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A new connection protocol for multi-consensus of discrete-time systems

I. INTRODUCTION

Consensus of multi-agent systems is nowadays fundamental as embedding different control problems spanning from several disciplines (e.g., [START_REF] Anderson | Recent advances in the modelling and analysis of opinion dynamics on influence networks[END_REF]- [START_REF] You | Collective behaviors of two-component swarms[END_REF]). It is well known that, in general, when dynamical units exchange information through a communication graph, clusters arise and, under particular coupling functions, the corresponding trajectories might asymptotically converge to common behaviors (that is, multiconsensus [START_REF] Li | Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint[END_REF], [START_REF] Mattioni | Cluster partitioning of heterogeneous multi-agent systems[END_REF]); such clusters and the number of consensuses are uniquely determined by the topology of the graph through the notion of almost equitable partitions.

In this setting, when considering scalar continuous-time integrator as agents of the network, the common neighborbased coupling protocol [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF], [START_REF] Monaco | On multi-consensus and almost equitable graph partitions[END_REF] ensures all agents converge to multi-consensus despite the strength of the connection. However, this does not hold for discrete-time systems in general, even when considering integrator-like units. As a matter of fact in this case, under the standard protocol, the coupling strength (i.e., the gain weighting the influence of the network on each agent) needs to be suitably set to ensure convergence to the agreement steady-state even when the network topology is fixed over time (e.g., [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF], [START_REF] Chen | On the cluster consensus of discrete-time multi-agent systems[END_REF]). This results in conservative values for the gain which are generally inversely proportional to either the largest eigenvalue of the Laplacian (which must be known to all agents) or, alternatively, the number of agents involved in the network. Accordingly, the larger the network and the corresponding connectivity, the smallest is the necessary coupling gain which must be fixed for ensuring consensus so implying that the influence of the network over each agent must be significantly mitigated. This is not desirable in practice as Supported by Sapienza Università di Roma (Progetti di Ateneo 2018-Piccoli progetti RP11816436325B63). 1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale A. Ruberti (Sapienza University of Rome); Via Ariosto 25, 00185 Rome, Italy {mattia.mattioni, salvatore.monaco}@uniroma1.it. 2 Laboratoire de Signaux et Systèmes (L2S, CNRS and Univ. Paris-Saclay); 3, Rue Joliot Curie, 91192, Gif-sur-Yvette, France dorothee.normand-cyrot@centralesupelec.fr discrete-time networks embed several classes of multi-agent systems as, to cite a few, communication systems and opinion dynamics [START_REF] Proskurnikov | A tutorial on modeling and analysis of dynamic social networks. part i[END_REF], [START_REF] Pietrabissa | Wardrop equilibrium on time-varying graphs[END_REF] for which the coupling strength of the network cannot be fixed small a priori, for both modeling and control reasons.

Motivated by these arguments, the objective of this paper is to provide a new coupling protocol for discrete-time multi-agent systems forcing all agents to a common multiconsensus (uniquely fixed by the communication topology) despite the value of the interconnection strength which might be then tuned to control the convergence rate. The underlying idea is that, when considering integrator continuoustime dynamics, consensus is generally guaranteed since the neighbor-based interconnection is realized via a passive map for each agent. Unfortunately, this is not true in the discretetime context when exploiting the same connection rule. The following question naturally arises: how to realize the neighbor-based connection via new suitably defined mappings guaranteeing consensus?

In detail, the contribution of the paper is threefold. (i) Based on the notion of average passivity introduced in [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF] for discrete-time systems at large, we construct a new neighbor-based coupling protocol by replacing the states of each agent with a new average passivating function which is directly depending on the coupling terms as well. The corresponding discrete-time network is proved to evolve with a new Laplacian-like matrix L d which is structurally equivalent to the standard Laplacian L associated to the communication graph. (ii) Under the proposed coupling, all agents asymptotically converge to the multi-consensus uniquely dictated by the communication graph (via the Laplacian) and the corresponding initial condition despite the connection strength. This extends the results in [START_REF] Monaco | On multi-consensus and almost equitable graph partitions[END_REF] and overcomes the need of small coupling gains [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF], [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF]. (iii) The results are generalized to network agents under aperiodic (but synchronous) sampling under the assumption of known sampling sequences; i.e., when agents exchange information only at discrete-time instants sporadically spread over time. The proposed protocol allows large coupling strength and sampling periods, contrarily to the usual one (e.g., [START_REF] Hayashida | Stability of sampled-data systems with uncertain time-varying delays and its application to consensus control of multi-agent systems[END_REF], [START_REF] Mattioni | On multiconsensus of multi-agent systems under aperiodic and asynchronous sampling[END_REF]).

The remainder of the paper is organized as follows. In Section II, generalities on graph theories are recalled whereas the problem is motivated and formulated in Section III. The main result is proved in Section IV and revisited for sampleddata dynamics in Section V. In Section VI a simulated example is reported whereas conclusions and perspectives are in Section VII.

Notations: The symbol | • | ∈ R denotes, depending on the argument, either the cardinality of a set S or the absolute value of a complex number λ ∈ C. 0 denotes either the zero scalar or the zero matrix of suitable dimensions. 1 c denotes the c-dimensional column vector whose elements are all ones while I is the identity matrix of suitable dimensions. Given a matrix A ∈ R n×n , σ{A} ⊂ C is its spectrum. A is weakly Schur if all λ ∈ σ{A} verify that: |λ| < 1 if the geometric and algebraic multiplicities are not the same; |λ| ≤ 1 otherwise. We denote by diag{λ 1 , . . . , λ N } ∈ R N ×N the diagonal matrix with entries provided by the λ i ∈ R (i = 1, . . . , N ). Given a scalar real-valued function H : R n → R we denote by ∆ k H(x) = H(x(k + 1)) -H(x(k)) the corresponding one step increment.

II. RECALLS ON GRAPH-THEORY

We consider an unweighted directed graph (or digraph for short)

G = (V, E) with |V| = N , E ⊆ V × V. The set of neighbors to a node ν ∈ V is defined as N (ν) = {µ ∈ V s.t. (µ, ν) ∈ E}. For all pairs of distinct nodes ν, µ ∈ V, a directed path from ν to µ is defined as ν µ := {(ν r , ν r+1 ) ∈ E s.t. ∪ -1 r=0 (ν r , ν r+1 ) ⊆ E with ν 0 = ν, ν = µ and > 0}. The reachable set from a node ν ∈ V is defined as R(ν) := {ν} ∪ {µ ∈ V s.t. ν µ}. A set R is called a reach if it is a maximal reachable set, that is, R = R(ν) for some ν ∈ V and there is no µ ∈ V such that R(ν) ⊂ R(µ).
Since G possesses a finite number of vertices, such maximal sets exist and are uniquely determined by the graph itself. Denoting by R i for i = 1, . . . , µ, the reaches of G, the exclusive part of R i is defined as

H i = R i \ ∪ µ =1, =i R j with cardinality h i = |H i |.
Finally, the common part of G is given by C = V\ ∪ µ i=1 H i with cardinality c = |C|. The Laplacian matrix associated to G is given by L = D -A with D ∈ R N ×N and A ∈ R N ×N being respectively the in-degree and the adjacency matrices. As proved in [START_REF] Agaev | On the spectra of nonsymmetric Laplacian matrices[END_REF], [START_REF] Caughman | Kernels of directed graph Laplacians[END_REF], L possesses one eigenvalue λ = 0 with both algebraic and geometric multiplicities coinciding with µ, the number of reaches of G. Hence, after a suitable re-labeling of nodes, the Laplacian admits the lower triangular form

L =      L 1 . . . 0 0 . . . . . . . . . . . . 0 . . . L µ 0 M 1 . . . M µ M      (1) 
where:

L i ∈ R hi×hi (i = 1, . . . , µ
) is the Laplacian associated to the subgraph H i and possessing one eigenvalue in zero with unitary algebraic and geometric multiplicities; M ∈ R c×c verifying σ(M ) ⊂ C + corresponds to the common component C. Thus, the eigenspace associated to λ = 0 for L is spanned by the right eigenvectors given by Z 0 = (z 1 . . . z µ ) with

z 1 =      1 h1 . . . 0 γ 1      . . . z µ =      0 . . . 1 hµ γ µ      (2) 
with µ i=1 γ i = 1 c and M i 1 hi + M γ i = 0 for all i = 1, . . . , µ. In addition, the left eigenvectors associated to the zero eigenvalues are given by V 0 = (ṽ 1 . . . ṽµ )

ṽ 1 = v 1 . . . 0 0 . . . ṽ µ = 0 . . . v µ 0 (3) with v i = v 1 i . . . v hi i ∈ R 1×hi , v s i > 0 if the corre- sponding node is root and zero otherwise. Z r ∈ R N ×(N -µ)
and V r ∈ R (N -µ)×N denote the matrices composed of all other eigenvectors of the Laplacian. A partition (or, as an alternative, a cluster) π = {ρ 1 , . . . , ρ r } of V is a collection of cells ρ i ⊆ V verifying ρ i ∩ ρ j = ∅ for all i = j and ∪ r i=1 ρ i = V. Given two partitions π 1 and π 2 , π 1 is said to be finer than π 2 (π 1 π 2 ) if all cells of π 1 are a subset of some cell of π 2 ; equivalently, we say that π 2 is coarser than π 1 (π 2 π 1 ). We name π = V the trivial partition as composed of a unique cell with all nodes. A partition π = {ρ 1 , . . . , ρ r } of V is said to be an almost equitable partition (AEP, in short) if each node of ρ i has the same number of neighbors in ρ , for all i, ∈ {1, . . . , r} with i = . More precisely, denote by N (ν i , ρ) = {ν ∈ ρ s.t (ν, ν i ) ∈ E} the set of neighbors of ν i in the cell ρ; π is an AEP of G if, for each i, j ∈ {1, 2, . . . , r}, with i = j, there exists an integer d ij such that |N (ν, ρ j )| = d ij for all ν ∈ ρ i . We say that a non trivial partition π is the coarsest AEP of G if for all non trivial π AEP of G then π π.

III. MOTIVATIONS AND PROBLEM STATEMENT

Consider a multi-agent system exchanging information via a communication unweighted digraph G = (V, E) where each vertex ν i ∈ V is a dynamical unit of the form

x i (k + 1) = x i (k) + u i (k) (4) 
with x i ∈ R the state and u i ∈ R the coupling terms. As well-known [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF], [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF], the usual coupling rule

u i = -κ j:νj ∈N (νi) (x i -x j ) (5) 
does not ensure all agents converge to a consensus (or multiconsensus) steady-state for all κ > 0, the so-called coupling strength. As a matter of fact, denoting x = (x 1 . . . x N ) , the multi-agent system

x(k + 1) =(I -κL)x(k)
does not converge to the multi-consensus dictated by G for all κ > 0. Despite the matrix I -κL possesses one eigenvalue in λ d = 1 (with algebraic and geometric multiplicities equal to µ), it might not be weakly Schur: the remaining eigenvalues lie within the unit circle if κ verifies

κ < 1 2λ , λ = max λ>0 {λ ∈ σ{L}}.
If κ is not small enough consensus might be lost and, even worse, the multi-agent dynamics might diverge. In addition, even when consensus is preserved (under small κ), the exchange of information is significantly filtered by all agents so affecting the convergence rate. Finally, the information on λ might not be known to all agents and, even if upper bounds can be computed (e.g., κ < 1 N ), the transient performances might not be acceptable. Both these situations are not likely to happen in practice.

The question we address is hence the following one. Given the agent dynamics (4), is it possible to define a new discretetime coupling rule (or consensus protocol)

u i = -κ j:νj ∈N (νi) (y i -y j ) (6) 
and a suitably defined output y i ∈ R, so that the corresponding multi-agent system converges to the (multi-)consensus associated to G for all κ > 0?

The answer we provide relies on a deeper understanding of the properties of the continuous-time consensus problem [START_REF] Spong | The centrality of control theory in robotic, bode lecture[END_REF], [START_REF] Qu | Cooperative control of dynamical systems: applications to autonomous vehicles[END_REF] as reported in the following section.

A. A remark on continuous-time consensus

Consider a network of continuous-time agents ẋi = u i which are passive with respect to the outputs y i = x i and storage H(x i ) = 1 2 x 2 i . Then, the network coupling u i = -κ j:νj ∈N (νi) (y i -y j ) induces a feedback interconnection of the agents via the passive outputs. Accordingly, the closedloop system, (i.e., the network)

ẋ = -κLx, κ > 0 (7) 
possesses a stable center set and all agents converge to a suitably defined multi-consensus associated to the coarsest AEP of G (see [START_REF] Monaco | On multi-consensus and almost equitable graph partitions[END_REF] for a precise characterization). More in detail, setting the storage function Ĥ(x) = 1 2 x x = N i=1 H(x i ) for the network dynamics one gets

Ḣ(x) = x u = -x Lx = -x V r Λ r V r x ≤ 0 with u = (u 1 . . . u N ) , (V ) -1 = Z = Z 0 Z r , V LZ=Λ = 0 0 0 Λ r , Λ r = diag{λ 1 , . . . , λ N -µ } (8)
and Re[λ i ] > 0 for i = 1, . . . , N -µ. By the inequality above, the trajectories of the network converge to the multiconsensus subspace

V s =ker{V r } = Im{Z 0 } (9) 
being the eigenspace associated to the zero eigenvalue of L; i.e., Z 0 = z 1 . . . z µ and z i ∈ R N as in (2).

To summarize, the continuous-time network is realized via the feedback interconnection of agents through damping of the corresponding passive outputs so that stability of the closed-loop consensus subspace is preserved independently on the gain magnitude [START_REF] Spong | The centrality of control theory in robotic, bode lecture[END_REF].

IV. THE AVERAGE DISCRETE-TIME CONSENSUS

PROTOCOL

The considerations above suggest that a passive connection in discrete time may work as well. Indeed, the scalar agents (4) are not passive (at least in the usual sense) with respect to the output y i = x i because of the so-called direct throughput obstruction [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF]; namely, a necessary condition for discretetime systems to be passive is that the output explicitly depends on the input. Then, the usual coupling (5) does not realize a passive connection.

With this in mind, we propose to fix the interconnecting output in (6) based on the notion of average passivity [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF].

Lemma 4.1: The scalar agents (4) are passive with respect to the (average) output 1

y i = x i + 1 2 u i (10) 
and storage functions H(x i ) = 1 2 x 2 i with dissipation equality

∆ k H(x i ) =u i (k)(x i (k) + 1 2 u i (k)) = u i (k)y i (k).
The next result proves that consensus is guaranteed for all κ > 0 when realizing the connection (10) via the passive outputs [START_REF] Proskurnikov | A tutorial on modeling and analysis of dynamic social networks. part i[END_REF].

Theorem 4.1: Consider the multi-agent system with each agent of the form (4). Then, for all κ > 0, the coupling rule [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF] with the passive outputs [START_REF] Proskurnikov | A tutorial on modeling and analysis of dynamic social networks. part i[END_REF] ensures all agents converge to the consensus steady-states associated to the coarsest AEP of G; namely, the consensus subspace ( 9) is attractive for the multi-agent dynamics

x(k + 1) = L d x(k) (11) 
with L d = I + κ 2 L) -1 (I -κ 2 L . Proof: Considering the agglomerate coupling vector u = (u 1 . . . u N ) with ( 6) and [START_REF] Proskurnikov | A tutorial on modeling and analysis of dynamic social networks. part i[END_REF], one gets

u = -κL(x + 1 2 u) =⇒ u = -κ(I + κ 2 L) -1 Lx with (I + κ 2 L
) invertible for all κ > 0. Thus, the network dynamics gets the form [START_REF] Pietrabissa | Wardrop equilibrium on time-varying graphs[END_REF]. At this point, one must prove that the matrix L d possesses: (i) λ d = 1 as eigenvalue with geometric and algebraic multiplicities µ ≥ 1 (i.e., the number of reaches of G) with corresponding eigenspace (9); (ii) the remaining eigenvalues within the strict unit circle. To this end, we prove that L d admits the spectral decomposition

L d = ZΛ d V
with Z and V as in [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF], Λ d = diag{I µ , Λ d.r } , I µ the µ-dimensional identity matrix and Λ d,r ∈ R (N -µ)×(N -µ) a diagonal matrix with all elements within the open unit circle. For, exploiting (8), one rewrites

(I + κ 2 L) -1 = (I + κ 2 ZΛV ) -1 = Z(I + κ 2 Λ) -1 V I - κ 2 L = Z(I - κ 2 Λ)V
1 We refer to [START_REF] Proskurnikov | A tutorial on modeling and analysis of dynamic social networks. part i[END_REF] as average as it is the average of the mapping h(x i ) = x i along the dynamics (4) and with respect to the input u i ; namely, it is y i = 1 u i u i 0 (x i + w)dw. We refer to [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF] for a more general definition.

because V Z = ZV = I, so getting

L d = ZΛ d V , Λ d = (I + κ 2 Λ) -1 (I - κ 2 Λ).
The so-computed Λ d , by [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF], is diagonal and given by

Λ d,r =(I + κ 2 Λ r ) -1 (I - κ 2 Λ r ) = diag(λ 1 d , . . . , λ N -µ d ) with λ i d = 1-κ 2 λ i 1+ κ
2 λ i for all λ i ∈ σ{L}\{0} and i = 1, . . . , Nµ. This concludes the proof.

From now on, we refer to (6) as the average coupling since it is deduced starting from the average output [START_REF] Proskurnikov | A tutorial on modeling and analysis of dynamic social networks. part i[END_REF].

The proof of Theorem 4.1 highlights that there is a oneto-one correspondence among the eigenvalues of L and

L d : if λ ∈ σ{L} then λ d = 1-κ 2 λ 1+ κ 2 λ ∈ σ{L d }.
In addition, the dynamical matrix L d governing the dynamics of the network [START_REF] Pietrabissa | Wardrop equilibrium on time-varying graphs[END_REF] under the coupling (6) shares the same invariant structure decomposition of the Laplacian of G: the same eigenspace is associated to λ ∈ σ{L} and λ d ∈ σ{L d }. By these properties, L d is defined as the discrete-time Laplacian.

Remark 4.1: The coupling rule ( 6) is implicitly defined and, in general, cannot be computed in a fully decentralized manner (i.e., locally to each agent and based on partial information from the neighbors).

A. A discrete-time passivity interpretation

The result in Theorem 4.1 comes with a passivity interpretation that is the counterpart of the continuous-time one in Section III-A: the network coupling [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF], realized via the average passive output [START_REF] Proskurnikov | A tutorial on modeling and analysis of dynamic social networks. part i[END_REF], induces a feedback interconnection that guarantees consensus for all κ > 0.

Starting from Lemma 4.1 and Theorem 4.1, we set the function Ĥ(x) = 1 2 x x which verifies, along (11)

∆ k Ĥ(x) = u (k)y(k) = -x (k)(I + κ 2 L) -L(I + κ 2 L) -1 x(k)
with u = (u 1 . . . u N ) , y = (y 1 . . . y N ) , u i and y i as in ( 6)-( 10) for i = 1, . . . , N . From (8), one gets

∆ k Ĥ(x) = -x (k)V r (I + κ 2 Λ r ) -Λ r (I + κ 2 Λ r ) -1 V r x(k) ≤ 0
with Λ r 0 by definition and V r ∈ R (N -µ)×N the matrix of the left eigenvectors associated to the non-zero eigenvalues of L. Thus, the trajectories of the discrete-time network converge to the consensus-subspace [START_REF] Chen | On the cluster consensus of discrete-time multi-agent systems[END_REF]. Also, we highlight that the discrete network dynamics (11) gets the form of a discrete-time Hamiltonian dynamics [START_REF] Moreschini | Discrete port-controlled hamiltonian dynamics and average passivation[END_REF] x + (u) =x + ∇H

x + x + u = x + 1 2 (x + + x) + u with ∇H x + x = 1 2 (x + +x) the discrete-gradient associated to H(x), x = x(k), u = u(k), x + (u) = x + (u(k)) = x(k + 1)
and x + = x + (0). The coupling term gets the form of a damping injection

u = -κ ∇H| x + (u) x + = -κ κ 2 L(x + (u) + x + ) ensuring ∆ k H(x) = -κ ∇ H| x + (u) x + L ∇H| x + (u) x + ≤ 0.
Also, the discrete Laplacian L d corresponds to the biliner transformation of the continuous-time -L, typically used in approximate discretization of Hamiltonian dynamics [START_REF] Laila | Discrete-time IDA-PBC design for separable Hamiltonian systems[END_REF].

Those arguments provide a different proof of Theorem 4.1.

B. The discrete-time multi-consensus

As proved in [7, Theorem 1] for the continuous-time case, the multi-consensus is associated with the coarsest AEP of G which, assuming L of the form (1), is given by

π = {H 1 , . . . , H µ , C µ+1 , . . . , C µ+p } (12) 
with

C = ∪ p i=1 C µ+i and nodes ν h1+•••+hµ+c1+•••+cµ+i-1+s belonging to the same cell C µ+j if and only if they share the same component γ i s of γ i in (2) for c µ+i = |C µ+i |, s = 1, . . . , c µ + i and i = 1, . . . , p.
Let us regroup nodes according to the cell of π they belong to; i.e., for c = |C µ+ | for = 1, . . . , p, i = 1, . . . , µ and, for simplicity, h 0 = 0f and c p+1 = c p

x i = x h1+•••+hi-1+1 . . . x h1+•••+hi x δ, = x N -c -•••-cp+1 . . . x N -c +1 -•••-cp . (13) 
Also, by such sorting, one can rewrite γ i in (2) as

γ i = γ i 1 1 c1 . . . γ i p 1 cp , i = 1, . . . , µ
with γ i ∈ R and µ i=1 γ i = 1 for = 1, . . . , p. The following result can be then given to explicitly characterize the multi-consensus of the discrete-time network [START_REF] Pietrabissa | Wardrop equilibrium on time-varying graphs[END_REF].

Corollary 4.1: Consider a network of N discrete-time multi-agent systems of the form (4) evolving over a communication unweighted digraph G with Laplacian L in the form [START_REF] Anderson | Recent advances in the modelling and analysis of opinion dynamics on influence networks[END_REF]. Then, for all κ > 0, the coupling (6) makes the network [START_REF] Pietrabissa | Wardrop equilibrium on time-varying graphs[END_REF] converge to the multi-consensus associated to G. More in detail, as κ → ∞, all nodes in the same cell of π in [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF] converge to the same consensus given by

x i (k) → x i s = v i x i (0), i = 1, . . . , µ (14a) 
x δ, (k) → x δ, s = µ i=1 γ i x i s , = 1, . . . , p (14b) 
with v i ∈ R 1×hi as in [START_REF] You | Collective behaviors of two-component swarms[END_REF]. Proof: Assume, with no loss of generality, the Laplacian of the form (1) with, by Theorem 4.1, left and right eigenvectors associated to λ d = 1 as in ( 2)-(3). Then, the discrete-time Laplacian gets the form

L d =      L d,1 . . . 0 0 . . . . . . . . . . . . 0 . . . L d,µ 0 M d,1 . . . M d,µ M d      with L d,i =(I + κ 2 L i ) -1 (I - κ 2 L i ) M d,ı = - k 2 (I + κ 2 M ) -1 M i (I + k 2 L i ) -1 M d =(I + κ 2 M ) -1 (I - κ 2 M )
verifying, since M i 1 hi + M γ i = 0 and L i 1 hi = 0

L d,i 1 hi = 1 hi , v i L d,i = 0, M d,i 1 hi + M d γ i = γ i .
By this structure, the proof follows the lines of the continuous time one in [7, Theorem 1], showing that, k → ∞

x(k) →      1 h1 . . . 0 γ 1      x 1 s + • • • +      0 . . . 1 hµ γ µ     
x µ s and, in particular, component-wise, [START_REF] Mattioni | On multiconsensus of multi-agent systems under aperiodic and asynchronous sampling[END_REF]. By the result below, the consensus of the discrete-time network [START_REF] Pietrabissa | Wardrop equilibrium on time-varying graphs[END_REF] exactly coincides with the one of the continuoustime counterpart [START_REF] Monaco | On multi-consensus and almost equitable graph partitions[END_REF], independently on the specific value of the gain κ > 0 (which is only modulating the convergence rate). This implies that, when the coupling rule is suitably set, the behavior of the network does not depend on the type of agents composing it, but only on the underlying communication graph. This fact is strengthened in the following section with reference to sampled-data networks.

V. THE CASE OF APERIODIC SAMPLING Consider a network of N dynamical agents

ẋi (t) = u i (t k ), t ∈ [t k , t k+1 ) (15) 
with unweighted digraph G. Let us assume that all agents exchange information at discrete-time instants t k ∈ ∆ and ∆ = {t 0 , t 1 , . . . } the sampling sequence with bounded sampling periods δ k := t k+1 -t k ∈ [δ m , δ M ] for some δ M ≥ δ m > 0 and k ≥ 0. Then, denoting u(k) := u(t k ) and x(k) := x(t k ) for t k ∈ ∆, the multi-agent system under the discrete coupling rule with the average output

y i (k) = x i (k) + 1 2 δ k u i (k) (16) 
reads

ẋ(t) = -κ(I + κ 2 δ k L) -1 Lx(k), t ∈ [t k , t k+1 ). (17) 
The following result can be proved. Theorem 5.1: Consider the multi-agent sampled-data system [START_REF] Spong | The centrality of control theory in robotic, bode lecture[END_REF] with sampling sequence ∆ and δ k := t k+1 -t k ∈ [δ m , δ M ] and communication unweighted digraph G with Laplacian of the form (1). Then, the discrete-coupling rule (6) with average outputs (16) ensures convergence of (17) to multi-consensus; namely, for t → ∞, regrouping the states as in [START_REF] Hayashida | Stability of sampled-data systems with uncertain time-varying delays and its application to consensus control of multi-agent systems[END_REF] and for v i ∈ R hi as in (3), one gets

x i (t) → x i s = v i x i (0), i = 1, . . . , µ x δ, (t) → x δ, s = µ i=1 γ i x i s , = 1 
, . . . , p.

Proof: We adopt the hybrid formalism developed in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Chapter 3] by defining the hybrid model

ζ =f (ζ), ζ ∈ C; z + = g(ζ), ζ ∈ D over the extended state ζ = (x u τ ) ∈ R 2N +1 with C ={(x u τ ) ∈ R 2N +1 s.t τ ∈ [0, δ M ]} D ={(x u τ ) ∈ R 2N +1 s.t τ = 0} f (ζ) =   u 0 -1   , g(ζ) =   x -κ(I + κ 2 δ k+1 L) -1 Lx 0  
where τ = t k+1 -t ≥ 0 is a decreasing timer to the next sampling instant to occur. At this point, for proving convergence to consensus, one must prove asymptotic stability of the hybrid dynamics with respect to the consensus set (see [START_REF] Mattioni | On multiconsensus of multi-agent systems under aperiodic and asynchronous sampling[END_REF] for further detail on its definition)

A = {(x, u) ∈ R N × R N s.t V r x = 0}
with V r ∈ R (N -µ)×N the matrix of the left eigenvectors associated to the non-zero eigenvalue of L. The hybrid Lyapunov function

H(ζ) = 1 2 x u A τ A τ x u , A τ = I τ I 0 I verifies Ḣ(ζ) = 0 for all ζ ∈ C and, for ζ ∈ D, that H(g(ζ)) -H(ζ) ≤ -x V r (I + κ 2 δ k+1 Λ r ) -Λ r (I + κ 2 δ k+1 Λ r ) -1 V r x ≤ 0.
Thus it is strictly decreasing with respect to A. Remark 5.1: As δ M → δ m → 0, the coupling (6) naturally recovers the standard continuous-time counterpart.

Remark 5.2: When sampling is periodic (i.e., δ = δ k for all k ≥ 0), then the proof of the result above notably simplifies as one can easily use only the sampled-data equivalent model of the time-invariant network dynamics.

VI. A SIMULATED EXAMPLE

Consider a network of N = 8 agents under the communication graph G with Laplacian

L =             1 -1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 -1 1 0 0 0 -1 0 0 -1 0 3 -1 0 0 0 -1 0 -1 -1 3 0 -1 -1 0 -1 0 0 -1 4            
possessing two reaches H 1 = {ν 1 , ν 2 , ν 3 }, H 2 = {ν 4 , ν 5 } and the common C = {ν 6 , ν 7 , ν 8 }. Through simulations (Figure 1), we compare the cases in which agents are: continuous-time integrators (for a benchmark behavior); sampled-data integrators under aperiodic sampling with δ m = 0.1 and δ M = 2 seconds; discrete-time integrators. In the latter case, two situations are reported: the network under the standard coupling (5); the network under the proposed coupling [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF]. In all scenarios, the clusters dictated by the network are given by the AEP (12) with p = 2, ρ 3 = {ν 6 , ν 7 } and ρ 4 = {ν 8 }. In particular, computing (2)-( 3) with µ = 2

v 1 = 1 2 1 2 0 , v 2 = 1 2 1 2 γ 1 = 1 2 1 2 5 8 
, γ 2 = 1 2 1 2 3 8

four consensuses are induced by the network and given by x 1 s = 1 2 (x 1 (0) + x 2 (0)), x 2 s = 1 2 (x 4 (0) + x 5 (0))

x δ,1 s = 1 2 (x 1 s + x 2 s ), x δ,2 s = 1 8 (5x 1 s + 3x 2 s ). The results of the simulations are reported in Figure 1 when setting in all cases κ = 1 and initial conditions x i (0) = i, for i = 1, . . . , 8 so getting x 1 s = 3 2 , x 2 s = 9 2 , x δ,1 s = 3 and x δ,2 s = 21 8 . When using standard coupling, consensus is not guaranteed for κ ≥ 1 2 contrarily to the case in which the proposed connection is introduced.

VII. CONCLUSIONS AND PERSPECTIVES

A new coupling rule for multi-agent discrete-time dynamics has been proposed by recurring to the notion of average passivity. In particular, it is realized by interconnecting all agents with respect to the (average) passivating outputs. Typical issues arising under the standard coupling rule are naturally overcome. The proposed method is shown to hold also for sampled-data systems under aperiodic sampling. Current work is devoted to making the new coupling computable distributedly and the case of sampled-data agents with no knowledge of the sampling instants.

Fig. 1 .

 1 Fig. 1. κ = 1, x i (0) = i for i = 1, . . . , 8.