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Virtual Holonomic Constraints for Euler-Lagrange systems under
sampling

Mohamed Elobaid1,2, Mattia Mattioni1, Salvatore Monaco1 and Dorothée Normand-Cyrot2

Abstract— In this paper, we consider the problem of imposing
Virtual Holonomic Constraints to mechanical systems in Euler-
Lagrangian form under sampling. An exact solution based on
multi-rate sampling of order two over each input channel is
described. The results are applied to orbital stabilization of the
pendubot with illustrative simulations.

Index Terms— Sampled data control, Feedback linearization,
Algebraic/geometric methods.

I. INTRODUCTION

Most control problem rely upon the design of feedback
laws asymptotically zeroing a given function of the state as,
for instance, orbital or set-point stabilization, motion plan-
ning, tracking, path following, to cite a few [1]–[5]. When
dealing with mechanical systems, such a function writes
h(q) = 0, with generalized coordinates q, and is generally re-
ferred to as Virtual Holonomic Constraints (VHCs, [6]–[9]).
Stabilization of VHCs unavoidably requires to asymptotically
drive the trajectories of the system onto a sub-manifold
associated to the zero-level set of the function. Accordingly,
the problem can be recast into a zero-dynamics perspective:
setting the function as a dummy output for the dynamics,
one must define a feedback making the corresponding zero-
dynamics (and the zero-dynamics submanifold) invariant and
attractive. With this in mind, it has been proved in [8] that
the VHC is stabilizable if and only if the system possesses
a well-defined vector relative degree r = (2, . . . , 2) with re-
spect to the associated dummy output function. Accordingly,
under suitable hypothesis, the feedback imposing the VHC is
the one rendering the corresponding zero-dynamics attractive
and invariant (e.g., input-output feedback linearization) while
preserving boundedness of the whole system trajectories.

All of this essentially concerns continuous-time systems
despite the practical interest to treat mechanical systems
under sampling when the control is piecewise constant and
the state or output measures are sampled [10]. In this context,
it is well known that the relative degree falls to one under
single-rate sampling with the rising of an unstable sampling
zero dynamics making the corresponding sampled-data sys-
tem non-minimum phase in general [11], [12]. Accordingly,
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when dealing with stabilization of VHCs, single-rate sam-
pling and, in particular, mere emulation control cannot be
employed as the necessary relative degree condition is lost.
This motivates the present paper whose contribution stands
in providing control strategies ensuring the preservation of
VHCs for mechanical systems under sampling. Based on
the work in [13], it is shown that VHCs can be imposed
under sampling according to a multi-rate device of suitably
defined order. The proof is constructive and the feedback
is shown to be the solution to a nonlinear implicit equality
parameterized by δ, the sampling period, naturally recovering
the continuous-time counterpart as δ → 0. Despite exact
forms are hard to be computed in practice, approximate
feedback laws computed as approximate solutions to the
associated equalities are naturally defined and implemented
in practice with notably improved performances with respect
to standard emulation controllers [14], [15]. The results are
applied to orbital stabilization of the pendubot [8], [16] and
based on the VHC associated to the preliminary continuous-
time I&I design recently proposed in [17].

The rest of the paper is organized as follows. In Section
II, the problem is formally formulated with preliminaries on
VHCs for continuous-time mechanical systems and sampled-
data dynamics. The main result in Section III with the
simulated example of the pendubot in Section IV. Section
V concludes the paper with some perspectives.

Notations. R and N denote the set of real and natural
numbers including 0. For any vector z ∈ Rn, ‖z‖ and z>

define respectively the norm and transpose of z. Given a full
rank matrix B ∈ Rn×m with n > m, B† = (B>B)−1B>

denotes the pseudoinverse, while B⊥ its orthogonal comple-
ment verifying B⊥B = 0. Also, ker{B} denotes the null
space of B. Given two matrices of any dimension, A ⊗ B
denotes the Kronecker product. 1n ∈ Rn is the vector with
all unitary entries while 0 denotes the zero matrix of suitable
dimensions. diag{a1, . . . , an} ∈ Rn×n denotes the diagonal
matrix with ai ∈ R the coefficients on the main diagonal
for i = 1, . . . , n. x = col{a1, . . . , an} ∈ Rn1+···+nn denotes
the column vector with entries provided by ai ∈ Rni of
suitable dimensions. If (X , d) is a metric space, Γ ⊂ X and
x ∈ X , then ‖x‖Γ = infy∈Γ d(x, y) defines the point-to-set
distance of x to Γ. I and Id denote the identity matrix and
Identity operator (or function, depending on the context) of
suitable dimensions, respectively. Given a twice continuously
differentiable function S(·) : Rn → R, ∇S(·) represents its
gradient (column) vector while ∇2S(·) is its Hessian matrix.
Given a n-dimensional vector field f(x) with x ∈ Rn,



Lf =
∑n
i=1

∂
∂xi

denotes the Lie derivative operator, and
recursively, Lif = Lf ◦ Li−1

f with L0
f = Id. For δ > 0,

eδLf = Id +
∑
i>0

δi

i! Lif denotes the Lie exponential. Given
a smooth function H : Rn → R by the Exchange Theorem
H(eδLfx) = eδLfH(x) = H(x) +

∑
i>0

δi

i! LifH(x). A
function R(x, δ) = O(δp) is said of order δp, p ≥ 1
if whenever it is defined it can be written as R(x, δ) =
δp−1R̃(x, δ) and there exist a function θ ∈ K∞ and δ∗ > 0
s. t. ∀δ ≤ δ∗, |R̃(x, δ)| ≤ θ(δ).

II. PRELIMINARIES AND PROBLEM STATEMENT

In the sequel, we consider Euler-Lagrange systems of the
form

D(q)q̈ + C(q, q̇)q̇ +∇P (q) = B(q)u (1)

with n-dimensional generalized coordinates q ∈ Q, Q ⊂ Rn
the configuration space, input torque u ∈ Rm with m =
n − 1, D(q) = D>(q) � 0 the generalized inertia matrix,
C(q, q̇)q̇ representing the Coriolis and centrifugal forces,
P (q) the potential energy function, B(q) of rank m = n−1
and

L(q, q̇) =
1

2
q̇>D(q)q̇ + P (q)

being the Lagrangian verifying

L̇(q, q̇) = q̇>B>(q)u.

A. VHCs for EL systems in continuous time

As formalized in [8], a virtual holonomic constraint (VHC)
for a mechanical system (1) is a relation of the form h(q) = 0
which can be made invariant under feedback. In this sense,
the following formal definition is recalled.

Definition 2.1: A virtual holonomic constraint is a relation
h(q) = 0 where h : Q → Rm is smooth, rank(dh) = m for
all q ∈ h−1(0) and the constraint manifold

Γ = {(q, q̇) : h(q) = 0, dh(q)q̇ = 0} (2)

is controlled invariant. A VHC is stabilizable if there exists
a smooth feedback u(q, q̇) that asymptotically stabilizes1 Γ.

In the following, it is assumed that m = n− 1 so that the
configuration variable can be regrouped, with a slight abuse
of notation, as q = col{qa, qu} ∈ Rn−1×R so that the VHC
can be described in parametric form as

qa = ϕ(qu), h(q) = qa − ϕ(qu)

with hence h−1(0) a closed curve. The definition of regu-
lar VHC is recalled below as fundamental to characterize
asymptotically stabilizable VHS [8]2

Definition 2.2 ( [8]): Consider a smooth relation h : Q →
Rm and rank(dh) = m for all q ∈ h−1(0). The relation
h(q) = 0 is said to be a regular VHC of order m > 0

1In the sense of [9, Definition 3]
2Necessary and sufficient conditions for the relation h(q) = 0 to be a

regular VHC are given in [8].

for the system (1) if it possesses relative degree {2, . . . , 2}
everywhere on the constrained manifold (2); i.e., the matrix

U(q) = dh(q)D−1(q)B(q) (3)

has full rank for all q ∈ h−1(0).

By Definition 2.1, the constraint manifold (2) is the zero-
dynamics manifold corresponding to the output e = h(q)
so that the reduced dynamics coincides with the zero-
dynamics. As a consequence, Γ is asymptotically stabilized
via feedback linearization under mild hypotheses on the maps
h(q),dh(q)q̇ as recalled in the result below.

Proposition 2.1: Let h(q) = 0 be a regular VHC of order
n− 1 for (1) with constraint manifold Γ in (2). Let

H(q, q̇) =

(
h(q)

dh(q)q̇

)
(4)

and assume there exist functions α1, α2 ∈ K such that

α1(‖(q, q̇)‖Γ) ≤ ‖H(q, q̇)‖ ≤ α2(‖(q, q̇)‖Γ).

Then, the input-output linearizing controller

u(q, q̇) =U−1(q)
(

dh(q)D−1(q)
(
C(q, q̇)q̇ +∇P (q)

)
−H(q, q̇)− κpe− κdė

) (5)

with decoupling matrix U(q) as in (3),
h(q) = col{h1(q), . . . , hn−1(q)}, H(q, q̇) =
col{q̇>∇2h1(q)q̇, . . . , q̇>∇2hn−1(q)q̇}, makes Γ in (2)
asymptotically stable for all κp, κd ∈ R(n−1)×(n−1)

rendering the matrix below Hurwitz

A(κp, κd) =

(
0 In−1

−κp −κd

)
. (6)

B. Problem statement and motivations

From the result recalled in the previous section, imposing
VHC generally corresponds to making Γ the zero-dynamics
manifold of the dynamics, with a stable zero dynamics.
Accordingly, a VHS can be imposed under a continuous-time
control if it is regular in the sense of Definition 2.2. However,
what does it occur if the control is of sampled-data type, that
is a piecewise constant signal based on sampled measures
of the configuration variables q, q̇? More in detail, denoting
by δ > 0 the sampling period, we address the following
problem.

VHCs under digital control. Consider the mechanical
dynamics (1) and a regular VHC h(q) = 0 in the sense of
Definition 2.2 with constraint manifold Γ in (2). Let δ > 0
be the sampling period and qk := q(kδ), q̇k = q̇(kδ) for
all k ≥ 0. Design, if any, a piecewise constant control
uk = uδ(qk, q̇k), enforcing the VHC h(q) = 0, while
asymptotically stabilizing the constraint manifold Γ. �

More in detail, setting u(t) = uk for t ∈ [kδ, (k + 1)δ),
x = col{q, q̇} and xk = x(kδ) for all k ≥ 0, (1) is described
by the so-called sampled-data equivalent model [18]

xk+1 = F δ(xk, uk) (7)



with

F δ(x, u) = eδLf(x)+G(x)ux = x+
∑
i>0

δi

i!
Lif(x)+G(x)ux

f(x) =

(
q̇

−D−1(q)
(
C(q, q̇)q̇ +∇P (q)

))

G(x) =

(
0

D−1(q)B(q)

)
.

It is convenient to rewrite (7) in block-component-wise as

qk+1 =F δq (qk, q̇k, uk)

q̇k+1 =F δq̇ (qk, q̇k, uk)

with, by definition

F δq (q, q̇, u) =q +

∫ δ

0

F sq̇ (q, q̇, u)ds.

Accordingly, the definition of relative degree for discrete-
time systems is recalled here below from [19].

Definition 2.3 (Discrete-time vector relative degree): A
discrete-time system

xk+1 =F (xk, uk)

y1
k =h1(xk), . . . , ymk = hm(xk)

with x ∈ Rn, u ∈ Rm, yi ∈ R for i = 1, . . . ,m, is said
to possess vector relative degree r = (r1, . . . , rm) ∈ Rm at
x◦ ∈ Rn if the following holds:
• for all i = 1, . . . ,m, ` = 1, . . . , ri − 1

∂

∂u
hi(F

`−1
0 (F (x, u)) = 0,

∂

∂u
hi(F

ri−1
0 (F (x, u)) 6= 0;

• the decoupling matrix

Ud(x, u) =


∂
∂uh1(F r1−1

0 (F (x, u)))
...

∂
∂uhm(F rm−1

0 (F (x, u)))


is non-singular at x = x◦, u = 0.

It is well-known that under sampling the relative degree
is not preserved [12]. As a matter of fact, let us consider
the output map e = h(q) with h(q) = 0 a regular VHC in
the sense of Definition 2.2. By Definition 2.3, one computes
for the sampled-data model (7) the discrete-time decoupling
matrix

1

δ2
Ud(x, u) = dh(q)D−1(q)B(q) +O(δ)

that is non-singular in Γ by non-singularity of the
continuous-time one in (3). Thus, h(q) is no longer a regular
VHC for (7) as it possesses a discrete vector relative degree
(1, . . . , 1) ∈ Rn−1 with respect to the output e = h(q)
with a zero-dynamics sub-manifold Zδ of dimension n and
corresponding to a generally unstable reduced dynamics (due
to the rise of the so-called sampled-data zero dynamics [12]).
In addition, h(q) = 0 is not a VHC for (7) in the weaker
sense of Definition 2.1 as control invariance of Γ is lost under
sampling and thus its stabilizability via piecewise constant

control. As a particular case, it is naturally deduced that
standard emulation of the continuous-time feedback (5) via
sampling and hold devices (i.e., setting uk = u(qk, q̇k)) fails
into imposing h(q) = 0.

Remark 2.1: The characterization of the properties and
structure of the reduced dynamics (i.e., the scalar dynamics
governing (1) over Γ) under sampling is not addressed here.
As a matter of fact, such a characterization relies upon
sampled-data Lagrangian structures as particular classes of
discrete-time Hamiltonian structures as proposed in [20].

III. MAIN RESULT

The proposed solution, relying upon the results in [13],
ensures that regularity of the VHC is preserved under multi-
rate sampling of order (2, . . . , 2) ∈ Rn−1 (i.e., of the
same order 2 over each input channel). Namely, we assume
the control piecewise constant over the sub-interval of the
sampling period of length δ̄ = δ

2 ; namely, uik = u(kδ +
(i− 1)δ̄) ∈ Rn−1 for i = 1, 2 with the multi-rate equivalent
model of (1)

xk+1 =F δ̄2 (xk, uk) (8)

with u = col{u1, u2} ∈ R2(n−1) and

F δ̄2 (x, u) =F δ(·, u2) ◦ F δ̄(x, u1)

=eδLf+Gu1 ◦ eδLf+Gu2x.

At this point, the following main result can be proved.

Theorem 3.1: Let h(q) = 0 be a regular VHC of order
n − 1 for (1) under the hypotheses of Proposition 2.1 and
constraint manifold Γ in (2). Then, h(q) = 0 is a stabilizable
regular VHC of order n− 1 under multi-rate digital control
of order 2; equivalently, it is a regular VHC of order n− 1
for the sampled-data equivalent model (8).

Proof: For showing the result, one must show that
the extended output (4) possesses vector relative degree
(1, 1, . . . , 1, 1) ∈ R2(n−1) everywhere on the constraint
manifold Γ in (2). By Definition 2.3, one gets that the
discrete-time decoupling matrix associated to (8) with the
extended output (4) is given by

Uδd (q, u) = ∆⊗ dh(q)D−1(q)B(q) +O(δ)

with

∆ =

(
3
2

1
2

1 1

)
.

The matrix above is invertible everywhere on Γ because U(q)
in (3) is such by assumption and ∆ is non singular.

In the next result, the sampled-data control law enforcing
the VHC h(q) = 0 is proved to exist in a constructive way
starting from the continuous-time solution.

Proposition 3.1: Let h(q) = 0 be a regular VHC of order
n − 1 for (1) under the hypotheses of Proposition 2.1 and
constraint manifold Γ in (2). Let (8) be the sampled-data
equivalent model of order 2 with extended output H(x) =
H(q, q̇) in (4). Then, the following holds true.



(i) The implicit equality

H(F δ̄2 (x, u)) = Aδ(κp, κd)H(x) (9)

with, for A(κp, κd) as in (6),

Aδ(κp, κd) =eδA(κp,κd) (10)

admits a unique solution u = uδ̄(x) in the form of a
series expansion in powers of δ around the continuous-
time one in (5); namely, one gets

uδ̄(x) = 12 ⊗ u(x) +
∑
`>0

δ̄`

(`+ 1)!
u`(x). (11)

(ii) The feedback u = uδ̄(x) solution to (9) enforces the
VHC h(q) = 0 that is, it makes Γ in (2) asymptotically
stable.
Proof: The feedback solution to (9) is the one ensur-

ing input-output linearization with respect to the extended
mapping H(x). Accordingly, the proof of (i) follows from
Theorem 3.1 and by the Implicit Function Theorem along
the lines of [13]. As far as (ii) is concerned, by construction
of the matrix (6), Aδ(κp, κd) in (10) is asymptotically stable
(in the discrete-time sense3) and H(xk) → 0 as k → ∞
ensuring that the trajectories asymptotically converge to Γ
so getting the result.

Remark 3.1: The constraining feedback is given by the
solution of the implicit equality (9) ensuring I/O lineariza-
tion under sampling with, moreover, output matching of
the continuous-time output trajectories under the feedback
(5). We underline that such a choice is made to allow, as
developed in the next section, comparison with respect to
the nominal continuous-time behavior. More general assign-
ments of the output linear dynamics are possible for the
closed-loop sampled-data equivalent model. In general, one
can compute the feedback so to assign a desired LTI discrete-
time equivalent dynamics of the form

H(F δ̄2 (x, u)) = (Aδ +BδF δ)H(x)

with

A0 =

(
0 1
0 0

)
, B0 =

(
0
1

)
Aδ =eA0δ ⊗ In−1, Bδ0 =

∫ δ

0

eA0sdsB0

Bδ =
(
A
δ
2B

δ
2
0 B

δ
2
0

)
⊗ In−1

and F δ any feedback gain ensuring asymptotic stability of
the closed loop.

Remark 3.2: The (invariant and attractive) zero-dynamics
(i.e., the reduced dynamics over Γ) of the closed-loop
sampled-data system under the feedback solution to (9) pre-
serves the same stability and boundedness properties as the
continuous-time counterpart, at least in first approximation
[12]. Accordingly, nothing can be concluded on the possible
preservation of the sampled-data Lagrangian structure.

3i.e., all the eigenvalues are in the open unit circle.

Although closed forms to (9) are hard to compute, all
terms of the series expansion (5) can be deduced via an
iterative and constructive procedure: first, one substitutes (11)
into (9) and then equates all terms with the same power of δ;
each term u`(x) is the solution to a linear equality depending
on x and the previous terms u`−1(x), . . . , u0(x). For the first
term, one gets

u1(x) =
1

3

(
1
5

)
⊗ u̇(x), u̇(x) = Lf+Gu(x)u(x).

Accordingly, only controllers computed as truncations of
the series expansion (11) at all desired order β ≥ 0 are
implementable in practice; namely, the βth-order approximate
feedback law is defined by

uδ̄[β](x) = 12 ⊗ u(x) +

β∑
`=1

δ̄`

(`+ 1)!
u`(x) (12)

with δ̄ = δ
2 so recovering for β = 0 the usual emulation-

based control [15]. The stabilizing properties under such
feedback laws are guaranteed only in a practical sense with
h(q) converging to a ball containing the origin with radius
in O(δβ+1) [18, Theorem 5.1].

IV. DIGITAL ORBITAL STABILIZATION OF THE PENDUBOT

Consider the dynamics of a pendulum robot (Pendubot) in
Figure 1 in the form (1) with n = 2 and [8], [17], [21]

D(q) :=

(
duu(qu) dua(qu)
dua(qu) daa(qu)

)
, C(q, q̇)q̇ =

(
cu(q, q̇)
ca(q, q̇)

)
q̇

∇P (q) =

(
∇Pa(q)
∇Pu(q)

)
where

duu(qu) =m2`
2
c2 + I2

dua(qu) =m2`
2
c2 + I2 +m2`1`c2 cos qu

dau(qu) =m2`
2
c2 + I2 +m2`1`c2 cos qu

daa(qu) =m1`
2
c1 +m2`

2
1 + I1 +m2`

2
c2 + I2

+ 2m2`1`c2 cos qu

cu(q, q̇)q̇ =(m2`1`c2 sin qu)q̇a

ca(q, q̇)q̇ =(m2`1`c2 sin qu)q̇a − 2(m2`1`c2 sin qu)q̇u

∇Pa(q) =m2`c2gr sin(qa + qu)

∇Pu(q) =(m1`c1 +m2`c2)gr sin qa

+m2`c2gr sin(qa + qu)

mi, Ii, `i, `ci, gr being the mass, inertia, length and length
to center of mass for link i = 1, 2 and the gravity constant
respectively.

Following [8], [17], the design goal stands in the gener-
ation of non-trivial stable oscillations of the underactuated
link under a sampled-data feedback. This corresponds to
stabilizing the regular VHC

h(q) = qa + κqu (13)

with κ ∈ R [17] and, equivalently, the set

Γ = {(q, q̇) : qa − κqu = 0, q̇a − κq̇u = 0}. (14)



Fig. 1. The pendubot robot

Following Proposition 2.1, the stabilizing continuous-time
control is provided by (5) which is specified as

u =ca(q, q̇)q̇ +∇Pa(q) + γ1(qu)(cu(q, q̇)q̇ +∇Pu(q)

− γ2(qu)
(
κph(q) + κdḣ(q)− cu(q, q̇)q̇ +∇Pu(q)

)
with

γ1(qu) =
dau(qu)

duu(qu)

γ2(qu) =
daa(qu)

(m2`2c2 + I2)(daa(qu)− κdau(qu))
.

As far as the sampled-data solution is concerned, follow-
ing Proposition 3.1 the problem is solved under multi-rate
control of order r = 2 with uk = (u1

k u2
k)>, uik =

u(kδ + (i− 1)δ̄, δ̄ = δ
2 and i = 1, 2 as in Section III.

Applying Proposition 3.1, the feedback takes the form of
the series expansion (11) with the first term specified by

u1(q, q̇) =
(

1
3

5
3

)>
u̇(q, q̇)

u̇(q, q̇) = ċa(q, q̇)q̇ + ca(q, q̇)q̈ +∇2Pa(q)q̇

+ (γ̇1(qu) + γ̇2(qu))cu(q, q̇)q̇

+ (γ1(qu) + γ2(qu))ċu(q, q̇)q̇

+ (γ1(qu) + γ2(qu))cu(q, q̇)q̈

+ (γ1(qu)− γ2(qu))∇2Pu(q)q̇

+ (γ̇1(qu)− γ̇2(qu))∇Pu(q)

− (γ1(qu)− γ2(qu))
(
κpḣ(q) + κdḧ(q)

)
− (γ̇1(qu)− γ̇2(qu))

(
κph(q) + κdḣ(q)

)
We are now in position to compare the stabilization proper-
ties of the obtained sampled-data feedback, approximated at
the first order, against that of emulation, i.e. when consider-
ing the 0thorder approximation in (12).

Simulations

To validate the approach proposed, simulations of the con-
trolled pendubot are performed with the parameters reported
in the table below.

m1 [kg] 0.2 m2 [kg] 0.052
I1 [kgm2] 3.38× 10−1 I2 [kgm2] 1.17× 10−1

`1 [m] 0.2 `2 [m] 0.28
`c1 [m] 0.13 `c2 [m] 0.15

In all cases, we fix the parameter κ = −1 in (13) so
comparing similar situations to those reported in [17]. Addi-
tionally, the stabilizing continuous-time gains in (5) are fixed
at κp = 1, κd =

√
3. In Figure 2 we show the performance

of the (1st order approximate) sampled-data multi-rate sta-
bilizing controller for two different sets of initial conditions
when compared to the ideal continuous-time solution. The
dashed lines corresponds to the multi-rate solution while the
continuous line is the ideal continuous-time solution. Both
are compared staring from the configuration q0 = (π6

π
1.5 )>

with zero velocities, as well as q0 = (π3
π

1.5 )> with zero
velocities. The sampled-data control follows closely the ideal
continuous-time behaviour even for larger sampling period
δ = 0.3.

-1.5 -1 -0.5 0 0.5 1 1.5
-0.4

-0.2

0

0.2

0.4

-2 -1 0 1 2

-1

-0.5

0

0.5

Fig. 2. Sampled-data stabilization for different initial conditions and δ =
0.5 under multi-rate approximate control of order β = 1.

Figures 3 and 4 highlight the significant benefits obtained
from the additive terms introduced by the proposed ap-
proximate sampled-data control when compared to standard
emulation for increasing values of δ. Also, it is worth
to underline that the control effort required by the multi-
rate approximate control is comparable with respect to the
continuous-time one and much better than emulation. Further
simulations have been perormed also considering different
control objectives as, for instance, swing-up stabilization4.

4More animated cases at https://youtu.be/YqGJnm1oNo0

https://youtu.be/YqGJnm1oNo0
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Fig. 3. Simulations for the pendubot when δ = 0.2 seconds
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Fig. 4. Simulations for the pendubot when δ = 0.6 seconds

V. CONCLUSIONS AND PERSPECTIVES

In this paper, it is shown that multi-rate sampling allows
to impose VHCs to mechanical systems in Euler-Lagrangian
form. In particular, the order of the multi-rate must be
equal to two over each input channel in order to guarantee
invariance of the corresponding surface. Future perspectives
concern the problem of preserving the Euler-Lagrangian
structure of the residual dynamics (the associated zero-

dynamics) possibly exploiting redundant multi-rate control.
Also, the application of those methods to deal with control of
multi-agent autonomous systems is under investigation [22].
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