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Abstract

Pairwise temporal interactions between entities can be represented as temporal networks,
which code the propagation of processes such as epidemic spreading or information cascades,
evolving on top of them. The largest outcome of these processes is directly linked to the
structure of the underlying network. Indeed, a node of a network at given time cannot affect
more nodes in the future than it can reach via time-respecting paths. This set of nodes reach-
able from a source defines an out-component, which identification is costly. In this paper, we
propose an efficient matrix algorithm to tackle this issue and show that it outperforms other
state-of-the-art methods. Secondly, we propose a hashing framework to coarsen large tempo-
ral networks into smaller proxies on which out-components are easier to estimate, and then
recombined to obtain the initial components. Our graph hashing solution has implications in
privacy respecting representation of temporal networks.

keywords: Temporal networks, out-component calculation, streaming matrix algorithms,
graph hashing

1 Introduction
While temporal networks represent the sequence of time-evolving interactions between entities, they
also code the connected structure that lays behind many dynamical processes like the spreading of
an epidemic or an information cascade or the collective adoption of behavioural norms or products.
In static networks, connectivity is conventionally defined between two nodes if they are connected
via a direct edge, or via a path building up from a sequence of adjacent edges that (pair-wise)
share at least one node [20]. In temporal networks, however, connectedness is coded by temporal
paths that are constructed from adjacent temporal interactions, which are not simultaneous yet
structurally adjacent, and respect the causal time order. They determine the set of reachable
nodes that can be influenced in the future with information held by a given node at a given
time [4, 11]. The set of reachable nodes of a node at a given time, also called its influence set,
is the node’s temporal out-component, whose structure and size are important indicators of any
ongoing dynamical processes. Indeed, no ongoing process can exhibit a larger collective pattern
than the largest connected out-component in the underlying temporal network. However, the
characterisation of connected components in temporal networks is a difficult task, as the temporal
ordering of interactions introduces a degree of complexity to detect time-respecting paths in an
effective way. Here, we address this challenge by defining a component matrix that codes the in-
and out-component size of any node in a temporal network. Using this matrix we apply network
compression and reconstruction techniques via graph hashing, to estimate the distribution of the
size of connected components of nodes. The proposed algorithm provides advancements in the
computation efficiency of the largest node components compared to the state-of-the-art, specifically
for temporal networks with large number of interactions.
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Calculation of the largest out-component:

Considering all nodes and timed interactions in a temporal network, the most important component
to characterise is, among other components, the largest out-component that ever emerged in the
structure. Its identification can be approached using different ideas. A simple one would be to
simulate a deterministic Susceptible-Infected (SI) process starting from every node at their first
interaction time. In a deterministic SI process, nodes are either in a susceptible (S) or infected
(I) state and a susceptible node certainly becomes infected when interacting with an infected one.
It is a conventional model to describe the fastest spreading process in a network, where starting
from a single seed node at its first appearance, the downstream set of infected nodes determines
its maximum out-component. Using this method, in a temporal network of n nodes and m events,
the computation of the out-component of a spreading seeded from a single source node, at its first
appearance time would have O(n) space and O(m) time complexity (in terms of memory usage
and computation time). This results in O(n2) space and O(nm) time complexity when considering
every node.

A more efficient method rely on temporal Event Graphs (EG), a higher-order representation
of temporal networks [19, 13, 4]. An EG is a static and lossless representation of a temporal
network in the form of a weighted and directed acyclic graph (DAG). In this structure, temporal
interactions are associated to nodes that are linked if their corresponding events are adjacent. For
a more precise definition see Section. 2. Computing a single traversal of a static event graph (in
reversed time order) yields the out-component of any node at any time, with an evidently smaller
computational complexity as compared to a direct computation on a temporal network. However,
EG appears with considerably larger size (having as many nodes as events in the original temporal
network) and higher link density (by connecting any events to all future adjacent others) that leads
to increased memory complexity. In order to reduce memory complexity, a link reduction method
has been proposed that eliminates path redundancy in the EG [19, 13], leaving the connectedness
of the DAG intact. Relying on the reduced EG, the use of the approximate HyperLogLog (HLL)
counting algorithm can further reduce the time complexity of the out-component detection to
O(m log(m) + η), where η is the number of edges of the EG. However, this method provides only
estimation for the size of out-components, without giving any information about their detailed
structure.

Graph compression for component inference:

Contrary to earlier solutions, our idea is to use graph compression methods to compute the out-
component size distribution of a temporal network, with a reduced computational complexity. The
compressibility of static networks has been studied recently [18], and has been shown to depend on
the structure of the graph. This notion can be extended for temporal networks by interpreting them
as a sequence of time-aggregated static network snapshots. Then compression can be formulated
as finding a smaller diffusion-equivalent representation [1]. Also, consecutive snapshots can be
compressed depending on their chronological importance [3]. Moreover, as pointed out by Li et
al. [14], in spatio-temporal networks nodes can be compressed via local clustering, while reducing
time instants to change-points. Compression can be formulated using Minimum Description Length
to also reduce the size of the graph [16]. Another compression approach has been proposed using
information theory considerations, aiming to reduce the number of bytes required to describe a
temporal network [15, 7, 5]. Reducing the size of the network via coarsening to compute spectral
properties of a graph has also been studied [17]. Sampling techniques have been largely used to
reduce the complexity of computation over large graphs [22].

Despite these numerous compression techniques proposed for temporal networks, none of them
reduces effectively the number of nodes in a series of events. This reduction has a huge impact on
the computational complexity of any of these algorithms, especially when they are characterised by
quadratic complexity in the number of nodes. Thus our central question remains: how to design an
efficient compression scheme that reduces the number of nodes while keeping enough information
about the network itself to reconstruct the statistics of its connected components?

To reduce the computational complexity of the out-component size distribution calculation,
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we first propose a online streaming matrix algorithm that scans through the series of events only
once, while it can also consider new events added later on, without re-starting the computation.
In addition, we define a general purpose temporal network compression scheme using a graph
hashing approach. This compression method reduces the total number of nodes, yet it requires a
decompression scheme too, which provides only an approximate solution. The compression method
can be used in conjunction with the matrix algorithm and, more generally, it can be applied on
any temporal network algorithm.

To present our contributions, we organised the paper as follows. First, we formalise the problem
of out-components computation in Section 2. We present the proposed novel streaming matrix
algorithm to compute the distribution of the size of out-components in Section 3, including some
numerical experiments. Then, we describe the hashing framework in Section 4, and we report
also on the numerical studies carried out to evaluate its ability to estimate the ground-truth out-
components’ distributions in Section 4.4. Finally, we discuss the proposed methods and the results.

2 Methods
The aim of the present work is to effectively compute the distribution of the maximum out-
component size for all nodes in a temporal network. To establish our apporach, we introduce first
the definitions that are necessary to ground our methodology.

2.1 Problem definition
We define a temporal network G := (V, E , T ) as a series of temporal events e = (u, v, t) ∈ E that
record interactions between nodes u, v ∈ V at time steps t sampled1 from a T time periods of
length T . The network G is characterised by its number of nodes n = |V| and its number of
events m = |E|. In G we call two events ei ∈ E , ej ∈ E adjacent if they share at least one node
({ui, vi} ∩ {uj , vj} ≠ ∅) and their inter-event time is ∆t = tj − ti > 0, i.e. the two events are
not simultaneous. Furthermore, we call two events to be δt-adjacent if they are adjacent and their
inter-event time is ∆t ≤ δt. A sequence of adjacent events defines a time respecting path between
nodes u and v starting at time t, if the first event of the path starts from node u at time t, the last
ends at node v, and each consecutive events in the sequence are pairwise adjacent [11]. The set of
nodes that can be reached by any paths starting from node u at time t defines the out-component.
The size of the out-component of a node u at a given time t is measured as the number of unique
nodes that can be reached by valid time respecting paths. Actually, it determines the largest
possible phenonenon (e.g., largest epidemic or information cascade) that was initiated from that
source node and evolved in the future. The computation of out-components is computationally
challenging as it requires the tracking of each time-respecting paths starting from each node at each
time. However, an effective approximate solution has been proposed lately [4] to solve a partial
challenge, to estimate only the size of out-components without keeping track of nodes involved.

2.2 Event graphs and the HyperLogLog algorithm
The proposed solution builds on the Event Graph (EG) representation [13, 19] of temporal net-
works. An event graph G := (V,E,∆t) is defined as a static weighted directed acyclic graph (DAG)
representation of a temporal network G, where temporal events are associated to nodes in G (i.e.,
V = E); directed edges in G correspond to ∆t-adjacent event pairs in the original temporal net-
work, with direction indicating their temporal order. The ∆t weight of each link is defined as the
inter-event time between the two adjacent events corresponding to the connected nodes in G. This
way, an event graph has m = |E| number of vertices and η number of directed edges. This static
graph representation provides a losless description of a temporal network and can be exploited to
infer several property of G without computations on the temporal structure [13]. Indeed, thanks
to the EG representation, the out-component size distribution of G can be precisely computed [4],
yet with high computational and memory costs.

1In these definitions, we neglect the duration of events for simplicity, but all definitions could incorporate dura-
tions in a straightforward way.
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To reduce this cost at the price of an inexact computation, Modiri et al. [4] proposed an approx-
imate solution to precisely estimate the out-component size distribution of a temporal networks
using its EG representation combined with the HyperLogLog algorithm.

The HyperLogLog (HLL) algorithm takes as input a set, and it outputs an approximate of its
size [9]. More precisely, a HLL structure uses a representation on s registers each storing a number,
initialised to zero to start with. Every element of the set is hashed into a binary vector that is
then cut in two parts. The first part indicates the identifier of the register that will be used and
the position of the leftmost 1 in the second part is stored in that register if it is larger than the
current value. Finally, the size of the set is estimated with an ensemble indicator function based on
the registers. The main advantage of the algorithm is that the whole set is not stored to estimate
its size and the estimation can be done with constant space and time complexity O(s). The error
of the estimation is O(1/

√
s). Also, the size of the union of two sets can also be estimated in

constant time and space by merging two HLL structures. A final property is that each element of
the set is considered one by one, hence compatible with a streaming approach. Let us stress that
the hashing functions used in HLL are not related to the ones we will use in Section 4 to compress
the network representation.

The HLL algorithm can be used to estimate out-component sizes in a EG without tracking the
exact set of nodes involved [4]. This approach reduces the time complexity of the out-component
distribution computation to O(m log(m)+η) up to some constant factors that depend on the hyper
parameters s of the HLL algorithm, which sets the trade-off between computational efficiency and
accuracy.

3 Streaming matrix algorithm for out-component size calcu-
lations

We develop a streaming matrix algorithm as an exact solution for the question of computing the
largest out-component of each node in a temporal network. The proposed solution can process
chronologically streamed nodes and events of a temporal network in real time, with a space com-
plexity that does not depend on the number m of events.

To demonstrate the basic idea of the method, let us consider the simple example of an infor-
mation spreading process on a temporal network between n nodes modelled by a deterministic
SI process (a short definition is recalled in the Introduction). To follow-up on the evolving com-
ponents during the SI process, we design a matrix with rows representing the in-component and
columns representing the out-component of each node. At time t = 0, when each node has a unique
information that it has not propagated yet to any other nodes, we obtain the identity matrix with
ones in the diagonal and zeros otherwise. Propagation happens between nodes u and v at the
time of their interactions, when they mutually share all unique information they already learned
from others (including their own) during earlier times of the process2. This propagation rule is
associated to the "OR" operation between the corresponding lines of the matrix, which yields the
union of the set of unique information known by the two nodes. By the last event of the temporal
network, the unique information of a node u is known by all other nodes in its out-component (de-
picted by column of the matrix). Thus, to compute the size of u’s out-component, we simply have
to count the number of unique nodes that are aware of u’s unique information, i.e., the number of
ones in the corresponding column of the matrix.

3.1 The component matrix
The component matrix is a binary matrix of size n× n, where n is the number of nodes in G. An
illustration is provided in Fig. 1. An element (i, j) of the matrix is 1 if and only if the node i is
reachable from the node j by any temporal path. Thus, the i-th line of the component matrix is
the in-component of the node i and the j-th column of the matrix is the out-component of the
node j.

2Information sharing could be deemed non-mutual in case of directed interactions in the temporal network.
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Temporal network Component matrix
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Out-component of node 3

Figure 1: Left: a temporal network defined as a series of events ordered in time (ti < tj for
i < j). The out-component of node 3 is circled in blue; the in-component of node 2 is circled in
purple. Right: the corresponding component matrix. A row depicts the in-component of a node
(we emphasise that of node 2). A column depicts the out-component of a node (we emphasise that
of node 3): a non-zero element in the u-th column at coordinate v, means that node v belongs to
the out-component of node u.

Algorithm 1: The matrix algorithm
Data: Time ordered list of events E
Result: Component matrix S

1 S ← In ; // Initialization
2 for e in E do
3 u ← e[0]
4 v ← e[1]
5 r ← S[u] OR S[v] ; // Compute the binary OR
6 S[u] ← r ; // Replace row of u by r
7 S[v] ← r ; // Replace row of v by r

8 end

The precise algorithm to compute this component matrix is given as pseudo-code in Algo-
rithm 1. It starts with the identity matrix. Then, for every event, the lines corresponding to the
interacting nodes are used to compute a binary OR operation, and those lines are replaced by
that resulting OR. Finally, at the end of the series of events, the output matrix is the component
matrix. This algorithmic construction process is described in Fig. 2.

3.2 Complexity of the algorithm

Temporal network
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1
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5
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1
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4
5

1 2 3 4 5
(1, 2, t0) (2, 5, t3)

1
2
3
4
5

1 2 3 4 5

+ +

= =

...

S0 S1 S3 S4

Figure 2: From a given temporal network (left graph), we compute the Component Matrix (right
matrix) of size n×n, with n = 5, by scanning the series of events. For each event, we compute the
OR operation between the rows of the matrix corresponding to the interacting nodes and replace
them by the result. Matrix S4 is the component matrix at the end of the streaming after m = 4
events.

Since we use a n × n matrix to store the intermediate results, the space complexity is O(n2),

5



which may be reduced using sparse matrices for storage. For time complexity, we can divide the
algorithm into several steps. The initialisation of the identity matrix can be done in O(n) by
simply setting the n diagonal elements to the "True" value at the outset. To update the matrix
we perform the OR operation between two vectors of size n once for each of the m events. The
complexity of each update is O(n), bounded by the maximum out-component sizes n, but could be
further reduced with a sparse matrix format. Consequently, the total complexity of the updates is
O(nm). Finally, counting the number of non-zero element (or non-"False" elements) can be done
at the same time as the update without any added complexity. Thus, the overall time complexity
of the component matrix algorithm is O(n) +O(nm) = O(nm).

3.3 Streaming computation of average out-component size
One way to further reduce the complexity of the computation is to look for an approximation of the
average size of a maximum out-component rather than its exact size. This can be implemented
with the component matrix using the HyperLogLog counting algorithm that has been recalled
before. It allows us to approximately describe and count the "True" values on each row of the
matrix. The rows of the component matrix describe a set of nodes: the in-component. An HLL
structure of size s (arbitrarily chosen, independently of n and m) can be used to estimate the size
of an in-component. Thus, n HLL structures replace the former matrix. In its matrix form, the
algorithm starts with the identity matrix. For the HLL structures, we simply initialise them with
a single element: the i-th structure will be initialised with "i". Then, for every event (i, j, t), the
OR operation between the lines i and j of the matrix is computed, which is equivalent to the union
of the two in-components. For the HLL structures, this results in merging them. Finally, every
HLL structure can give an approximation of the size of its corresponding line in the component
matrix.

Interestingly, the average size of the maximum out-components at time t is defined as:

s̄t =
1

n

∑
u∈V

∑
v∈V

St(u, v), (1)

where the sums are interchangeable. Thus it can be computed both as the average size of out-
components or in-components. Actually, the HyperLogLog structure can compute a size estimate
with no additional cost in O(1) time complexity for each in-component, which are coded in the
matrix as the number of "Trues" in a row. According to Eq. 1, the average value of these maximum
in-component size values can give us an estimate directly for the average of the maximum out-
component sizes. Thus, the HyperLogLog approach can reduce the algorithm’s space complexity
to O(n) and the time complexity to O(m) 3. As an advantage, the matrix algorithm using Hyper-
LogLog preserves the streaming aspect of the algorithm, assuming events to arrive in chronological
order. However, in turn, it does not provide the whole maximum out-component size distribution
but only an estimation for its mean value.

3.4 Component size distribution from reversed event sequence
By reversing time, we can easily obtain a solution to compute the whole maximum out-component
size distribution. But it comes at the expense of losing the streaming property of our algorithm,
as this solution takes as input, the whole interaction sequence in reversed order, processing it from
the end to the beginning. By reversing the order of the sequence of events, the in-components
become the out-component. In this case the component matrix algorithm does not fuse the rows
anymore but it has to be adjusted the fuse the columns instead.

Thanks to the reversal of the sequence of events, we can use the HyperLogLog counting method
to estimate the full distribution of the maximum out-component sizes at a lower cost.

More specifically, for every node, we initialise a HyperLogLog structure with constant size,
which contains only the node itself as previously. Then, for every event (ui, vi, ti), considered in
reverse chronological order, we merge the structures of ui and vi (corresponding to columns, i.e.,

3Remember, however, that the O(·) notation hides a constant, whose value results from a trade-off between cost
and precision for the HLL algorithm.
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Method Time cpx. Space cpx. Exact Stream OC P(|OC|).
EG + HLL O(m log(m) + η) O(m+ η) No No No Whole
SI process O(mn) O(n2) Yes No Yes Whole

Matrix O(mn) O(n2) Yes Yes Yes Whole
Matrix + HLL O(m) O(n) No Yes No Average

Matrix + reverse t O(mn) O(n2) Yes No Yes Whole
Matrix + reverse t + HLL O(m) O(n) No No No Whole

Matrix + hashing (//) O(mns) O(n2
sK) No Yes Yes Whole

Matrix + hashing O(mnsK) O(n2
s) No Yes Yes Whole

Table 1: Summary of methods used to compute the maximum out-component size distribution.
Time and space complexity depends on the number of nodes n and events m, and number of
edges η in the event graph (EG). Column entitled "Exact" indicates if the method provides exact
(Yes) or approximate (No) solution. The column called "Stream" indicates if the method can
stream events in chronological order. Column "OC" shows if the method can compute not only
the out-component sizes but the involved nodes as well. The column "P (|OC|)" shows if the whole
out-component distribution (Whole) or only its average (Average) can be computed. The hashing
framework is described in the next section, with ns number of super-nodes, K number of hashing
functions, and // indicating the possible parallelisable method. Note about the Matrix method:
its space complexity is in O(n2) but can be reduced to O(s̄n log n) where s̄ is the average size of
out-components in the case of sparse matrices.

to current estimates of out-components) in O(1) time. Finally, we approximate the size of the
maximum out-component of every node with their HyperLogLog estimates. This results in having
an approximation for the whole distribution of out-components’ sizes in O(n) space complexity,
O(m) time complexity, and scanning the events’ sequence only once. While this seems to be a very
efficient solution, the constants in the complexity evaluations are quite large in practice, setting
back the effective performance of this solution in some regimes of n and m, as we demonstrate in
the next section, while providing better results in others.

As a summary, the first part of Table 1 reports on the complexity and properties of the methods
described so far. The second part of the table also anticipates on the method to be described in
the next section.

3.5 Experimental validation
We perform several computational experiments to demonstrate the effectiveness of the component
matrix algorithm and to compare its performance to the corresponding EG based solution.

3.5.1 Experimental setting:

To test the performance of these algorithms we consider a simple model of temporal network.
We first generate a static undirected random graph G(n, p) using the Erdős-Rényi model with n
nodes and wiring probability p = 2/n. This way the constructed static graph will likely contain
a unique giant component. To generate a temporal network, we set an independent Poisson
process on each link [4] of this graph to determine the times when links are present and can
transmit information between connected nodes. This way, both the underlying structure and
the link dynamics are generated by random processes, that induce limited degree heterogeneity
(with an emerging Poisson degree distribution) [2] and no burstiness (with exponential inter-
event time distribution) [12]. In the simulated networks, the number of nodes n varies between
{100, 200, 500, 1000, 2000, 5000, 10000} and the number of events m logarithmically from 10 to
108. Note that while real temporal networks may exhibit several types of structural and temporal
heterogeneity, we assume they would not change considerably the conclusion of the performance
evaluation provided here.

For a fair comparison, both the EG based and the component matrix based methods were
used to solve the same task, that is to compute the largest maximum out-component size of a
temporal network. While the EG based method solves a larger problem first, i.e. estimating the
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out-component size of any node at any event, one can extract the maximum out-component size for
every node from its solution, simply by taking the size that corresponds to the first emergence of a
given node. The overall asymptotic memory and time complexity of this solution scales similarly
to the EG+HLL algorithm [4], as it is summarised in Table 1. Taking this model as reference, we
compare it with the performance of the proposed proposed method based on the exact component
matrix, as well as with its variant which uses HLL algorithms to obtain an approximation. In each
method using HLL, we tune s to obtain less than 1% error for the average component size. Note
that reversing time does not change neither the time nor the memory complexity of the component
matrix algorithm with or without HLL as summarised in Table 1.

a b

c d

Figure 3: Fraction of computational time (top row) and memory usage (bottom row) of the com-
ponent matrix methods divided by the ones of the EG+HLL method. Panels (a) and (c) depict
results for the exact component matrix method, while panels (b) and (d) are for its approximate
solution using HLL. All scales are logarithmic with colour blue indicating when the component
matrix method performs better (and red in the contrary case).

3.5.2 Results:

To compare the different methods, we report in Fig. 3 the ratio of computation times and of
memory usages between the compared algorithms. First, let us focus on the relative performance
of the component matrix method in Fig. 3 (a) and (c). Interestingly, results depicted in panel (a)
suggest that although this method provides an exact solution for the task, it performs always better
than the EG+HLL algorithm in terms of computation time. A similar scaling is true in terms of
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EG + HLL Matrix Matrix + HLL
Time (ms) 40.3 0.4 27.4

Memory (kB) 1 80 0.92
Time (s) 30172 700 811

Memory (MB) 200000 800 0.085

Table 2: Computation times and memory usage for the EG + HLL, Matrix and Matrix + HLL
methods for n = 100 and m = 100 (first and second line) and for for n = 104 and m = 108 (third
and fourth line).

memory complexity (panel (c)), although the large quadratic cost of the component matrix makes
this method to perform worst than the reference for small numbers of events or for large numbers
of nodes. Nevertheless, we can conclude that the component matrix method largely outperforms
the event graph method in terms of computational time and memory for large numbers of events,
especially with networks of smaller size, where the gain can reach several orders of magnitude.

Comparing the HLL variant of the component matrix algorithm with the reference EG+HLL
mode, show more variable performance. In terms of computational time (see panel (b) in Fig. 3),
although worse for small numbers of events and large networks, the performance of our method
is comparable to that of the exact method, for the other parameter values. However, regarding
memory consumption (see panel (d)), our method is much more efficient, as it does not have to
store the component matrix of size n2. For large network sizes the model requires approximately
the same memory size as the reference model, while it is doing significantly better for the rest of
the parameter space.

3.5.3 Advantages and limitations:

As stated before, a major advantage of the component matrix algorithm as compared to other
methods is its space complexity that does not depend on the number m of events in the temporal
network but scales as the square of its node set size n. Meanwhile, its time complexity scales only
linearly with m. This is especially suitable for data streaming scenarios when nodes and events
arrive in chronological order. Actually, adding a new node to the network requires only to add a
new row and column to the component matrix set as "False", except the diagonal element. As
for new events, insertion follows the update rule discussed earlier, as the algorithm operates in a
streaming manner. Furthermore, the component matrix method requires only one pass over the
event sequence. At any time step t when a new event appears, it only requires information about
the previous state of the component matrix Si−1 at time t−1 (or conversely in the case of reversed
time). On the other hand, the exact component matrix method scales poorly in space complexity
in terms of n, the number of nodes, as it operates on a n×n matrix. This shortcut can be addressed
by the HLL method to obtain approximate results. A sparse matrix implementation can also be
very beneficial to solve this problem, if the average out-component size is much smaller than n.
Otherwise, when it is comparable to n and the number of non-zero elements in the matrix is in
O(n2), even a sparse matrix solution would scale quadratically.

3.5.4 Reference point:

The figure above only gives the ratio between the computation times or the amount of memory
required for the computations. We provide in Table 2 some reference points for the real values for
each method. The smallest temporal network on Fig. 3 is for n = 100 and m = 100. The largest
temporal network in Fig. 3 is for n = 104 and m = 108. The associated computation times and
memory usages are reported in Table 2.

4 Hashing the temporal network
Hashing the temporal network consists in reducing its number of nodes, thus compressing it, by
(randomly) assigning nodes of the initial temporal network to "super-nodes" of a hashed graph. An
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event, or an interaction, between two nodes at time t in the initial temporal network becomes a new
event between their hashed representatives in the hashed graph at time t. Reducing the number
of nodes is notably attractive because this reduces the complexity of various different algorithms
including the computation of the component matrix, even though this may cause information loss
about the initial graph. To balance this effect, we propose to use several different hashing functions
and to fuse the obtained results together. The overall framework is shown in Fig. 4.

Temporal network
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Figure 4: From a 5 nodes temporal network, several hashed version are computed with 3 nodes
each. Then, every hashed graph can be used to compute a small component matrix thanks to
our matrix algorithm. Finally, the different component matrices can be fused to compute an
approximate solution of the component matrix of the initial temporal network.

4.1 Hashing functions
To reduce the number of nodes of the static graph underlying the input temporal graph (in short:
"the input static graph"), and therefore the computation complexity of the out-component size
distribution, we use hashing functions. These functions take as input a set of labels of n nodes,
{1, ..., n} = [n], and hash them into ns super-nodes {1, ..., ns} = [ns]. The labels are the nodes of
the input static graph and the buckets are the super-nodes of the resulting hashed static graph.
Since ns < n, some nodes will collide into the same super-node, reducing the overall cost of
computation over the hashed temporal network associated to the hashed static graph, but reducing
also the amount of available information.

We use k-universal (randomised) hashing functions [21]. A class H of random functions is
k-universal if ∀x1, ..., xk ∈ [n],∀v1, ..., vk ∈ [ns],

Pr{h(xi) = vi,∀i ∈ [k]} = 1/nk
s (2)

where the probability is on the draw of h. Qualitatively, this means that, the probability that one
node of the initial graph is assigned to the same super-node by two different hashing functions is
low and controlled by the choice of k.

In our work, we use k = 4 and the hashing functions are based on a large prime number:
Prime = 261 − 1. First, let us define the table A of size (3, order), where order is an order
parameter, as:

∀i ∈ {0, 1, 2},∀j ∈ [order], A(i, j) = ((rand(231 − 1)≪ 32) + rand(231 − 1))%Prime (3)

where ≪ 32 denotes the shift of the binary representation 32 bits to the left.
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The number acc is computed recursively order − 1 times thanks to:

acc(i, u) = MultAddMod(u, acc(i, u), A(i, j))%Prime (4)

where j ∈ {1, ..., order}, MultAddMod is a function defined in the paper and initially, acc(i, u) =
A(i, 0).

Then, T0, T1, T2 are tables of size ns that are defined as:

∀u ∈ [ns], Ti[u] = acc(i, u) (5)

Furthermore, for every node, we define three quantities x0, x1, x2 as ∀u ∈ [n], x0(u) = low(u), x1(u) =
high(u), x2(u) = x0(u)+x1(u) where low(u) outputs the 32 rightmost bits of the binary represen-
tation of u and high(u) outputs the 32 leftmost bits. Finally,

∀u ∈ [n], h(u) = T0(x0(u)) ⋆ T1(x1(u)) ⋆ T2(x2(u)) (6)

where ⋆ is the bitwise exclusive OR.
The hashed static graph is made of super-nodes defined by the output of a hash function and

of "super"-edges connecting them: if u and v are connected in the initial static graph, then the
super-nodes h(u) and h(v) become connected by a super-edge, whose weight is binary. Finally, for
every event (u, v, t), a super-event is defined as (h(u), h(v), t).

4.2 Fusion to compute the distribution of out-components
The main goal of our work is to compute the out-component, or its size, of every node in the input
temporal network with lower complexity than existing methods reported in Table 1. To do so, we
hash the set of n nodes of the input temporal network into ns super-nodes with K different hash
functions hj .

∀i ∈ [n] ∀j ∈ [K], hj(ui) ∈ [ns] (7)

These hashing functions are drawn independently at random.
Here, the hashing functions hj ,∀j ∈ [K] are not injective thus not invertible: there are usually

several nodes mapped to the same super-node. We define the inverse of h as the function that,
given a super-node of the hashed static graph, computes the set of corresponding nodes in the
initial static graph:

∀v ∈ [ns], h−1(v) = {u ∈ [n]/h(u) = v} (8)

Denote OC(u) (resp. OC(h(u))) the out-component of node u (resp. super-node v = h(u)).
Assuming we can compute (an estimate of) the out component OC(v) of a super-node v in the
hashed graph obtained with hashing function hj , we can also define

h−1
j (OC(v)) =

⋃
x∈OC(v)

h−1(x) (9)

Instead of estimating the out-component for each of the n nodes in the temporal network,
we first hash the network into K hashed graphs of ns nodes and m events, then estimate the
out-component for every node in the hashed graphs and finally aggregate the information by
intersecting the (estimated) out-components given by each hashed graph. We then define

∀i ∈ [n], ÔC(ui) =
⋂

j∈[K]

h−1
j (OC(hj(ui))). (10)

The estimated out-component necessarily contains the true out-component, i.e. OC(ui) ⊆
ÔC(ui), yet if K is too small the set ÔC(ui) may be much larger than the true out-component.
Computing |ÔC(ui)|, where |A| is the number of elements of a set A, one can compute an approxi-
mation of the distribution of the out-components’ sizes with any of the aforementioned algorithm
that is able to compute the out-components (and not only their sizes) on the hashed graphs. We
compare the resulting approximate distribution with the true distribution.
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4.3 Properties of the algorithm
The structure of the resulting algorithm ensures that every step before the final fusion remains
compatible with streamed events arriving in chronological order, and is also amenable to paral-
lel/independent computations for each hashing function.

Moreover, the complexity of the framework depends on the setup. In a parallel setting, i.e.
when the S(k)

i are computed separately, we need O(K×n2
s) space to store the matrices and O(mns)

time to compute the small component matrices. In a non-parallel setting, we need O(K × n2
s) to

store the small matrices and O(Kmns) time to compute them.

4.4 Experimental evaluation
The compression framework that we propose can be used with several observables. Here, we
focused on the computation of the out-components. The whole distribution of the size of the
out-components describes the largest spreading phenomena possible starting from every node.
The other quantity we are interested in is the tail of the distribution, i.e. the set of nodes with
largest out-component’ size. To experimentally prove the effectiveness of our work, we measure the
precision of the approximate method with respect to the ground-truth for both the distribution
and its tail.

4.4.1 Experimental setting:

For simulations, temporal networks are generated exactly as in the previous Section, see 3.4. In
the generated data, the number of nodes, n, varies between {100, 200, 500, 1000, 2000, 5000, 10000}
and the number of events varies between 104 to 109 as powers of 10. The number of super-nodes
is always a fraction of the number of nodes: ns = 0.3× n and the number of hashing functions is
K = 5.

The baseline algorithm is our matrix method from the previous section since it provides the
exact distribution of the size of the out-components, with a controlled memory and time complexity.
The results will compare the hashing version to this baseline.

In addition, some experiments have been conducted on real-world datasets freely available in
Snap. The "Superuser" temporal network is a network of interactions on the stack exchange web
site Super User. There are three kinds of interactions (edges): a user (node) answered a question
of someone else, a user commented a question or a user commented an answer. The Superuser
network is made of 194 085 nodes and 1 443 339 events. The "Reddit" dataset is a temporal network
of connections between subreddits (i.e., forum dedicated to a specific topic on the website Reddit),
taken here as nodes. There is an event between two subreddits when there is a post from a source
subreddit that links to a target subreddit. The Reddit temporal network has 35 776 nodes and
286 560 events.

For real datasets, we split chronologically the events in 10 equal parts and compute the dis-
tribution of the largest out-component on {10%, 20%, ..., 100%} of the events. As for generated
datasets, we use ns = 0.3 × n. We also use K = 1 and K = 5. The baseline is still the matrix
algorithm of the previous section.

4.4.2 Performance criteria:

We evaluate the hashing framework based on three criteria: time, memory and accuracy. We
compare the time required by the matrix algorithm to compute the true distribution of the largest
out-components, D with the one required by the hashing framework to compute the approximate
distribution of the largest out-components Ds. The computation time of the hashing framework
includes both the computation of the hashed matrices and their fusion.

We also compare the memory usage of the matrix algorithm, with a single big matrix, with the
one of the hashing framework, with several smaller matrices.

Furthermore, to compare the ground-truth out-component’ size distribution D and the one
computed thanks to the hashing framework Ds(ns,K), we simply use the Earth-Mover distance,
also called Wasserstein distance [6], computed thanks to the Python Optimal Transport library
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[10], but any distance between two distributions could be used. We also tried to use the Kullback-
Leibler divergence but it was less sensitive to subtle differences between the distributions. Thus
we can define accuracy of the out-component size distribution inference as:

Acc(ns,K) = γ(D,Ds(ns,K)) (11)

where γ is the Earth-Mover distance. The lower Acc(ns,K), the closest are the two distributions.

b ca

Figure 5: a) Relative time and b) relative memory usage for the computation of the distribution of
the largest out-components compared to the ground-truth given by the matrix method on synthetic
data. c) Accuracy of the hashing framework given by the Earth-Mover distance.

4.4.3 Results

First, we present the result for the generated data. The relative computation time, relative memory
usage and accuracy of the hashing framework are reported in Fig. 5. The relative computation
time figure is red meaning that the hashing framework requires more time than the matrix method
to compute the target distribution. However, we can clearly see that the relative computation time
decreases quickly with the number of events and slowly with the number of nodes. Generally, for
datasets with more events than m = 108, the hashing framework with K = 5 and ns = 0.3 × n
requires less time than the full matrix method.

For the relative memory usage, the figure is blue meaning that we always gain memory. In fact,
in this setup, only half the memory of the matrix method is required for the hashing framework.
As for the Earth-Mover distance, there is a regime for small datasets where the accuracy is not

Figure 6: Relative computation time and relative memory usage for the Reddit and Superuser
datasets to compute the distribution of the largest out-components thanks to the hashing frame-
work compared to the matrix method depending on the number of nodes n.
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Figure 7: Relative computation time and relative memory usage for the Reddit and Superuser
datasets to compute the distribution of the largest out-components thanks to the hashing frame-
work compared to the matrix method depending on the number of events m.

satisfactory but for the large majority of the generated datasets, the hashing framework performs
very well.

For the real datasets, we first show the results of the relative computation time and the relative
memory usage of the hashing framework compared to the matrix method in Fig. 6. Experimentally,
we show that the hashing framework generally requires more time to compute the target distri-
bution. Moreover, the relative computation time is linear with the number of hashing functions.
That is, for K = 5, that time is approximately 5 times higher than for K = 1 for both the Reddit
dataset and the Superuser dataset. Overall, the general shape of the curves is in line with the
results of generated data. For example, the relative computation time for the third point of the
Reddit dataset, n = 15370 and m = 85968, is 198, which coincide with the corresponding value of
the generated datasets. Overall, the relative computation time decreases as the number of nodes
increases, as expected.

Then, the memory required for the computation is linear with the number of hashing functions.
We clearly see that, for K = 5, the memory usage is 5 times more than the one for K = 1. The
figures for real datasets are also in line with the figures for generated datasets. Obviously, with
K = 1 and ns = 0.3×n, the computation requires less memory than with the full matrix algorithm
for both real datasets by a factor 10. But, more importantly, with K = 5 and ns = 0.3 × n, the
hashing framework still requires only around 50% of the memory of the matrix method.

Finally, we report the accuracy of the hashing framework compared to the matrix method in
terms of the Earth-Mover distance between the true distribution computed by the matrix method
and the one estimated by the hashing method in Fig. 8. Indeed, the quality of the results is
important to assess the quality of the hashing framework. For both datasets, lower dimensions
lead to lower accuracy of the framework. We see that the first few points, corresponding to
networks of small sizes, have a significantly higher Earth-Mover distance (thus, lower accuracy)
than the remaining ones. Overall, the shape of the curves still confirms the results with the
generated datasets: the larger the network, the better the approximation. Secondly, as expected,
the distance is lower for higher values of K. The accuracy of the method increases as there are
more hashing functions.

Thus overall we can conclude that hashing is relevant in high dimension. There is a computation
time gain for m ≥ 109 in the generated datasets while memory usage remains lower and accuracy
is good. Also, increasing the number of hashes leads to a linear increase in the memory usage and
a linear increase in the computation time. Obviously, this increases the accuracy of the method.

5 Conclusion
The continuous growth in the size of data bases requires new algorithms to process information.
Moreover, structured data evolving over time represents an important challenge since it differs a lot
from usual tabular data. To that end, we proposed a matrix algorithm that is able to compute both
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Figure 8: Accuracy for the Reddit dataset and the Superuser dataset to compute the distribution
of the largest out-components thanks to the hashing framework compared to the matrix method.

the out-components for every node of a temporal network and their sizes. Furthermore, to reduce
the complexity of the analysis, we proposed a compression scheme based on hashing function that
reduces the number of nodes of the network at the cost of some uncertainty. Uncertainty is lifted
thanks to the use of several hashes in parallel. On each hashed graph, the matrix algorithm can be
computed and, finally, all the information is merged to approximate the component matrix of the
input network. Our framework is online and allows parallelization. Indeed, new nodes and news
events can be processed as they come. Moreover, the different hashed graphs allow parallelization
since they are independent. Additionally, hashing can make the computation private. If we do
not observe the temporal network directly but only hashed versions of it and if hashes have some
external randomness, our framework allows ϵ-differential privacy [8]. We believe that our work
has a lot of potential applications. The first concrete user case is to use out-component sizes as
the maximum number of nodes reachable during a spreading process. For example, it can be the
maximum number of people infected by a virus from a single source. Or, on Twitter, it can be the
maximum number of people a piece of news spread to. Secondly, our framework can be extended to
other cases. In our work, we focused on out-components but we believe that many other quantities
can be computed thanks to our compression scheme such as pairwise distances between nodes. Also,
we believe that the hashing framework can be rewritten with an algebraic formulation. This would
open up the work to linear problems and linear solvers. In fact, the reconstruction of the matrix
could be tackled in many different ways making the framework more flexible. Moreover, privacy
preserving algorithms are particularly interesting for security or privacy reasons. The work we
propose can efficiently make algorithms on temporal networks private. Indeed, adding randomness
in the data can lead to prevent the identification of the source of the data. Most importantly, our
hashing framework transforms a temporal network into a series of smaller datasets that can be
used to infer properties of the initial dataset without direct access to it. This can be very beneficial
in the processing of sensitive information.
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