happen in a graph transformation when the
split is explicit and the orbit is complete in the rule.
For example, let us consider the unsewing edge rule
(Fig. 6) and its application on a surface (Fig. 7)
again but this time, we focus on the surface orbit
L⟨0, 1, 2⟩(n0). The rule’s nodes of this orbit all miss
an 1-link and, thus, L⟨0, 1, 2⟩(n0) is not complete.
As we can see, upon the first application of the rule
(Fig. 7b), the surface is not split, although the con-
ditions given in the definition 3.2.1 are met. Yet,
in this case, applying the unsewing rule a second
time (Fig. 7c) actually splits the surface. Indeed,
when an orbit is not complete, the pattern matches

<0>

n0

<0>

n1

2

2
<0>

n1

<0>

n0
2

Figure 8: Rule r : L −→ R of 2-sewing along two
edges (⟨0, 2⟩-orbits)

<0, 2>

n0

<_, _>

n1

1
<_, 1>

n1

Figure 9: Rule r : L −→ R of edge deletion

only a part of the orbit and detected events must
be confirmed dynamically. Fortunately, even if de-
tecting this potential split is a dynamic process, it
is not time-consuming, because we know exactly
which cell needs to be traversed and which alpha
links can potentially generate this split.

3.3 Merging

Similarly to orbit split, there exist explicit and im-
plicit merging orbits.

For example, in the explicit case, the sewing
rule (Fig. 8) is the opposite of the unsewing rule
(Fig. 6) for both the result of its application and
its construction. Let us consider the square plan
(Fig. 7) from H to G (Fig. 7b to Fig. 7a). The
sewing rule merges two edge orbits L⟨0, 2⟩(n0) and
L⟨0, 2⟩(n1) into a single edge orbit R⟨0, 2⟩(n0).
Therefore, applying the sewing rule merges two
edges of H, H⟨0, 2⟩(a0) and H⟨0, 2⟩(a1), into one
edge G⟨0, 2⟩(a0).

The same goes for the implicit merging. For ex-
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ample, in the implicit case, the edge deletion rule
(Fig. 9) merges the face vertex orbits mapped to
L⟨1⟩(n0) along the second implicit link. In fact, in
the left-hand side of the rule, the second implicit
link of n0 is 2 and n1 has no second implicit link.
In the right-hand side of the rule, the second im-
plicit link of n1 is rewritten as 1. It follows that
the application of this rule (Fig. 7d) merges both
I⟨1⟩(c1), I⟨1⟩(d1) into J⟨1⟩(c1) and both I⟨1⟩(e1),
I⟨1⟩(f1) into J⟨1⟩(e1).

The merging of an orbit is defined as follows :

Definition 3.3.1 (Orbit merging) Let
r : L −→ R be a rule, m : L → G a match,
t : G −→r,m H a transformation of G by (r,m),
⟨o⟩ an orbit type, n a preserved node of r and d a
preserved dart of t.

An orbit L⟨o⟩(n) is merged by the rule r:

• Either explicitly if there exists a preserved
node n′, with L⟨o⟩(n) ̸= L⟨o⟩(n′), such that
both n and n′ belong to the same orbit in R,
i.e. R⟨o⟩(n) = R⟨o⟩(n′).

• Or implicitly along the k-th implicit link if
there exists in R⟨o⟩(n) a node whose the k-
th implicit link belongs to ⟨o⟩ and for all nodes
n′ in L⟨o⟩(n), the k-th implicit link does not
belong to ⟨o⟩.

Two different orbits G⟨o⟩(d) and G⟨o⟩(d′), with
d′ a preserved dart, are merged in the transforma-
tion t if and only if H⟨o⟩(d) = H⟨o⟩(d′).

From the syntactic analysis of a rule, it is then
possible to automatically detect the orbit merging
event :

Proposition 3.3.1 Let r : L −→ R be a rule, m :
L → G a match, t : G −→r,m H a transformation
of G by (r,m), ⟨o⟩ an orbit type, n a preserved node
of r.

If the orbit L⟨o⟩(n) is both complete and ex-
plicitly merged, i.e. if there exists a preserved
node n′ in r such that L⟨o⟩(n) ̸= L⟨o⟩(n′) and
R⟨o⟩(n) = R⟨o⟩(n′), then for any preserved darts
d and d′ of t respectively matched by L⟨o⟩(n) and
L⟨o⟩(n′), G⟨o⟩(d) is merged with G⟨o⟩(d′) in H, i.e.
G⟨o⟩(d) ̸= G⟨o⟩(d′) and H⟨o⟩(d) = H⟨o⟩(d′).

If the orbit L⟨o⟩(n) is both incomplete and im-
plicitly merged, the merge may be confirmed dynam-
ically on G.

Idea of proof: The idea is analogous to the one
developed for Proposition 3.2.1.

If the orbit L⟨o⟩(n) is both complete and ex-
plicitly merged with another orbit L⟨o⟩(n′), where
n′ is a preserved node of r, then R⟨o⟩(n) =
R⟨o⟩(n′). Because L⟨o⟩(n) is complete, L⟨o⟩(n) en-
tirely matches G⟨o⟩(d) for any preserved dart d of t
matched by L⟨o⟩(n). Due to the injection prop-
erty of matching, for any preserved dart d′ of t
matched by L⟨o⟩(n′), d′ is not a dart of G⟨o⟩(n).
In other words, G⟨o⟩(d) ̸= G⟨o⟩(d′). Finally, due
to the rule application, R⟨o⟩(n) = R⟨o⟩(n′) implies
H⟨o⟩(d) = H⟨o⟩(d′).

If L⟨o⟩(n) is complete and if there is an implicit
merge along the k-th implicit links of L⟨o⟩(n) in
r, then by definition, all the k-th implicit links of
L⟨o⟩(n) are deleted or named outside of ⟨o⟩. Let
n′ be a preserved node of L⟨o⟩(n) such that the
k-th implicit link of n′ is i-labeled in R with i in
⟨o⟩. Let d and d′ be two darts, matched by n′, and
i linked in H. Both d and d′ belong to the same
⟨o⟩-orbit in H (H⟨o⟩(d) = H⟨o⟩(d′)). Then d and
d′ may either belong to two different orbits in G
(G⟨o⟩(d) ̸= G⟨o⟩(d′)); belong to the same orbit in
G if the rule folds the sub-orbit along the i-link
(G⟨o⟩(d) = G⟨o⟩(d′)); or finally be the same dart if
the i-link is a loop (d = d′ and therefore G⟨o⟩(d) =
G⟨o⟩(d′)).

Let us assume now that L⟨o⟩(n) is not complete.
Let d and d′ be two preserved darts of t matched
by L⟨o⟩(n) which are potentially merged. Because
L⟨o⟩(n) is incomplete, so is R⟨o⟩(n), and H can
contain some path between d and d′ using only
links in ⟨o⟩ such that this path is not entirely
matched by R⟨o⟩(n). Therefore, this path has
not been built during the transformation t and
d and d′ were already in the same orbit in G
(G⟨o⟩(d) = G⟨o⟩(d′)). □

With the example of the sewing rule (Fig. 8),
we follow the explicit merging of two edges. The
edge orbits L⟨0, 2⟩(n0) and L⟨0, 2⟩(n1) are complete
and merged in the rule because their res-pective
nodes n1 and n2 are part of the same edge orbit
R⟨0, 2⟩(n0). Applying the transformation, n0 (resp.
n1) matches the darts a0 and b0 (resp. a1 and b1).
Edge orbits H⟨0, 2⟩(a0) and H⟨0, 2⟩(a1) are merged
into orbit G⟨0, 2⟩(a0) (i.e. a0, b0, a1 and b1), as
shown in Fig. 7a.

With the edge deletion rule (Fig. 9), we follow
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<0, 2>

n0

<_, _>

n1

1
<1, _>

n1

Figure 10: Rule L −→ R of edge collapse

the implicit merging event of the face vertices (or-
bit types ⟨1⟩). The orbit L⟨1⟩(n0) contains both
nodes n0 and n1 and matches a single set of darts
representing four face vertices. In this example,
since all nodes of L⟨1⟩(n0) do not have an im-
plicit 1-link and since the only remaining node
in R⟨1⟩(n1) has such a link, then we can state
that face vertices are merged. Applying this edge
deletion rule on the bottom vertical edge of the
Fig. 7c, L⟨1⟩(n0) matches two pairs of face ver-
tices (I⟨1⟩(c0), I⟨1⟩(d0)) and (I⟨1⟩(e0), I⟨1⟩(f0)).
Then, the face vertices around the edge to delete is
merged into the pair of face vertices matched from
R⟨1⟩(n1) (i.e. J⟨1⟩(c1) and J⟨1⟩(e1)).

Note that a potential merge of two faces is also
detected in this edge deletion rule. Indeed, the sec-
ond implicit link of n1 in R⟨0, 1⟩(n1) does not ap-
pear in all nodes of L⟨0, 1⟩(n1) but this orbit is not
complete. Thus, such a potential merge is automat-
ically detected and must be confirmed dynamically
depending if both faces incident to the removed
edge are different (as shown in Fig. 7d). Similarly,
let us consider the first example from Fig. 1 that
uses the edge collapse rule introduced in Fig. 10
and the incomplete L⟨1, 2⟩(n0) orbit. The first ap-
plication of the rule (Fig. 11b) does not result in
a vertex split, while the second application does
(Fig. 11c).

3.4 Other events

The approach for the other events (deletion, non
modification and modification) being relatively sim-
ilar, we will describe them in a more concise way.

3.4.1 Deletion

This event mirrors the creation one. Let us get back
to the edge deletion rule (Fig. 9). This rule, as its
name suggests, deletes an edge orbit L⟨0, 2⟩(n0).
Its single node n0, which by itself matches an edge
because it is complete on ⟨0, 2⟩, no longer exists
on the right side of the rule and, therefore, is
deleted. Applying the rule on the darts shown in

a0

b0

c0

d0

a1

b1

c1

d1

(a) Graph G

a1
b1

c1
d1

e0
e1

f0
f1

g0

g1

h0

h1

(b) Graph H

e1
g1

f1
h1

(c) Graph I

Figure 11: Two successive applications of edge col-
lapse rule (Fig. 10) on matched dart a0 (a), then
on on matched dart e0 (b)

Fig. 7c, L⟨0, 2⟩(n0) matches the orbit I⟨0, 2⟩(c0)
whose darts (c0, d0, e0 and f0 are then deleted in
J (Fig. 7d), since there are no nodes in R to match
them.

The deletion of an orbit is defined as follows :

Definition 3.4.1 (Orbit deletion) Let
r : L −→ R be a rule, m : L → G a match,
t : G −→r,m H the transformation of G by (r,m),
⟨o⟩ an orbit type, n a node of L and d a dart of G.

An orbit L⟨o⟩(n) is deleted in the rule r if all of
its nodes are deleted in r.

An orbit G⟨o⟩(d) is deleted in the transformation
t if and only if all of its darts are deleted by t.

From the syntactic analysis of a rule, it is then
possible to automatically detect the orbit deleting
event :

Proposition 3.4.1 Let r : L −→ R be a rule, m :
L → G a match, t : G −→r,m H the transformation
of G by (r,m), ⟨o⟩ an orbit type, n a node of L and
d a dart of G.

An orbit L⟨o⟩(n) is deleted in the rule r if and
only if the orbit G⟨o⟩(d) is deleted in the transfor-
mation t for any dart d matched by L⟨o⟩(n).

Idea of proof: Thanks to the syntactic conditions
on the rules, a deleted orbit is always complete.
Consequently, the corresponding orbits are also
completely deleted in the transformation. □
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3.4.2 Non-Modification

An orbit is said to be not modified when its nodes
and links remain unchanged. For example, in
the triangulation rule (Fig. 4), the face edge or-
bit L⟨0⟩(n0) only contains node n0 and the same
goes for the orbit R⟨0⟩(n0). Considering that the
implicit 0-link of n0 is unchanged and that there
is no other node in its orbit, we can state that
the triangulation rule does not modify the face
edges. Applying this rule on the house (Fig. 5), the
face edge orbits remain the same and G⟨0⟩(a0) =
H⟨0⟩(a0), G⟨0⟩(c0) = H⟨0⟩(c0), G⟨e0⟩ = H⟨e0⟩
and G⟨0⟩(g0) = H⟨0⟩(g0) (Fig. 5b).

The non-modification of an orbit is defined as
follows :

Definition 3.4.2 (Orbit non-modification)
Let r : L −→ R be a rule, m : L → G a match,
t : G −→r,m H the transformation of G by (r,m),
⟨o⟩ an orbit type, n a preserved node of r and d a
preserved dart of t.

An orbit L⟨o⟩(n) remains not modified in the
rule r if L⟨o⟩(n) = R⟨o⟩(n) and all the nodes of
the orbit have the same label on both sides of the
rule, i.e. their implicit links are the same in L and
R.

An orbit G⟨o⟩(d) is said to be not modified in
the transformation t if G⟨o⟩(d) = H⟨o⟩(d).

From the syntactic analysis of a rule, it is then
possible to automatically detect the orbit non-
modification event :

Proposition 3.4.2 Let r : L −→ R be a rule, m :
L → G a match, t : G −→r,m H the transformation
of G by (r,m), ⟨o⟩ an orbit type, n a preserved node
of r and d a preserved dart of t.

If an orbit L⟨o⟩(n) remains not modified in the
rule r, then G⟨o⟩(d) remains not modified in the
transformation t for any dart d of G matched by
L⟨o⟩(n).

If an orbit G⟨o⟩(d) is not matched by the rule,
i.e. no dart of G⟨o⟩(d) is matched by L, then it
remains not modified.

Idea of proof: This is obvious, because a rule
may modify only the matched part of a graph. □

3.4.3 Modification

Generally speaking, an orbit is modified when it
is neither created, deleted, not modified, split or
merged. More specifically, a modified orbit has
either modified links, some created part or some
deleted part. Also, such a change must not lead
to a split nor a merging event. For example,
once again considering the triangulation rule, ver-
tex orbit L⟨1, 2⟩(n0) contains node n0 only, while
R⟨1, 2⟩(n0) contains both nodes n0 and n1. The
orbit has a created part related to n1, the second
implicit link of n0 is deleted, and there is no split,
either implicit or explicit: thus, the orbit is modi-
fied. Applying this rule on the house (Fig. 5) entails
vertex orbits G⟨1, 2⟩(a0), G⟨1, 2⟩(c0), G⟨1, 2⟩(e0),
G⟨1, 2⟩(g0) to be modified with an added part of
two new darts each.

4 Event log

Event detection method, defined in a generic man-
ner on rules in section 3, allows automatic gener-
ation of an event log encompassing all events or
potential events that occurred on the object when
a rule is applied. To illustrate this with a simple
example, let us consider the Event log in Table.1. It
corresponds to the application of the triangulation
rule (Fig. 4) to the bottom face of the geometric
object (Fig. 5). As we can see, events can be au-
tomatically detected and listed for each orbit. For
the sake of simplicity, we have chosen a rule that
matches a complete orbit. Thus, all events can be
detected statically. If not, the event log specifies
the precise orbit that needs to be dynamically ver-
ified.

5 Static and dynamic compar-
ison

This section compares a dynamic approach, in
which the program manages the evolution of the
orbits while traversing a 3D object, with a static
approach which exploits the techniques presented
in this article. The comparison has been done on
an Intel i9-11950H with 32GB under JDK 11. We
focus our study on the three main events: creation,
split and merge operations. Fig. 12 displays ex-
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Orbite
type

Detected event Orbite
type

Detected event

⟨0⟩ Creation H⟨0⟩(a1)
Creation H⟨0⟩(b1) . . .
No modif H⟨0⟩(a0)
No modif H⟨0⟩(c0) . . .

⟨1⟩ Creation H⟨0⟩(a2)
Creation H⟨1⟩(c2) . . .
Split G⟨1⟩(a0) → {H⟨1⟩(a0), H⟨1⟩(h0)}
Split G⟨1⟩(c0) → {H⟨1⟩(c0), H⟨1⟩(b0)} . . .

⟨2⟩ Creation H⟨2⟩(a1)
Creation H⟨2⟩(a2)
Creation H⟨2⟩(b1)
Creation H⟨2⟩(b2) . . .
No modif H⟨2⟩(a0)
No modif H⟨2⟩(b0)
No modif H⟨2⟩(c0)
No modif H⟨2⟩(d0) . . .

⟨0, 2⟩ Creation H⟨0, 2⟩(a1)
Creation H⟨0, 2⟩(b1). . .
No modif H⟨0, 2⟩(a0)
No modif H⟨0, 2⟩(c0) . . .

⟨0, 1, 2⟩ modif H⟨0, 1, 2⟩(a0) ⟨0, 1⟩ Split G⟨0, 1⟩(a0) → {H⟨0, 1⟩(a0), H⟨0, 1⟩(c0), H⟨0, 1⟩(e0), H⟨0, 1⟩(g0)}
⟨1, 2⟩ Creation H⟨1, 2⟩(a0)

Modif H⟨1, 2⟩(b0). . .
Creation H⟨1, 2⟩(a2)

Table 1: Extract from the Event log generated after applying the triangulation rule (Fig. 4) on the house
in Fig. 5.

perimental results of our study which measure the
computation time of a single representative of the
target orbit as the dart with the lowest identifier.
Static detection aims at recomputing only modified
orbits whereas the dynamic detection would cover
the whole mesh.

The performance of a creation operation, shown
in Fig. 12a, results from a scenario where a shape is
extruded several times so as to create a new volume
(i.e. a new orbit ⟨0, 1, 2⟩). For every orbit type, the
static detection is invariably better than the dy-
namic one. We note a peak with regard to the dart
orbit type, corresponding to a specific case where
this orbit requires a substantial treatment as darts
are the lowest dimension entities and a fair amount
of them are created in this scenario. However, the
static detection significantly limits execution time.
Orbit ⟨0, 1, 2, 3⟩ yields similar values for static and
dynamic detection, caused by the same process.

Fig. 12b shows execution time for the split opera-
tion. The study considers a cube where each face is
split into four faces by applying the Catmull-Clark
subdivision scheme [CC78]. Consequently, this ex-
ample focuses on the detection of events over the
face orbit ⟨0, 1⟩. The histogram confirms the ef-
ficiency of the static approach over dynamic de-
tection. However, we note the presence of two
peaks corresponding to volume orbits ⟨0, 1, 2⟩ and
connected component orbits ⟨0, 1, 2, 3⟩. Moreover,
these two peaks have the same values. This case

results from the input mesh: as we start with one
volume which contains a single connected compo-
nent, and since the operation just splits faces with-
out adding new volumes, then the number of faces
increases and directly impacts the performance for
computing static and dynamic evolutions, even if
the number of volumes and connected components
is still one.

Fig. 12c shows execution time for a merging oper-
ation. The study starts from a stack of cubes where
the faces shared between two cubes are successively
deleted, resulting in the merging of the volumes and
their adjacent border faces: we focus on detecting
the merging events over volume face orbits ⟨0, 1⟩
Once again, the histogram confirms the efficiency
of the static approach over dynamic detection.

6 Conclusions and perspec-
tives

Event tracking is one of the core functionalities of
geometric modeling kernels. This detection can be
done dynamically by comparing each topological
cell composing the geometric model before and af-
ter applying an operation, but it can represent a
significant cost when the model becomes very large.
To reduce this cost, it is possible to statically detect
some specific events, meaning that events generated
in a systematic way are directly defined during the
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Figure 12: Comparison between static and dynamic
event to track all orbits (the lower the better)

development of the operation. The responsibility is
then left to the developer of the operation to define
these events, but it entails several hurdles. Firstly,
there is no formalization to describe these events.
Secondly, it can lead to errors because while some
events may seem obvious, others may not appear
intuitively or systematically, or may be forgotten.

Ultimately, this work of defining events needs to be
done again for each newly developed operation.

For these reasons, we propose in this paper to
formalize the static detection of events and to au-
tomate this process based on automatic analysis
of operations. To achieve this, we leverage on the
formalism of graph transformation rules to describe
geometric operations, and on the topological model
of G-maps that enables homogeneous modeling of
manifold geometric objects in any dimension. The
syntactic analysis of the rule enables the detection
of all events that can be detected statically and also
specifies the cells on which events that can only be
detected dynamically could occur. This dynamic
detection becomes much faster, as only these cells
need to be verified during the application of the
operation. With this approach, any new opera-
tion can be developed faster within the modeler,
ensuring a complete, accurate and automatic event
detection.

This approach leads the way towards future
works. First, as of now, the operations that can
be analysed are defined with a single rule. An im-
provement will be to adapt this method to higher
level operations defined as scripts combining sev-
eral rules. Second, most current persistent naming
methods rely on the tracking of topological entities
evolutions. Working on a complex model, or in case
of frequent reevaluations of parametric models, the
static tracking of topological entities should allow
a significant improvement of the efficiency of per-
sistent naming methods. This could be accurately
evaluated by integrating this static tracking into
parametric systems.
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