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In this paper, we propose a new sampled-data controller for stabilization of the attitude dynamics at a desired constant configuration. The design is based on discrete-time interconnection and damping assignment (IDA) passivity-based control (PBC) and the recently proposed Hamiltonian representation of discrete-time nonlinear dynamics. Approximate solutions are provided with simulations illustrating performances.

I. INTRODUCTION

Attitude stabilization aims at orienting a physical object in relation with a specified inertial frame of reference and thus it applies in several engineering contexts such as aerospace or aerial robotics. Starting from [START_REF] Monaco | A nonlinear feedback control law for attitude control[END_REF], numerous continuous-time quaternion-based attitude control laws have been proposed based on several design methodologies such as feedbacklinearization [START_REF] Kim | Robust attitude control via quaternion feedback linearization[END_REF], [START_REF] Navabi | Spacecraft quaternion based attitude input-output feedback linearization control using reaction wheels[END_REF], backstepping [START_REF] Mino | Backstepping control for satellite attitude control using spherical control moment gyro[END_REF], sliding mode [START_REF] Zhu | Adaptive sliding mode control for attitude stabilization with actuator saturation[END_REF], optimal control or learning [START_REF] Wen | The attitude control problem[END_REF], [START_REF] Hassrizal | A survey of control strategies for spacecraft attitude and orientation[END_REF]. Among these, the ones relying upon passivity-based control (PBC) are outstanding as providing, in general, simple linear control laws [START_REF] Lizarralde | Attitude control without angular velocity measurement: A passivity approach[END_REF]- [START_REF] Gennaro | Passive attitude control of flexible spacecraft from quaternion measurements[END_REF] in the form of P(I)D [START_REF] Qasim | Pid control for attitude stabilization of an unmanned aerial vehicle quad-copter[END_REF]. Such methods involve different parametrizations of the attitude [START_REF] Hughes | Spacecraft attitude dynamics[END_REF] as for instance Euler angles, the Euler-Rodrigues parameters, axis-angle, etc. Among these, the ones involving quaternions are of interest and widely used motivated by the lack of singularities in general and the fact that they are computationally less intense [START_REF] Kim | Robust attitude control via quaternion feedback linearization[END_REF], [START_REF] Wen | The attitude control problem[END_REF]. However, even if quaternions can represent all possible attitudes, this representation is not unique: each attitude corresponds to two different quaternions. This typically gives rise to undesirable phenomena such as unwinding [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF], [START_REF] Chaturvedi | Rigid-body attitude control[END_REF].

Very few results are available for addressing the design under sampling, that is when measurements are sampled and the input is piecewise constant [START_REF] Monaco | Advanced tools for nonlinear sampled-data systems' analysis and control[END_REF]. A first solution was proposed in [START_REF] Monaco | On the linearizing feedback in nonlinear sampled data control schemes[END_REF] based on sampled-data multi-rate feedback linearization. Such a solution requires a preliminary continuous-time control making the model finitely discretizable. Accordingly, if on one side such a control ensures one step convergence to the desired attitude, it requires a notable control effort and lacks in robustness with respect to unmodelled dynamics. In [START_REF] Mattioni | Immersion and invariance stabilization of strict-feedback dynamics under sampling[END_REF], based on the Euler-Rodrigues kinematic model, a different multi-rate digital control is designed in the context of Immersion and Invariance while relaxing the need of a preliminary continuous-time feedback. In [START_REF] Jiang | Sampled-data control for spacecraft attitude control systems based on a quaternion model[END_REF], a single-rate sampled-data controller is proposed when solving a LQR problem on the approximate linear model at the desired attitude using quaternions. Such a feedback ensures local stabilization of the closed loop provided a set of LMIs is solvable off-line for a fixed value of the model parameters, the desired attitude and the sampling period.

The contribution of this work stands in providing a new scalable digital control law involving single-rate sampling and quaternion description of the kinematics. The solution we propose is based on discrete-time Interconnection and Damping Assignment (IDA)-PBC [START_REF] Moreschini | Stabilization of discrete port-hamiltonian dynamics via interconnection and damping assignment[END_REF] over the sampled-data equivalent model associated to the attitude dynamics with the aim of assigning a suitably defined discrete port-controlled Hamiltonian (pcH) structure [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF], [START_REF] Monaco | Nonlinear hamiltonian systems under sampling[END_REF]. Accordingly, the control is constructively proved to be the solution to a discrete matching equality. Even if exact closed-form solutions to this equality are tough to compute in practice, a recursive algorithm is proposed for computing approximate controllers at all desired orders. We underline that, as a byproduct, we also provide a new continuous-time PBC controller for attitude stabilization.

The rest of the paper is organized as follows. In Section II, the attitude control problem is recalled and solved via continuous-time PBC. In Section III, the problem is formally set in a digital context over the sampled-data equivalent model of the attitude equation. The main result is in Section IV with comparative simulations in Section V. Section VI concludes the paper with future perspectives.

Notations: Given a differentiable function V : R n → R, ∇V (•) represents the gradient column-vector with ∇ = col{ ∂ ∂xi } i=1,...,n and ∇ 2 V (•) its Hessian. For v, w ∈ R n , the discrete gradient ∇V | w v : R n × R n → R n is defined as ∇V | w v = 1 0 ∇V (v + s(w -v)) ds satisfying V (w) -V (v) = (w -v) ∇V | w v with ∇V | v v = ∇V (v).
I n (or I when clear from the context) and I d denote respectively the identity matrix of dimension n and identity operator. 0 denotes the zero matrix of suitable dimensions. Given a smooth (i.e., infinitely differentiable) vector field

f (•) over R n , L f = n i=1 f i (x) ∂ ∂xi is the Lie operator with, recursively, L i f = L f L i-1 f and L 0 f = I d . The exponential Lie series operator is defined as e L f = I d + i≥1 1 i! L i f . A function R(x, δ) : B × R → R n is said in O(δ p ), with p ≥ 1, if it can be written as R(x, δ) = δ p-1 R(x, δ) for all
x ∈ B and there exist a function θ ∈ K ∞ and δ * > 0 s.t. ∀δ ≤ δ * , | R(x, δ)| ≤ θ(δ). The symbols > and < denote positive and negative definite functions whereas ≺ and ( and ) positive and negative (semi) definite matrices. Given a vector ω = col{ω x , ω y , ω z } ∈ R 3 , we denote

S(ω) =   0 -ω z ω y ω z 0 -ω x -ω y ω x 0   = -S (ω).
Given two matrices A ∈ R n1×n2 and B ∈ R m1×m2 , A ⊗ B denotes the Kronecker product. Given a matrix A ∈ R n×n , with elements a ij ∈ R (for i, j = 1, . . . , n), vec(A) := col{a 11 , . . . , a 1n , . . . , a n1 , . . . , a nn } ∈ R n 2 denotes the vectorization so that Ab = (I ⊗ b )vec(A) for b ∈ R n .

II. QUATERNION-BASED ATTITUDE EQUATIONS AND CONTROL: THE CONTINUOUS-TIME CASE

In the following, let the kinematics and dynamics of a rigid body orientation in the inertial coordinates be described by

q0 = 1 2 S(ω)q 0 + 1 2 ωq r , qr = - 1 2 ω q 0 (1a) M ω =S(ω)M ω + u (1b) 
where q = col{q 0 , q r } ∈ R 3 × R is the quaternion vector (also known as Euler parameters) verifying

q q = q 0 q 0 + q 2 r = 1, (2) 
ω ∈ R 3 is the angular velocity, u ∈ R 3 the input torque and M = M 0 the inertia matrix. Let q = col{q 0 , q r } be a desired attitude configuration. Then, the attitude control problem above can be addressed over the error quaternion defined as ε = col{ε 0 , ε r } [START_REF] Hughes | Spacecraft attitude dynamics[END_REF] ε 0 =q r q 0 + q r q 0 + S(q 0 )q 0 , ε r = q r q r -q 0 q 0 with the corresponding dynamics reading

ε0 = 1 2 S(ω)ε 0 + 1 2 ωε r , εr = - 1 2 ω ε 0 (3a) M ω =S(ω)M ω + u. (3b) 
Accordingly, asymptotically stabilizing q for (1) corresponds to asymptotically stabilizing (3) at the equilibrium

ε = 0 1 , ω = 0. (4) 
Among the solutions available in continuous time, the ones relying upon PBC yield a family of linear control laws [START_REF] Lizarralde | Attitude control without angular velocity measurement: A passivity approach[END_REF], [START_REF] Tsiotras | Further passivity results for the attitude control problem[END_REF] of the form

u = -κ 0 ε 0 -κ di ω, κ 0 , κ di 0. (5) 
In the following, we endorse such controllers with an IDA-PBC specification [START_REF] Ortega | Interconnection and damping assignment passivity-based control of portcontrolled Hamiltonian systems[END_REF]. For, we note that (3) exhibits the conservative pcH form

  ε0 εr M ω  =   1 2 S(ω) 1 2 ω 0 -1 2 ω 0 0 0 0 S(ω)     ε 0 ε r M ω   +   0 0 I   u
with quadratic Hamiltonian and interconnection matrix

H(ε, ω)= 1 2 ε ε + ω M ω), J(ω)=   1 2 S(ω) 1 2 ω 0 -1 2 ω 0 0 0 0 S(ω)   .
On this basis, the following result holds. Proposition 2.1: Consider the error dynamics (3) and the linear feedback ( 5) making (4) asymptotically stable. When

κ 0 = 1 2 M -1 , (5) is an IDA-PBC feedback of the form u ida (ε, ω) = u es (ε) + u di (ω) u es (ε) = - 1 2 M -1 ε 0 , u di (ω) = -κ di ω (6) 
assigning the closed-loop pcH form

  ε0 εr M ω  =   1 2 S(ω) 1 2 ω 1 2 M -1 -1 2 ω 0 0 -1 2 M -1 0 S(ω) -κ di M -1     ε 0 ε r -1 M ω   with H d (ε, ω) = 1 2 ε 0 ε 0 + (ε r -1) 2 + ω M ω (7a) J d (ω) =   1 2 S(ω) 1 2 ω 1 2 M -1 -1 2 ω 0 0 -1 2 M -1 0 S(ω)   (7b) R d =   0 0 0 0 0 0 0 0 κ di M -1   0. (7c) 
Before going farther we note that, as deeply commented in [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF], [START_REF] Mazenc | Quaternion-based stabilization of attitude dynamics subject to pointwise delay in the input[END_REF], regulation to the desired orientation is, in general, achieved when ε(t) → ±ε . However, in the result above (and throughout the whole paper), we fix the equilibrium to stabilize as the positive one while neglecting possible unwinding phenomena whose study is left as a perspective. With this in mind and because -ε is a non-isolated equilibrium of the closed-loop dynamics, all upcoming results are intended to hold locally, unless explicitly specified.

Remark 2.1: To cope with unwinding, the energy-shaping controller in (6) can be modified to assign the new energy

Ĥd (ε, ω) = 1 2 ε 0 ε 0 + 1 -ε 2 r + ω M ω
with local minima at ±ε . This is achieved replacing in ( 6)

ûes (ε) = -ε r M -1 ε 0 assigning the closed-loop pcH form   ε0 εr M ω  =   1 2 S(ω) 0 1 2 ε r M -1 0 0 -1 2 ε 0 M -1 -1 2 ε r M -1 1 2 M -1 ε 0 S(ω)-κ di M -1     ε 0 -ε r M ω   .
However, such a feedback guarantees asymptotic stabilization of the desired attitude (associated to equilibria ±ε ) provided that ε r (0) = 0 or ω(0) = 0. How to overcome such a limitation is currently under investigation.

In the following, starting from Proposition 2.1, we design a piecewise constant control law driving the body to the desired orientation associated to q = col{q 0 , q r }.

III. SAMPLED-DATA MODEL AND PROBLEM STATEMENT

Consider the system (3) and let measurements (of the state) be available at the sampling instants t = kδ, with k ≥ 0 and δ > 0 the sampling period, and the input be piecewise constant over time intervals of length δ; i.e. we set u(t) = u k , t ∈ [kδ, (k+1)δ[. Then, we seek for a sampled-data feedback u k = γ(ε k , ω k ) making (4) asymptotically stable for the sampled-data equivalent model of (3) given by

ζ + (u) =ζ + δF δ (ζ, u) (8) 
with ζ = col{ε, ω}, ζ = ζ k , u = u k , ζ + (u) = ζ k+1 and f (ζ) =f (ε, ω) = J(ω)∇H(ε, ω), B = 0 I F δ (ζ, u) =F δ (ε, ω, u) = J(ω)∇H(ε, ω) + Bu + i>0 δ i (i + 1)! L i f +Bu J(ω)∇H(ε, ω) + Bu . Setting F δ 0 (ζ) = F δ (ζ, 0)
, we denote by

ζ + :=ζ + (0) = ζ + δF δ 0 (ζ) g δ (ε, ω, u)u :=F δ (ζ, u) -F δ 0 (ζ)
the drift and controlled components associated to [START_REF] Lizarralde | Attitude control without angular velocity measurement: A passivity approach[END_REF]. In this setting we wish to accomplish stabilization of ζ = col{ε , 0} as in ( 4) by solving a discrete-time IDA-PBC problem over the sampled-data equivalent model [START_REF] Lizarralde | Attitude control without angular velocity measurement: A passivity approach[END_REF] in two steps, as formalized in [START_REF] Moreschini | Stabilization of discrete port-hamiltonian dynamics via interconnection and damping assignment[END_REF] and recalled below. Problem 3.1 (Sampled-data energy-shaping): Design the energy-shaping control u δ es : R 4 × R 3 → R 3 so that, setting

u = u δ es (ζ) + v (9) 
the closed-loop dynamics exhibits a conservative discretetime pcH structure [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF], [START_REF] Monaco | Nonlinear hamiltonian systems under sampling[END_REF] ζ

+ (u δ es (ζ) + v)=ζ+δJ δ d (ζ) ∇H d | ζ + (u δ es (ζ)) ζ +δg δ d (ζ, v)v (10)
with the new Hamiltonian (7a), discrete gradient

∇H d | ζ + ζ = 1 2 P (ζ + + ζ -2ζ ), P = I 0 0 M 0 a suitable J δ d (ζ) = -J δ d (ζ) ∈ R 7×7 and g δ d (ζ, v)v =g δ (ζ, u δ es (ζ) + v)(u δ es (ζ) + v) -g δ (ζ, u δ es (ζ))u δ es (ζ)
. The solution to Problem 3.1 guarantees that the closedloop dynamics [START_REF] Gennaro | Passive attitude control of flexible spacecraft from quaternion measurements[END_REF] possesses a stable equilibrium at (4). In addition, it is proved that (9) makes (10) lossless [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF] with respect to the conjugate output

Y δ d (ζ, v) = g δ d (ζ, v) ∇H| ζ + (u δ es (ζ)+v) ζ + (u δ es (ζ)) (11) 
that is, it verifies the dissipation equality

∆H d (ζ)=H d (ζ + (u δ es (ζ) + v))-H d (ζ)=δv Y δ d (ζ, v). ( 12 
)
With this in mind, attitude stabilization via IDA-PBC is achieved under damping if the problem below is solved.

Problem 3.2 (Sampled-data damping injection): Seek, if any, for a damping-injection feedback

v = u δ di (ζ) with u δ di : R 4 × R 3 → R 3 solution to the damping equality u δ di (ζ) + κ di Y δ d (ζ, u δ di (ζ)) = 0, κ di 0 (13) 
so making ζ asymptotically stable for [START_REF] Gennaro | Passive attitude control of flexible spacecraft from quaternion measurements[END_REF].

IV. DIGITAL ATTITUDE STABILIZATION VIA IDA-PBC Now proceed with the design in two steps by proving, in a constructive manner, the existence of both the energyshaping and damping-injection components of the control

u = u δ ida (ζ) = u δ es (ζ) + u δ di (ζ) (14) 
aimed at, respectively, assigning and asymptotically stabilizing the desired equilibrium with a desired energy via PBC.

A. Main result

As detailed in Problem 3.1 the energy-shaping component is responsible for assigning the equilibrium (4) with a discrete-time pcH form [START_REF] Gennaro | Passive attitude control of flexible spacecraft from quaternion measurements[END_REF]. As proved in [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF] in a purely discrete-time context, this corresponds to solving the socalled Discrete-time Matching Equation (DME) below

J δ d (ζ)P ζ -ζ + δ 2 F δ (ζ, u δ es (ζ)) = F δ (ζ, u δ es (ζ)) (15) 
for a suitably defined skew-symmetric interconnection matrix

J δ d (ζ) ∈ R 7×7 .
The next result proves that a solution to (15) exists in the form of series expansions in powers of δ around the continuous-time counterparts in Proposition 2.1. 

J δ d (ζ) =J d (ω) + i>0 δ i (i + 1)! J i d (ζ) (16a) u δ es (ζ) =u es (ε) + i>0 δ i (i + 1)! u i es (ζ) (16b) 
with the superscripts i denoting the order of the term in the series expansion. Proof: Before going through the details of the proof we highlight that, because J δ d (ζ) must be skew-symmetric, then out of 49 elements, only 28 must be identified; accordingly, the equality (15) is in 28+3 unknowns. With this in mind, the proof follows from the Implicit Function Theorem rewriting [START_REF] Monaco | Advanced tools for nonlinear sampled-data systems' analysis and control[END_REF] as a formal series equality in powers of δ in the corresponding 31 unknowns; namely, setting for simplicity u = u δ es (ζ), J = J δ d (ζ) and j = vec(J ) ∈ R 49 , one looks for the solutions to the equality Q(δ, ζ, j, u) = 0 where

Q(δ, ζ, j, u) := F δ (ζ, u) -(I ⊗ ∇ H d | ζ + (u) ζ )j admits the expansion Q(δ, ζ, j, u) = Q 0 (ζ, j, u) + i>0 δ i (i + 1)! Q i (ζ, j, u).
for suitably defined terms

Q i (ζ, j, u) of order i ≥ 0. Because Q 0 (ζ, j, u) =f (ζ) + Bu -J ∇H d (ζ) =f (ζ) + Bu -(I ⊗ ∇ H d (ζ))j,
one gets that the corresponding equality Q 0 (ζ, j, u) = 0 is solved when j = vec(J d (ω)) (i.e., J = J d (ω)) and u = u es (ε) as in ( 6)-(7b). By the Implicit Function Theorem then, the formal equality Q(δ, ζ, j, u) = 0 admits a solution of the form ( 16) because the matrix

lim δ→0 ∂ ∂u ∂ ∂j Q(δ, ζ, j, u) = B I ⊗ ∇ H d (ζ) = 0 I 4 ⊗ (ζ -ζ ) P 0 I 3 0 I 3 ⊗ (ζ -ζ ) P
is full rank at ζ = ζ so getting the result. By the result above, the feedback law ( 9) assigns the conservative discrete pcH structure [START_REF] Gennaro | Passive attitude control of flexible spacecraft from quaternion measurements[END_REF] with interconnection matrix of the form (16a) and the same Hamiltonian as in continuous time. As a consequence [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF], the controlled system is passive (and lossless) with an equilibrium at the desired ζ = {ε , 0}. Accordingly, if one is able to compute a solution to the damping equality ( 13) asymptotic stabilization of the desired equilibrium is achieved.

Theorem 4.1: Consider the dynamics (3) under the hypotheses of Proposition 4.1 with (9) assigning the pcH form [START_REF] Gennaro | Passive attitude control of flexible spacecraft from quaternion measurements[END_REF]. Then, the sampled-data attitude stabilization problem is solved by the IDA-PBC control [START_REF] Chaturvedi | Rigid-body attitude control[END_REF]. More in detail, the following holds:

(i) the dynamics ( 10) is lossless with respect to the output [START_REF] Qasim | Pid control for attitude stabilization of an unmanned aerial vehicle quad-copter[END_REF] and storage function (7a), that is, the energy-balance equality [START_REF] Hughes | Spacecraft attitude dynamics[END_REF] holds; (ii) the sampled-data damping injection-problem 3.2 admits a solution: for all ζ ∈ R 7 , there exists T ζ > 0 such that for all δ ∈ [0, T ζ [ the damping equality ( 13) admits a unique solution in the form of a series expansion around [START_REF] Wen | The attitude control problem[END_REF], that is

u δ di (ζ) = u di (ω) + i>0 δ i (i + 1)! u i di (ζ) (17) 
with i denoting the order of the term in the series expansion; (iii) the IDA-PBC feedback ( 14) asymptotically stabilizes (10) at the desired equilibrium (4). Proof: (i) follows by computing the one step increment of the Hamiltonian (7a) along [START_REF] Gennaro | Passive attitude control of flexible spacecraft from quaternion measurements[END_REF]; namely under Proposition 4.1 one gets

∆H d =H d (ζ + (u δ es (ζ) + v)) -H d (ζ + (u δ es (ζ))) + H d (ζ + (u δ es (ζ))) -H d (ζ) =H d (ζ + (u δ es (ζ) + v)) -H d (ζ + (u δ es (ζ))) because J δ d (ζ) = -J δ d (ζ)
and

H d (ζ + (u δ es (ζ))) -H d (ζ) = ∇ H d | ζ + (u δ es (ζ)) ζ J δ d (ζ) ∇H d | ζ + (u δ es (ζ)) ζ = 0 so that ∆H d = δ ∇ H d | ζ + (u δ es (ζ)+v) ζ + (u δ es (ζ)) g δ d (ζ, v)v
and thus [START_REF] Hughes | Spacecraft attitude dynamics[END_REF]. (ii) follows from the implicit function theorem along the lines of the proof of Proposition 4.1. As far as (iii) is concerned, because ( 17) solves [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF], it guarantees

∆H d = -δκ di Y δ (ζ, u δ di (ζ)) 2 ≤ 0, κ di 0
with trajectories of the closed-loop system converging to the largest invariant set contained in {ζ ∈

R 7 s.t. Y δ (ζ, u δ di (ζ)) = 0}
. By Proposition 2.1 and average passivity [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF] such set only contains ζ and (iii) follows.

Remark 4.1: As δ → 0, the overall attitude control law ( 14) and the sampled-data interconnection matrix ( 16) recover the continuous-time counterparts in ( 6) and (7b). It turns out that the overall feedback law [START_REF] Chaturvedi | Rigid-body attitude control[END_REF] gets the form of an asymptotic series expansion in powers of δ through the energy-shaping and damping components (16b) and [START_REF] Mattioni | Immersion and invariance stabilization of strict-feedback dynamics under sampling[END_REF]. Despite computing closed form solutions is a tough task, approximations can be naturally defined as detailed below. 

B. Computational aspects

The result in Proposition 4.1 highlights that a solution to the matching equality [START_REF] Monaco | Advanced tools for nonlinear sampled-data systems' analysis and control[END_REF] (and thus to Problem 3.1) exists in the form of a series expansion in powers of δ. Despite closed forms are hard to be computed in practice, all terms 16) are explicitly computable as the solution to a set of linear equalities of the form

< J i d (ζ), u i es (ζ) > in (
Bu i es (ζ) -J i d (ζ) ζ -ζ ) = i (ζ), i = 0, 1, . . . ( 18 
) with i (ζ) = ˜ i (ζ, u es (ζ), J d (ζ), . . . , u i-1 es (ζ), J i-1 d (ζ))
deduced by substituting ( 16) into [START_REF] Monaco | Advanced tools for nonlinear sampled-data systems' analysis and control[END_REF] and equating the terms with the same powers of δ. Setting blockwise

J i d (ζ) = -J i d (ζ) =   J i 11 (ζ) J i 12 (ζ) J i 13 (ζ) 0 J i 23 (ζ) J i 33 (ζ)   (19) 
the solution can be iteratively computed by multiplying both sides of ( 18) by B ⊥ = I 4 0 so getting

B ⊥ J i d (ζ)(ζ -ζ ) = B ⊥ i (ζ) u i es (ζ) = B i (ζ) + J i d (ζ)(ζ -ζ )
and, in particular, the linear equality in J i d (ζ) given by

J i 11 (ζ) J i 12 (ζ) J i 13 (ζ) -J i 12 (ζ) 0 J i 23 (ζ)   ε 0 ε r -1 M ω   = B ⊥ i (ζ).
Accordingly, for the first terms, one gets

u 1 es (ζ) = - 1 4 M -1 S(ω)q 0 + q r ω u 2 es (ζ) = 3 8 1 2 S( ω0 ) -S 2 (ω) M -1 q 0 + 1 2 1 8 3I -M -1 ωω -M -1 S( ω0 ) - 3 8 M -1 S 2 (ω) q 0 - 3 8 M -1 ω0 q r J 1 d (ζ) = J d ( ω0
) and, using [START_REF] Moreschini | Stabilization of discrete port-hamiltonian dynamics via interconnection and damping assignment[END_REF] 

for i = 2, J 2 23 (ζ) = 0 J 2 11 (ζ) = 1 2 S(ω 0 ) + 1 8 M -1 S(ω)M -1 + 3 4 S(M -1 u 1 es (ζ)) - 1 6 S 3 (ω) + 1 2 S(ω)S( ω0 ) -S( ω0 )S(ω) + ω ω 0 -ω0 ω J 2 12 (ζ) = 3 4 M -1 u 1 es (ζ) + 1 16 ωω ω + 1 2 ω0 J 2 13 (ζ) = 1 16 ωω M -1 + 1 2 M -1 S 2 (ω) + 1 8 M -1 S( ω0 ) -S( ω0 )M -1 J 2 33 (ζ) =S(ω 0 ) + 3 2 S(M -1 u 1 es (ζ) - 1 2 S 3 (ω) + 1 2 S( ω0 )S(ω) -S(ω)S( ω0 ) ω0 =M -1 S(ω)M ω - 1 2 M -2 q 0 ω0 =M -1 S( ω0 )M ω + M -1 S(ω) S(ω)M ω- 1 2 M -1 ε 0 .
Along the same lines, exact forms for the damping control in Theorem 4.1 cannot be computed in practice. However, all terms of the damping injection component in [START_REF] Mattioni | Immersion and invariance stabilization of strict-feedback dynamics under sampling[END_REF] can be easily computed through an iterative procedure solving a linear equality in the corresponding unknown. Such an equality is deduced substituting ( 17) into (13) so getting the first terms

u 1 di (ζ) = -κ di M -1 S(ω)M -κ di ω + κ di 2 M -2 ε 0 u 2 di (ζ) = u1 di (ζ) -κ di M u 1 es (ζ) + 1 2 u 1 di (ζ)
with, recalling the continuous-time control [START_REF] Wen | The attitude control problem[END_REF],

u1 di (ζ) = ∂u 1 di (ζ) ∂ζ f (ζ) + Bu ida (ζ) .
With this in mind, only IDA-PBC control laws defined as truncations, at all finite order p ≥ 0, of the corresponding series (16b) and ( 17) can be implemented in practice; i.e., the p th -order approximate IDA-PBC feedback is defined as

u δ,[p] ida (ζ) = p =0 δ ( + 1)! (u es (ζ) + u di (ζ)), p ≥ 0. (20) 
For p = 0, (20) recovers the emulation of [START_REF] Wen | The attitude control problem[END_REF], that is the continuous-time control implemented via sample-andhold when neglecting the effect of sampling (see e.g., [START_REF] Mazenc | Robustness of nonlinear systems with respect to delay and sampling of the controls[END_REF]). Such controllers ensure practical asymptotic stability of the desired equilibrium in closed loop [17, Proposition 4.2]; i.e., trajectories converge to a neighborhood of ζ of radius δ i+1 . Remark 4.3: The terms above highlight that, contrarily to the continuous-time case, the sampled-data feedback law explicitly depends on the sign of the quaternion which must be then consistently reconstructed from measurements.

V. SIMULATIONS

In this section, we consider an attitude maneuver toward q 0 = 0 of a rigid body having inertia matrix 

M =   1.
assuming initial ω(0) = 0 and roll, pitch, yaw angles (φ, ψ, θ) = ( π 4 , π 2 , π) (corresponding to q 0 (0) = (-0.6533, 0.2706, 0.6533) and q r (0) = 0.2706), and δ = 1 1 . For the sake of comparison, in the simulations we have considered percentages of uncertainties arising in the elements M 22 , M 23 , M 32 of the inertia matrix [START_REF] Monaco | Nonlinear hamiltonian systems under sampling[END_REF] and in the sampling period δ. In particular, simulations in Fig. 1 show the behaviour of the continuous-time controller [START_REF] Wen | The attitude control problem[END_REF], for κ di = diag(1.1, 0.7, 0.9), and compared with the sampleddata controller [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF] for different approximation orders (such as p = 0 and p = 2), and the sampled LQR control in [START_REF] Jiang | Sampled-data control for spacecraft attitude control systems based on a quaternion model[END_REF].

Fig. 1 highlights that although in the nominal case all the controllers achieve q 0 with similar performances, as uncertainties occur into the model all the controllers behave differently. In particular, the continuous-time IDA-PBC shows a robust behaviour also with respect to large uncertainties as depicted in Fig. 1a. Differently, both the sampled-data emulation design, i.e. [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF] with p = 0 (Fig. 1b), and the sampled LQR (Fig. 1d) show a significantly reduced robusteness to parametric uncertainties leading to instability for large uncertainties in both the sampling period and the inertia matrix. Finally, as readily seen in Fig. 1c, the sensitivity to uncertainty is reduced when considering two correcting terms in the sampled-data emulation design, i.e. [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF] with p = 2. In fact, the sampled-data controller with p = 2 shows in all situations comparable performance with the continuous-time one and achieves stabilization even for larger uncertainties.

VI. CONCLUSIONS AND PERSPECTIVES

A new quaternion-based digital control for attitude stabilization has been proposed. The solution involves, for the first time, discrete-time IDA-PBC over the sampleddata equivalent model so providing, in principle, a simple controller exploiting the physical properties of the dynamics. The feedback gets the form of a series expansion in powers of δ so that approximations can be naturally and 1 Further simulations are available at https://youtu.be/u3BhtW-PGPM where several sampling periods are considered. (d) Sampled-data linearized LQR [START_REF] Jiang | Sampled-data control for spacecraft attitude control systems based on a quaternion model[END_REF] Fig. 1: Stabilization results for nominal values and in presence of uncertainties efficiently applied in practice. Future works involve the case of input delays and the extension to formation control of swarms of satellites. Also, the extension of IDA-PBC for general representations of the kinematics is undergoing so to cope with unwinding or singularity phenomena rising with parametrizations [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF].

Proposition 4 . 1 :

 41 Consider the error dynamics (3) with sampled-data equivalent model (8) and let ζ = col{ε , 0} as in (4) be the equilibrium to stabilize. Then, the sampleddata energy-shaping problem 3.1 admits a solution. More in detail, for all ζ ∈ R 7 there exists T ζ > 0 such that for all δ ∈ [0, T ζ [ the DME (15) admits unique solutions < J δ d (ζ), u δ es (ζ) > in the form of series expansions around (6)-(7b); i.e., one gets

Remark 4 . 2 :

 42 In both Theorem 4.1 and Proposition 4.1 T ζ depends on the state at the current time; namely, for each measured state at time t = kδ (i.e., ζ k ), there exists T ζ k so that the corresponding equalities admit a solution. Current work is toward the definition of additional uniformity arguments for the qualitative definition of a single T for all ζ in a neighborhood of ζ .

  Sampled-data IDA-PBC[START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF] with p = 2
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