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Abstract: The paper provides a new class of passivity-based controllers (PBCs) for stabilizing
sampled-data input-delayed dynamics at a desired equilibrium via energy-balancing (EB) and
reduction. Given a nonlinear dynamics under piecewise constant and retarded input, we first
exhibit a new dynamics (the reduced dynamics) that is free of delays and equivalent to the
original one. Accordingly, we design the digital controller assigning a suitable energetic behaviour
to the reduced delay-free model with a stable target equilibrium. Then, it is proved that such a
controller solves the EB-PBC problem on the original retarded system. The results are illustrated
over a simple mechanical system.
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1. INTRODUCTION

Passivity-Based Control (PBC) yields a natural and pow-
erful framework for controlling dynamic systems by ex-
ploiting their physical properties. Basically, the approach
stands in assigning a suitable energetic behaviour with a
minimum at the target equilibrium one whats to stabi-
lize at (Ortega et al., 2021, 2001; van der Schaft, 2020;
Willems, 2007).
Despite the practical interest in several applications (e.g.,
teleoperation, robotics or network systems Chopra et al.
(2022); Paredes et al. (2021); Zhou and Lin (2014)), only
few works are devoted to analyzing the (possibly simul-
taneous) effects of both sampling and time-delays on the
energetic properties of the plant and, consequently, the
design (Chopra, 2008; Fridman and Shaked, 2002; Li et al.,
2002; Mahmoud and Ismail, 2004; Niculescu and Lozano,
2001; Thomas et al., 2021). Among these, (Mattioni et al.,
2018a,b) deal with stabilization at the origin through the
notion of reduction (Mazenc and Malisoff, 2014; Mazenc
et al., 2014; Mazenc and Normand-Cyrot, 2013). The un-
derlying idea consists of constructing a new dynamics (the
reduced dynamics) that is free of delays and equivalent, in
terms of stabilizability, to the original delayed one. Such
a dynamics preserves the drift of the retarded one but
exhibits a transformed control vector field that is explicitly
parameterized by the delay. Consequently, when the orig-
inal dynamics free of delays is passive, the corresponding
reduced dynamics is passive with respect to a new output
mapping but with the same energy function. In addition, it
was shown in Mattioni et al. (2020b) that those properties
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allow to deduce passivity of the original retarded system
with respect to new output and energy functionals. Ac-
cordingly, passivity-based arguments for stabilization can
be fruitfully applied.
Exploiting the approach proposed in Mattioni et al.
(2018b), the contribution of this paper concerns sampled-
data stabilization of nonlinear dynamics under input de-
lays at a desired equilibrium via Energy-Balance (EB)
PBC. In doing so, we assume that an EB-PBC stabilizer
exists for the nominal continuous-time dynamics free of
delays and sampling. With no further hypothesis, we de-
sign the digital control assigning to the reduced model
the same target energetic behavior as in the nominal case,
with a minimum at the target equilibrium. As a conse-
quence, such a feedback asymptotically stabilizes the re-
tarded original system as well with the expected energetic
behavior despite the effect of both sampling and delays.
The proposed sampled-data solution takes the form of a
series expansion in powers of both the sampling period
and delay around the continuous-time delay-free solution.
As a further contribution, when the sampling period tends
to zero, the proposed design provides a new and original
PBC feedback for continuous-time retarded dynamics so
partially extending the results in Mattioni et al. (2020a)
on PBC for the LTI case.

The paper is organized as follows. The problem is settled in
Section 2 and the main results in Section 3 for continuous-
time and sampled-data dynamics under input delays. A
simple example is developed in Section 4 to illustrate the
result with comparisons with respect to prediction-based
control laws. Section 5 concludes the paper.



Notations. R and N denote the set of real and natural
numbers including 0. For any vector z ∈ Rn, ∥z∥ and z⊤

define respectively the norm and transpose of z. Given
a full rank matrix B ∈ Rn×m with n > m, B† =
(B⊤B)−1B⊤ denotes the pseudo inverse. I and Id denote
respectively the identity matrix (or function, depending on
the context) and identity operator of suitable dimensions.
Given a twice continuously differentiable function S(·) :
Rn → R, ∇S(·) represents its gradient (column) vector.
For v, w ∈ Rn, the discrete gradient of S(·) is defined as

∇̄V |wv =

∫ 1

0

∇V (v + s(w − v))ds

satisfying V (w) − V (v) = (w − v)⊤∇̄V |wv with ∇̄V |vv =
∇V (v). Given a vector field f on Rn, Lf =

∑n
i=1

∂
∂xi

,

denotes the Lie derivative operator, and recursively, Li
f =

Lf ◦ Li−1
f with L0

f = Id. Given two vector fields f and g

on Rn, adfg = (LfLg − LgLf )Id denotes their Lie-bracket

and, recursively, adifg = adf ◦ adi−1
f g and ad0fg = g. For

δ > 0, eδLf = Id +
∑

i>0
δi

i! L
i
f denotes the Lie exponential

operator. Given any smooth function H(·) : Rn → R, one
gets by the Exchange Theorem H(eδLfx) = eδLfH(x) =

H(x) +
∑

i>0
δi

i! L
i
fH(x). A function R(x, δ) : B ×R → Rn

is said in O(δp), with p ≥ 1, if it can be written as

R(x, δ) = δp−1R̃(x, δ) for all x ∈ B and there exist a

function θ ∈ K∞ and δ∗ > 0 s.t. ∀δ ≤ δ∗, |R̃(x, δ)| ≤ θ(δ).

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 The reduction and the reduced dynamics

We consider time-delay systems of the form

ẋ(t) = f(x(t)) + g(x(t))u(t− τ) (1)

with u ∈ Rm and a costant τ = Nδ for some N ∈ N and
δ > 0. We assume inputs piecewise constant over intervals
of length δ, the sampling period that is u(t) = u(kδ)
for t ∈ [kδ, (k + 1)δ[. In this setting, the dynamics (1)
is described at all sampling instants t = kδ with k ∈ N by
the so-called sampled-data equivalent model

x+(u−N ) = F δ(x, u−N ) (2)

with

F δ(x, u) = eδ(Lf+Lgu)x = x+
∑
i>0

δi

i!

(
Lf + Lgu

)
x

and, for simplicity of notations, x = x(kδ), u−N = u((k −
N)δ), u = u−0 = u(kδ). Accordingly, x+(u−N ) = x((k +
1)δ)) defines the one step-ahead state evolution starting
from t = kδ. Also, for the sake of brevity, we rewrite

F δ(x, u) = F δ
0 (x) + gδ(x, u)u

with F δ
0 (x) := F δ(x, 0), gδ(x, u)u := F δ(x, u) − F δ

0 (x).
When τ = 0, we refer to (1) and (2) as the corresponding
delay free continuous-time and sampled-data dynamics
that are respectively given by

ẋ(t) =f(x(t)) + g(x(t))u(t) (3)

x+(u) =F δ(x, u). (4)

In the following, we address the problem of stabilizing
(1) at a desired equilibrium x⋆ ∈ Rn under piecewise
constant control; namely, we seek for a control u =

γδ
τ (x, u−N , . . . , u−1) making x⋆ asymptotically stable for

the equivalent sampled-data model (2).

To this end, we introduce the reduction variable associated
to the sampled-data delayed dynamics as in (Mattioni
et al., 2017)

η = F−τ
0 (·) ◦ F τ

N (·, u−1) ◦ · · · ◦ F
τ
N (x, u−N )

initialized at η(0) = x(0), evolving as the (delay-free)
reduced dynamics

η+(u) = F δ
τ (η, u) (5)

with

F δ
τ (η, u) =F−τ

0 (·) ◦ F δ(·, u) ◦ F τ
0 (η)

=F δ
0 (η) + gδτ (η, u)u.

As τ → 0, one gets η → x and F δ
τ (·, u) → F δ(·, u).

Remark 2.1. In the Linear Time Invariant (LTI) case

ẋ(t) =Ax(t) +Bu(t− τ)

one gets the sampled-data equivalent model

x+(u−N ) = Aδx+Bδu−N

with Aδ = eAδ and Bδ =
∫ δ

0
eAsBds. Accordingly, the

reduction variable and reduced dynamics are given by

η = x+

k−1∑
ℓ=k−N

A(k−1−N−ℓ)δBδuℓ−k

η+(u) = Aδη +A−τBδu.

Remark 2.2. The expressions above highlight that, con-
trarily to prediction, the original and the reduced dynam-
ics share the free evolution; namely, as u ≡ 0, η ≡ x.

Remark 2.3. Initialization issues that are typical of pre-
diction (see, e.g., Deng et al. (2022); Karafyllis and Krstic
(2017)) are by construction overcome by reduction since
one can easily set η(0) = x(0). This is not the case for pre-
diction. In that case, defining z(t) = x(t+τ), it is generally
required to explicitly compute z(0) = x(τ) = eτLfx|x(0).
In general, such a quantity cannot be computed in closed
form and only approximations are available so making
prediction not robust in general.

In this setting, it was proved in (Mattioni et al., 2017,
Proposition 1) that all feedback laws u = uδ

τ (η) making
η⋆ = x⋆ asymptotically stable for the sampled-data re-
duced dynamics (5) guarantee asymptotic stabilization of
x⋆ for the time-delay sampled-data one (2). This general
result opens toward new perspectives involving the way the
reduction-based feedback should be designed based on the
reduced model (5) while exploiting, as much as possible,
the delay-free properties of the plant; that is, the ones of
the delay-free models (3)-(4).

2.2 Energy-Balancing and Problem Statement

We set the problem of stabilizing x⋆ ∈ Rn for the dynamics
(1) via sampled-data passivation over its reduced model
(5). To this end, the following standing assumption is made
on the continuous-time delay free model.

Assumption 1. (Delay-free stabilizability). The delay-free
continuous-time system (3) is passive and zero-state de-
tectable (ZSD) with storage function H(·) : Rn → R≥0



and output y = g⊤(x)∇H(x) with x⋆ ∈ Rn being asymp-
totically stabilizable via Energy-Balancing Passivity Based
Control (EB-PBC); namely, there exist Ha(·) : Rn → R≥0

and u(·) : Rn → R solution to

−∇⊤H(x)g(x)u(x) = ∇⊤Ha(x)
(
f(x) + g(x)u(x)

)
(6)

with ∇Ha(x⋆) = −∇H(x⋆) and H(x⋆) = −Ha(x⋆).

In the following, we address the problem of stabilizing
x⋆ ∈ Rn for the time-delay sampled-data model (2) (equiv-
alently, for (1)) via discrete-time EB-PBC over the reduced
dynamics (2) by assigning the same storage function as
in the continuous-time delay-free case (i.e., Assumption
(1)). As proposed in Mattioni et al. (2021), we look for a
sampled-data reduction-based feedback of the form

u = uδ
τ (η) + v

making the closed-loop reduced system

η+(uδ
τ (η) + v) =F δ

τ (η, u
δ
τ (η) + v) (7a)

Y δ
τ (η, v) =

1

δ

(
g̃δτ (η, v)

)⊤∇̄Hd|
η+(uδ

τ (η)+v)

η+(uδ
τ (η))

(7b)

passive with dissipation inequality

Hd(η
+(uδ

τ (η) + v))−Hd(η) ≤ δv⊤Y δ
τ (η, v) (8)

and g̃δτ (η, v)v = gδτ (η, u)u − gδτ (η, u
δ
τ (η))u

δ
τ (η). At this

point, stabilization is achieved via the additional damping
control v = vδτ (η) solution to the damping equality

v + κY δ
τ (η, v) = 0, κ > 0. (9)

Remark 2.4. We set the target energy-function to be as-
signed equal to the one set in the continuous-time delay-
free design. This choice is motivated by the fact that, in
general, such a function catches the physical properties of
the system at the desired equilibrium (e.g., the potential
energy for mechanical systems) that one wants to preserve
despite the effects of sampling and delays.

3. MAIN RESULT

As shown in (Mattioni et al., 2021, Proposition 3.1), for
the purely (delay-free) discrete-time case, stabilization via
EB-PBC over the reduced (delay-free) model (5) is ensured
provided that the equality

∇̄⊤Hd|η
+(u)

η+ gδτ (η, u) = Ha(η
+)−Ha(η). (10)

admits a solution u = uδ
τ (η) when setting η+ = η+(0) =

F δ
0 (η). Equation (10) is parameterized by both δ and

τ , that is, the sampling period and the delay length.
Moreover, the following limit equalities hold true:

(1) when both τ → 0 and δ → 0, the delay-free
continuous-time equality (6) is recovered;

(2) when τ → 0, (10) recovers the delay-free sampled-
data equality

1

δ
∇̄⊤Hd|x

+(u)
x+ gδ(x, u) = −1

δ

(
Ha(x

+)−Ha(x)
)
(11)

that admits a unique solution under Assumption 1
(Mattioni et al., 2021);

(3) when δ → 0, (10) gets the form

∇⊤Hd(η)gτ (η)u = −∇⊤Ha(η)f(η) (12)

with 1

gτ (η) = eτadf g(η) = g(η) +
∑
i>0

τ i

i!
adifg(η) (13)

and the continuous-time reduced model

η̇(t) = f(η(t)) + gτ (η(t))u(t). (14)

3.1 Reduction-based EB-PBC in continuous time

We first prove the existence of a continuous-time reduction-
based control for stabilizing reduced dynamics (14) (and
thus (1)) at the desired equilibrium; namely, we prove that
a solution to (12) exists.

Theorem 3.1. (Continuous time reduction-based EB-PBC).
Let the retarded dynamics (1) verify Assumption 1 with
reduced model (14) and x⋆ ∈ Rn be an equilibrium to
stabilize. Then, the control

uτ (η) = −
(
∇⊤Hd(η)gτ (η)

)†
∇⊤Ha(η)f(η) (15)

is a solution to the continuous-time reduced EBE (12). In
addition, the following holds:

(i) the reduced model (14) with output

yτ = g⊤τ (η)∇Hd(η)

and under the feedback u = uτ (η) + v is passive with
storage function Hd(η) = H(η) +Ha(η);

(ii) the damping control

v = −κg⊤τ (η)∇Hd(η) (16)

makes η⋆ = x⋆ asymptotically stable for the reduced
dynamics and thus for the retarded dynamics (1).

Proof. To show that (12) admits a solution, one has to show
that ∇⊤Hd(η)gτ (η) is full rank, at least in a neighborhood
of η⋆ = x⋆. To this end, exploiting (13) one rewrites

g⊤τ (η)∇Hd(η) = g⊤(η)Hd(η) +
∑
i>0

τ i

i!

(
adifg(η)

)⊤∇Hd(η).

From Assumption 1, g⊤(·)∇Hd(·) is full rank as passivity
requires relative degree one (Byrnes et al., 1991). Accord-
ingly, by the series expansion above around the delay-free
mapping, one concludes that (12) admits a solution (at
least in a neighborhood of η⋆). (i) holds true computing

Ḣd(η) = ∇⊤Hd(η)
(
f(η) + gτ (η)

(
uτ (η) + v)

)
≤ v⊤yτ .

(ii) follows when substituting (16) into the inequality

above so getting Ḣd(η) ≤ 0 with asymptotic stability of
η⋆ = x⋆ guaranteed by ZSD of the delay-free system (see
(Mattioni et al., 2018b)). □

Remark 3.1. As natural in this case, the solution (15)
to (12) is not unique. Different solutions might arise
depending on the particular case of study. For instance,
when applied to a fully actuated port-Hamiltonian (pH)
system, (12) is solved by

u(η) = g†τ (η)
(
J(η)−R(η)

)
∇Ha(η).

with J(η) + J⊤(η) = 0 and R(η) = R⊤(η) ⪰ 0.

1 With notational abuse, we denote eτadf g :=(
eτadf g1 . . . eτadf gm

)
when fixing g =

(
g1 . . . gm

)
.



Remark 3.2. The control (15)-(16) is explicitly depending
on gτ (η) that is defined through its series expansion in
powers of τ > 0, the delay length. Even if the computation
of such vector field might be tough, approximations can
be easily computed by truncating the corresponding series
expansion at an arbitrary finite order p ≥ 0; namely, one
gets

g[p],τ (η) = g(η) +

p∑
i=1

τ

i!
adifg(η)

and the corresponding feedback law

u[p],τ (η) =−
(
∇⊤Hd(η)g

[p]
τ (η)

)†
∇⊤Ha(η)f(η) (17a)

v[p],τ =− κg⊤[p],τ (η)∇Hd(η). (17b)

Remark 3.3. As τ → 0, the continuous-time reduction-
based feedback (15)-(16) recovers the delay-free continuous-
time counterpart set in Assumption 1 with damping com-
ponent u = −κg⊤(x)∇Hd(x).

3.2 Reduction-based EB-PBC under sampling

Theorem 3.1 highlights that Assumption 1 also guarantees
the existence of a continuous-time reduction-based EB-
PBC, solution to (12), stabilizing the retarded dynamics
(1) at the desired equilibrium. Starting from this, we show
that Assumption 1 is also sufficient to further guarantee
the existence of a sampled-data reduction-based EB-PBC
solution to the sampled-data reduced equality (10). To this
end, we rewrite (10) as

Hd(F
δ
τ (η, u))−Hd(η) +Ha(F

δ
0 (η))−Ha(η) = 0 (18)

to highlight its series expansion in powers of δ > 0. The
main theorem can now be stated.

Theorem 3.2. (Sampled reduction-based EB-PBC). Let the
retarded dynamics (1) verify Assumption 1 with x⋆ ∈ Rn

the equilibrium to stabilize and (5) the sampled-data re-
duced model. Then, there exists δ⋆ > 0 such that, for all
δ ∈ [0, δ⋆[, the sampled-data reduced EBE (10) admits a
unique solution uδ

τ : Rn → Rm in the form of a series ex-
pansion in powers of δ around the continuous-time reduced
EB-PBC (15); i.e., one gets

uδ
τ (η) = uτ (η) +

∑
i>0

δi

(i+ 1)!
ui
τ (η) (19)

In addition, the following holds:

(i) the reduced system (7) is passive with storage function
Hd(η) = H(η) +Ha(η) and dissipation inequality (8);

(ii) the damping feedback

vδτ (η) = vτ (η) +
∑
i>0

δi

(i+ 1)!
viτ (η) (20)

defined as the unique solution v = vδτ (η) to the damping
equality (9) exists and makes η⋆ = x⋆ asymptotically
stable for the reduced dynamics (5) and thus for the
retarded system (2).

Proof. Existence of a unique solution to the sampled re-
duced equality (10) (or, equivalently, (18)) follows rewrit-
ing (18) as a formal series equality δQδ

τ (η, u) = 0 with

Qδ
τ (η, u) = Q0

τ (η, u) +
∑
i>0

δi

(i+ 1)!
Qi

τ (η, u)

and Q0
τ (η, u) = ∇⊤Hd(η)gτ (η)u+∇⊤Ha(η)f(η). Accord-

ingly, as δ → 0, the equality above recovers the continuous-
time reduced EBE (12) that is solved by (15). Thus, by
the implicit function theorem, the result follows because

lim
δ→0

Qδ
τ (η, u) = ∇⊤Hd(η)gτ (η)

is full rank around η⋆ = x⋆. (i) follows by computing
the one-step increment of the storage function along the
closed-loop system (7) that yields

∆Hd(η) :=Hd(F
δ
τ (η, u

δ
τ (η) + v))−Hd(η)

≤Hd(F
δ
τ (η, u

δ
τ (η) + v))−Hd(F

δ
τ (η, u

δ
τ (η)))

=∇̄⊤Hd|
η+(uδ

τ (η)+v)

η+(uδ
τ (η))

gδτ (η, v)v

and thus passivity. As far as (ii) is concerned, existence
of a solution to (9) follows again by the Implicit Function
Theorem by rewriting it as a formal series equality

Sδ
τ (η, v) = S0

τ (η, v) +
∑
i>0

δi

(i+ 1)!
Si
τ (η, v)

with S0
τ (η, v) = v + κ∇⊤Hd(η)gτ (η) and because

lim
δ→0

Sδ
τ (η, v) = I

is invertible. Substituting the corresponding feedback into
the dissipation inequality (8), one gets ∆Hd(η) ≤ 0
and thus the result by zero-state detectability of the
continuous-time counterpart (Theorem 3.1) and (Mattioni
et al., 2018b, Theorem 5.2)). □

The reduction EB-PBC feedback gets the form

u = uδ
τ (η) + vδτ (η) (21)

with energy-shaping and damping components defined as
the solutions to the reduced equality (10) and (9) respec-
tively, starting from the continuous-time components in
(15) and (16).

3.3 Some constructive aspects

As usual under sampling, (21) gets the form of an asymp-
totic series expansion in powers of δ with an infinite num-
ber of terms. Thus, exact solutions are hard to compute in
practice. However, the proof of Theorem 3.2 establishes an
iterative and constructive procedure allowing to compute
all terms of the corresponding series expansions (11) and
(9) solving, at each step, a linear equality in the corre-
sponding unknowns. To this end, one substitutes (19) and
(20) into the corresponding series expansions and equates
the terms with the same powers of δ so getting, for the
first terms

∇⊤Hd(η)gτ (η)uτ (η) +∇⊤Ha(η)f(η) = 0

vτ (η) + κg⊤τ (η)∇Hd(η) = 0

∇⊤Hd(η)gτ (η)
(
u1
τ (η)− u̇τ (η)

)
= 0

v1τ (η)− v̇1τ (η) + κLgLfdHd(η) = 0

with u̇τ (η) = ∇uτ (η)fd(η), fd(η) = f(η)+ gτ (η)uτ (η) and
v̇τ (η) = ∇vτ (η)

(
fd(η) + gτ (η)vτ (η)

)
.

Remark 3.4. As δ → 0 one naturally recovers the
continuous-time solution. On the other side, as τ → 0, the
sampled-data controller recovers the sampled-data delay-
free EB-PBC proposed in Mattioni et al. (2021).

By the discussion above, even when the continuous-time
components in Theorem 3.1 are exactly computable, only



digital controllers defined as truncations on (21) at all
desired finite orders q ≥ 0 can be implemented in practice.
To this end, we define the qth-order approximate reduction-
based EB-PBC as

u[q],δ
τ (η) =uτ (η) +

q∑
i=0

δi

(i+ 1)!
ui
τ (η) (22a)

v[q],δτ (η) =vτ (η) +

q∑
i=0

δi

(i+ 1)!
viτ (η) (22b)

When neither the continuous-time nor the sampled-data
components are computable exactly, starting from Remark
3.2, we define the (p,q)-order approximate reduction-based
EB-PBC as

u
[q],δ
[p],τ (η) =u[p],τ (η) +

q∑
i=0

δi

(i+ 1)!
ui
[p],τ (η) (23a)

v
[q],δ
[p],τ (η) =v[p],τ (η) +

q∑
i=0

δi

(i+ 1)!
vi[p],τ (η) (23b)

deduced from (22) when substituting the continuous-time
part as the approximation in (17).

4. THE PENDULUM AS AN EXAMPLE

Consider a simple pendulum described by

ẋ(t)=J∇H(x(t)) +Bu(t− τ), J=

(
0 1
−1 0

)
B=

(
0
1

)
(24)

with x = (x1 x2)
⊤ ∈ R2, x1 = q and x2 = p the position

and momentum, H(x) = 1
2x

2
2 + 1 − cosx1 the energy

(storage) function and u ∈ R the input force. The control
objective is to design a digital feedback so to stabilize the

pendulum in the upward position that is at x⋆ = (π 0)
⊤
.

Delay-free design.

When τ = 0 the dynamics (24) satisfies Assumption 1 with

Ha(x1) = 2 cosx1, Hd(x) =
1

2
x2
2 + 1 + cosx1 (25)

so that u = −2 sinx1−κx2 makes x⋆ asymptotically stable.

The sampled-data equivalent model (2) associated to (24)
is in O(δ3) given by

x+(u−N ) = x+ δ

(
x2

u−N − sinx1

)
+

δ2

2

(
u−N − sinx1

−x2 cosx1

)
.

Continuous-time design.When δ → 0, the continuous-time
reduced model is of the form (14) with in O(τ2)

gτ (η) =

(
0
1

)
+ τ

(
1
0

)
+O(τ2)

so getting the energy-shaping and damping controllers

u[1],τ (η) =
2x2 sinx1

x2 + τ sinx1
, v[1],τ (η) = −κ

(
x2 + τ sinx1

)
.

Sampled-data reduction-based design. For the sake of sim-
plicity, let us fix τ = δ and thus N = 1. In this case, we
compute the reduction variable in O(τ3)

η = x+ τ

(
0
1

)
u−1 −

τ2

2

(
1
0

)
u−1 (26)

and the corresponding reduced dynamics in O(δ3)

η+(u) = η + δ

(
η2

− sin η1 + u

)
− δ2

2

(
sin η1 + u
η2 cos η1

)
.
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Fig. 1. The retarded pendulum with δ = τ = 5× 10−4.

From Theorem 3.2, the stabilizing feedback is of the form
(19)-(20) with the first terms provided by

u1
[1],τ (η) =4(η2 + τ sin (η1))

−3
(
2η42 cos (η1) + τ

(
2η2 sin

3 η1

− η32 sin 2η1
))

v1[1],τ (η) =κ
(
η2 + τ sin η1

)−1(
η2(κη2 − sin η1)

+ τ(sin2 η1 − η22 cos η1 + 2κη2 sin η1)
)

with the subscript [1] indicating that they have been
computed based on the first order approximation of the
continuous-time component (see Remark 3.2).
Simulations. Simulations were performed fixing τ = δ (i.e.,
when N = 1) to test the approximate proposed reduction-
based controller (with p = q = 1) with approximate
reduction computed as (26) in O(δ2). The corresponding
sampled-data controller is compared with (continuous-
time) prediction-based implementation of the nominal
delay free EB-PBC controller; that is

u =2 sin z1 − κz2
ż1 =z2, ż2 = − sin z1 + u

with, denoting z = (z1 z2)
⊤, the approximate initial

condition in O(τ2) (see Remark 2.3)

z(0) =x(0) + τ

(
x2(0)

− sinx1(0)

)
− τ2

2

(
sinx1(0)

x2(0) cosx2(0)

)
.

The results are reported in Figs. 1-2 with x(0) = (0 π
4 )

and increasing delays and sampling periods. Prediction is
sensitive to approximations of the initial condition (that is
not exactly computable in this case) so that stabilization
of the equilibrium is not achieved even when the delay is
small (Figure 2). Also, note that in this case, the prediction
dynamics converges to the desired equilibrium whereas
the the original trajectories diverge. On the other side,
reduction well performs with respect to both sampling and
delays even approximate model and feedback laws.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, a new class of EB-PBCs has been designed
for coping with both sampling and time delays in the
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Fig. 2. The retarded pendulum with δ = τ = 5× 10−2.

inputs. The design is performed over the so-called reduced
dynamics that is delay-free and equivalent, in terms of
stabilizability, to the original retarded one. For, we have
assumed the case of entire delay homogeneously acting
over all inputs. More general cases (e.g., τ = Nδ + σ with
σ ∈ [0, δ[ and multi-channel delays) are straightforward
using the arguments in Mattioni et al. (2017, 2018c).
Perspectives concern the generalization of this method to
larger classes of delays (e.g., distributed delays) with a for-
mal study on the properties under approximate controllers
when considering both inter and non-uniform sampling
(Di Ferdinando et al., 2022; Liu et al., 2022).

REFERENCES

Byrnes, C.I., Isidori, A., and Willems, J.C. (1991). Feed-
back equivalence to passive nonlinear systems. In Analy-
sis of Controlled Dynamical Systems, 118–135. Springer.

Chopra, N. (2008). Passivity results for interconnected
systems with time delay. In 2008 47th IEEE Conference
on Decision and Control, 4620–4625. IEEE.

Chopra, N., Fujita, M., Ortega, R., and Spong, M.W.
(2022). Passivity-based control of robots: Theory and
examples from the literature. IEEE Control Systems
Magazine, 42(2), 63–73.
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