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ABSTRACT 
 

In uncertain environments in which resources fluctuate continuously, animals must permanently 

decide whether to exploit what they currently believe to be their best option, or instead explore 

potential alternatives in case better opportunities are in fact available. While such a trade-off has been 

extensively studied in pretrained animals facing non-stationary decision-making tasks, it is yet 

unknown how they progressively tune it while progressively learning the task structure during 

pretraining. Here, we compared the ability of different computational models to account for long-

term changes in the behaviour of 24 rats while they learned to choose a rewarded lever in a three-

armed bandit task across 24 days of pretraining. We found that the day-by-day evolution of rat 

performance and win-shift tendency revealed a progressive stabilization of the way they regulated 

the exploration-exploitation trade-off. We successfully captured these behavioural adaptations using 

a meta-learning model in which the exploration-exploitation trade-off is controlled by the animal’s 

average reward rate. 

 

 

 



INTRODUCTION 
 

Faced with an uncertain environment in which resources fluctuate continuously, animals must 

permanently decide whether to exploit what they currently believe to be their best option, or instead 

explore potential alternatives in case better opportunities are in fact available. This trade-off between 

exploration and exploitation (Cohen, McClure and Yu, 2007) could itself be tuned to the 

circumstances: If the animal is currently experiencing a high reward rate, then it would seem in its 

best interest to keep exploiting its current strategy, whereas if the reward rate drops, this could be a 

signal that it is time to start exploring new strategies. 

While the exploration-exploitation trade-off has attracted a lot of interest in recent years, the precise 

mechanisms by which this trade-off is tuned to the animal’s current experience are still unknown. This 

is partly due to its tight intertwining with learning and inference processes (Findling and Wyart, 2021), 

which makes it difficult to disentangle them. In humans facing stochastic decision-making tasks with 

non-stationary reward probabilities, choice variability has been investigated in terms of regulation of 

the learning rate in response to volatility (Behrens et al., 2007; Cazé and Van Der Meer, 2013). 

Importantly, if in a learning task, an animal’s performance is seen to deteriorate, this can arguably be 

explained either by a decrease in its ability to learn and identify the best action, or by a reduced 

tendency to actually use what it has learnt to guide its action. Furthermore, sub-optimal choices, 

whether due to learning or decision-making defects, necessarily impact the converse process: The 

animal can only learn about actions which the decision-making process has sampled, and conversely, 

if a learning deficiency makes actions less discriminable, then even a perfectly working decision-

making mechanism will produce noisy outcomes. Therefore, the current predominance of theories on 

the regulation of learning should not close the door to a potential role of the regulation of exploration 

as a mechanism of adaptation to the environment. 

Reinforcement learning (Sutton and Barto, 1998), a class of algorithms for learning what actions to 

take based on discrete outcomes in the form of rewards and punishment, is a very useful framework 

for tackling this question, because it explicitly separates the learning mechanism, controlled by a 

learning rate parameter, from the decision-making process, typically modelled as a softmax rule (Daw 

et al., 2006) controlled by a parameter called the inverse temperature. Although the two parameters 

are still correlated, so that increasing one can be partly compensated for by decreasing the other, this 

compensation is not a strict equivalence. Thus, it becomes possible to distinguish an effect on learning 

from an effect on the exploration-exploitation balance. 

In a previous paper (Cinotti et al., 2019), we indeed showed through careful modelling of rat 

behavioral adaptation to changing reward probabilities that pharmacological inhibition of dopamine 

via flupenthixol, a non-discriminative D1 and D2 receptor antagonist, caused an increase in 

exploration without affecting learning itself. It remained to be seen whether this relationship between 

dopamine and the exploration-exploitation trade-off was a functional one or merely an experimental 

artefact. It was at least conceivable that even the lowest levels of inhibition did not really mimic the 

natural fluctuations of dopamine within the brain. Dopamine plays a well-established role in its phasic 

form in signalling the reward prediction errors which are crucial to reinforcement learning (Schultz, 

Dayan and Montague, 1997; Hart et al., 2014). In addition, it has been postulated to carry information 

about uncertainty (Gilbertson and Steele, 2021) or average reward rate (Niv, 2007; Niv et al., 2007) in 

its background or tonic activity. This led us to the hypothesis that animals might regulate the 

exploration-exploitation trade-off via an effect of the average reward rate on dopamine levels 

(Khamassi et al., 2011; Humphries, 2012). 



In this paper, we aim to explore this hypothesis by looking at long-term changes in behaviour as rats 

learned to choose a rewarded lever in a three-armed bandit task across 24 days of experiment. These 

days constitute the pretraining phase of the experiment presented in (Cinotti et al., 2019). Here, we 

investigate how animals adapted their behaviour while progressively learning the task structure, and 

whether this resulted in a stabilization of the way they regulated the exploration-exploitation trade-

off during the post-training phase of the task. We successfully captured these behavioural adaptations 

using a meta-learning model (Schweighofer and Doya, 2003) in which the exploration-exploitation 

trade-off is controlled by the animal’s average reward rate.  

 

 

 

METHODS 
 

Experimental methods 
 

Experimental methods are as reported in a previously published study (Cinotti et al., 2019). Male Long 

Evans rats (n = 24) were obtained from Janvier Labs (France) at the age of two months. They were 

housed in pairs in standard polycarbonate cages (49 x 26 x 20 cm) with sawdust bedding. The facility 

was maintained at 21 +/- 1°C, with a 12-hour light/dark cycle (7 AM / 7 PM) with food and water 

initially available ad libitum. Rats were tested only during the light portion of the cycle. The 

experiments were conducted in agreement with French (council directive 2013-118, February 1, 2013) 

and international (directive 2010-63, September 22, 2010, European Community) legislations and 

received approval #5012064-A from the local Ethics Committee of Université de Bordeaux. 

Animals were trained and tested in eight identical conditioning chambers (40 cm wide x 30 cm deep x 

35 cm high, Imetronic, Pessac, France), each located inside a sound and light-attenuatng wooden 

compartment (74 x 46 x 50 cm). Each compartment had a ventilation fan producing a background 

noise of 55 dB and four light-emitting diodes on the ceiling for illumination of the chamber. Each 

chamber had two opaque panels on the right and left sides, two clear Perspex walls on the back and 

front sides, and a stainless-steel grid floor (rod diameter: 0.5 cm; inter-rod distance: 1.5 cm). Three 

retractable levers (4 × 1 × 2 cm) could be inserted on the left wall. In the middle of the opposite wall, 

a magazine (6 × 4.5 × 4.5 cm) collected food pellets (45 mg, F0165, Bio_Serv, NJ, USA) from a dispenser 

located outside the operant chamber. The magazine was equipped with infrared cells to detect the 

animal’s visits. Three LED (one above each lever) were simultaneously lit as a signal for trial onset. A 

personal computer connected to the operant chambers via an Imetronic interface and equipped with 

POLY software (Imetronic, Pessac, France) controlled the equipment and recorded the data. 

During the behavioural experiments, rats were maintained at 90% of their original weight by 

restricting their food intake to ~15 g/day. For pre-training, all rats were trained for 3 days to collect 

rewards during 30 min magazine training sessions. Rewards were delivered in the magazine on a 

random time 60 sec schedule. The conditioning cage was lit for the duration of each session. The rats 

then received training for 3 days under a continuous reinforcement, fixed ratio schedule FR1 (i.e. each 

lever press was rewarded with one pellet) until they had earned 30 pellets or 30 min had elapsed. At 

this stage, each lever was presented continuously for one session and the magazine was placed 

adjacent to the lever (side counterbalanced across rats). Thereafter, all three levers were on the left 



wall and the magazine on the right wall. The levers were kept retracted throughout the session except 

during the choice phases. On the next two sessions, levers were successively presented 30 times in a 

pseudo-random order (FR1-trials). One press on the presented lever produced a reward and retraction 

of the lever. On the next eight sessions, levers were presented 30 times but each time five presses 

were required to obtain the reward (FR5-trials). As a result, all rats readily pressed the levers as soon 

as they were presented. The rats then underwent 24 sessions of the probabilistic choice task, 20 

sessions of six trial blocks each and four double sessions of 12 blocks each. 

The experimental task (Figure 1) consisted in a three-armed bandit task where rats had to select one 

of three levers in order to receive the reward. A trial began with a 2 sec warning light, and then the 

three retractable levers were presented to the rat. Pressing one of the levers could immediately result 

in the delivery of a reward with various probabilities. Two different risk levels were imposed: In the 

low risk condition (LR) one lever was designated as the target lever and rewarded with probability 7/8 

(87.5%) while the other levers were rewarded with probability 1/16 (6.25%). In the high risk condition 

(HR), the target lever was rewarded with probability 5/8 (62.5%) and the other two possibilities with 

probability 3/16 (18.75%), making discrimination of the target lever much harder. After a lever press, 

the levers were retracted and the trial (rewarded or not) was terminated. Inter-trial interval randomly 

varied in range 4.5–8 sec. Trials were grouped into unsignalled blocks of fixed length (24 trials each) 

characterized by a constant combination of target lever and risk. The target lever always changed 

between block. Therefore, rats had to re-learn the target lever on each block. Blocks were ordered 

pseudo-randomly within a session with all combinations of target and risk counterbalanced and tested 

twice (or four times in the last four double sessions). 

Data analysis 
 

In order to smoothen the appearance of block average performance and win-shift, trials were binned 

into groups of 4 trials. In the case of win-shift, the average was obtained by pooling across blocks all 

potential win-shift events belonging to a given bin (e.g. the ratio of the number of win-shifts which 

occurred in the first four trials of low-risk blocks to the number of win trials in the same period). 

Individual performance and win-shift curves were calculated first, then the population average, so 

that error bars correspond to inter-individual variability. 

Smoothed performance and win-shift curves were analysed using repeated-measures ANOVAs, the 

between factor consisting of individual subjects, and the within factors being risk, session (grouped 

into bins of 6) and trial bin number within blocks. Post hoc t-tests with a Bonferroni correction 

comparing sessions for trial x risk combinations were performed whenever the interaction between 

trial, risk and session was significant, the only exception being experimental win-shift (Figure 2 c and 

d) for which we instead report that the interaction between risk and session was significant and 

compare average win-shift over all bins instead as shown in Figure 2 c and d. These same methods 

were used when analysing the different model simulations. 

 

Model fitting 
 

All models tested relied on a softmax action selection process which defines the trial-by-trial likelihood 

of the model (Daw, 2011):  

𝑃(𝑎𝑡) =  
𝑒𝛽𝑄𝑡(𝑎𝑡) 

∑ 𝑒𝛽𝑄𝑡(𝑎𝑖)
𝑖

 



Likelihood over the entire experiment is then defined as the product of these trial likelihood, and the 

log-likelihood as the sum of the log-likelihood of each trial. Models were optimised through 

maximisation of the log-likelihood using the built-in fmincon function in MATLAB which implements a 

gradient descent method to find the minimum of the negative log-likelihood. To avoid falling into a 

local minimum and missing the global minimum, three different fixed initial points per parameter were 

combined for different initialisations of the gradient descent (i.e. 27 different initialisations for the 

three-parameters forgetting model, 243 for the various five-parameters models, and 729 for the six-

parameters sigmoid meta-learning model). The fixed initialisation points for the different parameters 

and their bounds are given in Table 1. 

 

Model comparisons 
 

It is possible to directly compare models with the same number of parameters by looking at their log-

likelihood, the better model simply being the one with the highest log-likelihood. When the number 

of parameters is different, it is necessary to take this into account to avoid overfitting. Two well-known 

criteria were used in this study: The Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC). On an individual level, the BIC, which also depends on the number of trials, proved 

more conservative than the AIC, but when summed over all individuals to select the best model at the 

population level, both criteria were always in agreement, thus sparing us a discussion over the 

different merits and precise aims of these criteria (Lebarbier and Mary-huard, 2006). 

Ultimately, models were judged by their ability to produce simulations similar to the original 

experimental data (Humphries and Gurney, 2007; Palminteri, Wyart and Koechlin, 2017). For each 

individual, we ran 100 simulations using the optimised set of parameters and the same block schedule 

as the one experienced by the subject. We then averaged block performance and win-shift of the 100 

simulations to get 24 individual average simulations. These were then averaged again to produce the 

different simulated performance and win-shift curves shown in this study. The standard error of the 

mean thus corresponds to the variability between average individual simulations. Simulations were 

judged based on whether they reproduced between session changes, and on their mean squared 

errors relative to the original average curves: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)

2
𝑛

𝑖=1

 

With n the number of data points (i.e. 6 trial bins x 4 groups of sessions x 2 risk levels), 𝑌𝑖  the 

experimental values, and 𝑌�̂� the simulation values. 

When studying the separate impacts of Q-values and regulated inverse temperature of the linear 

meta-learning model, we also ran constrained simulations in which the Q-values and β are updated at 

each trial according to the choices and outcomes made by the individual subjects and the optimised 

parameter values of that individual. 

For the staggered model, we tested the effect of sessions on β with a Friedman ANOVA. The Friedman 

ANOVA was used because out of the four distributions of β, three were significantly different from a 

normal distribution according to the Shapiro-Wilk test (swtest MATLAB function by Ahmed BenSaïda), 

and the assumption of sphericity was also violated according to a Mauchly test (p = 1.10-4). 

 



Data and code availability 
 

All code for analysis and modelling was written in MATLAB. Data and code are available from the 

corresponding author on reasonable request. 

 

 

RESULTS 
 

Experimental results 
 

The rats were presented with a three-armed bandit task which consisted of discrete trials in which 

they had to choose one of three levers in order to get a reward (Figure 1). Each session (a total of 24) 

was comprised of six blocks of 24 trials, two blocks per lever, one high-risk block in which the most 

rewarded lever had a probability of reward of 5/8 while the other levers were rewarded 3/16th of the 

time and one low-risk block in which the best lever was rewarded 7 times out of 8 versus 1 out of 16 

for the two other levers. Therefore, discrimination of the correct lever was much easier in the low-risk 

than in the high-risk condition. Blocks were ordered pseudo-randomly within each session so that the 

same lever was never the best twice in a row. The last four sessions contained 12 blocks instead of 6, 

so that each lever x risk combination was tested twice rather than once. 

In Figure 2 a and b, we tracked the rats’ average performance, which is defined as the number of times 

they selected the lever with the highest reward probability in the current block. Average performance 

at the beginning of blocks started at around 26% and 29% in high-risk and low-risk blocks respectively 

which is significantly below chance levels of 33% (t-test that the average performance in either low- 

or high-risk blocks equals 1/3: p < 10-6 ) demonstrating that rats were unaware that a block change 

had occurred and were persisting with the previously best rewarded option. As rats learned which was 

the best lever, performance then increased more or less rapidly depending on risk condition, as 

expected, but also depending on the stage within the experiment. In the first six sessions, performance 

levels reached 45% and 40% in low- and high-risk blocks respectively, compared to 63% and 48% in 

the last six sessions. These observations were supported by repeated-measures ANOVA with 

significant trial (F(5,115) = 112.1, p<10-4), session(F(3,69)=29.4, p<10-4), and risk (F(1,23)=98.4, p<10-4) 

as within-subjects factors; all possible combinations of these three main factors were also significant 

(p<0.0463). Post hoc Bonferroni tests on low-risk blocks showed that with the exception of the first 

four trials, performance in the first six sessions was always significantly worse than another six 

sessions. Similarly, performance in high-risk blocks did not differ between any sessions in the first four 

trials, but was significantly worse for all subsequent trials in sessions 1-6 compared to at least one 

other group of sessions. To summarise, in addition to the expected increased performance in low-risk 

blocks compared to the high-risk blocks, the results reveal a long-term improvement in performance. 

Win-shift, an explorative strategy, also changed significantly throughout the experiment. It consists in 

the probability of changing lever, after being rewarded for a correct choice of the current best lever. 

As depicted in Figure 2 c and d, win-shift decreased within blocks as uncertainty surrounding the 

identity of the correct lever also decreased (significant trial effect found with a repeated-measures 

ANOVA: p<10-4). Win-shift in high risk blocks was greater than in low-risk blocks (significant effect of 

risk: F(1,23) = 63.9, p <10-4). Contrary to performance, the interaction between sessions and risk was 



the only significant (F(3,69)=6.1, p=0.0021) interaction involving sessions. Win-shift in the first six 

sessions was significantly higher than for all subsequent sessions in both low- (post hoc Bonferroni 

test, p<0.025) and high- (p<0.006) risk blocks. 

These results indicate that long-term changes in behaviour occurred both in terms of performance 

and win-shift. Because an increase in exploration comes at the expense of picking the best action less 

often, there is a reciprocal relationship between these two measurements which makes it impossible 

to say whether the changes resulted from an increase in learning rate or a decrease in exploration. 

Computational modelling can help us solve this issue. 

Variations of β 
 

Reinforcement learning provides a framework to disentangle learning and exploration effects on 

behaviour. These models rely on continuously updating estimates for the value of the different 

possible actions, so-called Q-values. One of the most popular of these algorithms, Q-learning, states 

that given a trial t during which the agent performs action at and receives a reward rt, the learning rule 

should be written as: 

𝑄(𝑎𝑡) ← 𝑄(𝑎𝑡) + 𝛼(𝑟𝑡 − 𝑄(𝑎𝑡)) 

The learning rate, α, determines the impact the immediate outcome has on the previous estimate: 

The higher it is, the more heavily the new information weighs in the current value which may cause 

undesirable volatility in a stochastic environment. In order to improve model fitting to the data, we 

added a forgetting mechanism as previously in Cinotti et al. (2019) through which the values of the 

two unchosen levers decrease towards 0, the initial value all levers were set at: 

𝑄(𝑎~𝑡) ← (1 −  𝛼2 )𝑄(𝑎~𝑡) 

This mechanism has been linked to persistence, independently of reinforcement, by (Katahira, 2015), 

with values of the forgetting rate α2 smaller than α causing increased persistence. Finally, at each trial, 

the decision process is modelled using a softmax function of the Q-values: 

𝑃(𝑎𝑡+1 =  𝑎𝑖) =  
𝑒𝛽𝑄(𝑎𝑖)

∑ 𝑒𝛽𝑄(𝑎𝑗)
𝑗

 

The inverse temperature β determines the level of randomness in the exploration-exploitation trade-

off by increasing the contrast between the action with the highest Q-value and the others. Following 

our hypothesis that animals might regulate their exploration-exploitation trade-off, it is this parameter 

that will attract our interest. 

A first possibility in explaining the long-term changes in behaviour is that the Q-values must first reach 

an average baseline value which is different from the initial value at the start of the experiment. To 

test this hypothesis, we optimised this forgetting Q-learning model with initial Q-values of 0 and 

carried over the Q-values from one session to the next, allowing for the gradual build-up of Q-values 

in between sessions. Using the optimised parameters we then ran unconstrained simulations of this 

model using the same sequences of blocks but allowing the model to choose its actions at each trial 

randomly based on the softmax equation, rather than constraining it to the actions made by the 

corresponding animal. As shown in Figure 3 a and b, the simulated average performance and win-shift 

curves are very noticeably different from the corresponding experimental curves in Figure 2. In the 

case of performance, although there is a significant session effect (repeated-measures ANOVA: F(3,69) 

= 29.2, p < 10-4 ), the differences between sessions are not only far smaller but also inconsistent with 

the experimental data. In particular, performance in the last six sessions is worse than in earlier session 



in complete contradiction with the experimental data. Similarly concerning win-shift, the simulated 

data completely fail to reproduce the effect of sessions present in the experimental data.  

Having ruled out the possibility that these session effects are a simple effect of accumulated learning, 

we approached our hypothesis that the exploration-exploitation trade-off is regulated by optimising 

the same forgetting Q-learning model with the only difference that four different β values were used 

for each group of six sessions we arbitrarily divided the experiment into. We compared this model, 

which we call the staggered model, to the previous one using the Akaike (AIC) and Bayesian 

Information Criterion (BIC) reported in Tables 2 and 3. Despite its three extra parameters, we found 

that the staggered model had better scores on aggregate, i.e. when summing individual scores (total 

AIC = 178009 versus 178556 for the model with separate β values and the forgetting QL model 

respectively, total BIC = 178917 versus 179010). If we look into more details at Tables 2 and 3, only 

for one individual subject (rat 28) is the forgetting model the better fit according to the AIC, while for 

the BIC a majority (16) of subjects actually favour the forgetting model despite the total sum being 

smaller for the staggered model. We also ran simulations of this model and found that it was capable 

of qualitatively replicating experimental effects (Figure 4), a control analysis prescribed by the 

literature (Palminteri, Wyart and Koechlin, 2017; Wilson and Collins, 2019). Contrary to simulations of 

the simple forgetting Q-learning model, simulated performance of the staggered model was 

significantly different between sessions for later trials of both low- and high-risk blocks (Figure 4 a and 

b). In particular, performance in low-risk blocks of the first six sessions was significantly smaller than 

in sessions 12-18 and sessions 19-24. The simulated win-shift curves also fitted experimental data well 

with win-shift in the first six sessions being significantly higher than in subsequent sessions (Figure 4 c 

and d). In Table 4, we also report the mean squared errors which tells us how close the fit between 

the simulated and experimental curves is (see Methods) and find that for both performance and win-

shift, mean-squared errors of the forgetting model are about twice as large as for the staggered model. 

Thus, allowing the inverse temperature to adapt between sessions while keeping learning and 

forgetting rates fixed is sufficient to replicate the animals’ improvements in performance and decrease 

in exploration. The evolution of individual inverse temperatures between sessions in Figure 4 e shows 

that there is a significant effect of sessions on the optimised values of the inverse temperature 

(Friedman ANOVA: p=0.0043). The optimised values of β in the first six sessions are indeed significantly 

smaller than for sessions 7-12 (p=0.0071) and sessions 19-24 (p=0,015). These changes correspond to 

increased exploitation, as expected from the decreased exploration obtained in simulations (Figure 4 

c and d). 

 

 

Meta-learning based on average reward rate model 
 

In (Cinotti et al., 2019), we showed that dopamine inhibition causes an increase in random exploration 

without impacting learning. In addition, tonic dopamine has been hypothesized to integrate the 

reward prediction errors and thus represent an average reward rate. For these reasons, we were 

inspired in designing a meta-learning model in which random exploration, which is set by the 

parameter β, is controlled by a running average reward rate Rt: 

𝑅𝑡+1 =  𝑅𝑡 +  𝛼𝑅 . (𝑟𝑡 − 𝑅𝑡) 

 



Because trial outcomes are either 1 or 0 and αR < 1, Rt is itself bounded between 0 and 1. Three 

different meta-learning variants were tested. The first is a simple linear function of the reward rate 

(Blackwell and Doya, 2023): 

𝛽𝑡 = 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛). 𝑅𝑡  

Such a linear function has the advantage of being very simple, but sigmoid functions which converge 

slowly to finite limits could prove a better alternative which is why we designed two other sigmoid 

meta-learning variants. The first of these regulates β as follows: 

𝛽𝑡 =
𝛽𝑚𝑎𝑥

1 + 𝑒−𝑘(𝑅𝑡−0.5)
 

Which describes a sigmoid function with 0 and 𝛽𝑚𝑎𝑥 as limits at minus and plus infinity respectively,  

and a midpoint at 𝑅𝑡 = 0.5. This variant has the same number of unknown parameters as the linear 

meta-learning model. 

The second sigmoid variant is obtained by defining the limit at minus infinity as an extra unknow 

parameter: 

𝛽𝑡 =  𝛽𝑚𝑖𝑛 +  
𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛

1 + 𝑒−𝑘(𝑅𝑡−0.5)
 

An alternative to the meta-learning hypothesis is that rats were simply increasing their exploitation 

tendency over time irrespective of their performance (Moin Afshar et al., 2020; Lloyd et al., 2023). To 

test our hypothesis against this alternative, we also optimised two models in which β increases 

monotonically over time. Given the shape of the evolution of β in the staggered model (Figure 4 e), 

we designed a logarithmically increasing model and a geometrically increasing model. The inverse 

temperature for the logarithmic increase model is calculated as: 

𝛽𝑡 =  𝛽0 + 𝑘 log (𝑎 × 𝑡) 

With 𝑡 the trial number, and 𝛽0, 𝑘, and 𝑎 three unknown parameters. As for the geometric increase, 

the inverse temperature is: 

𝛽𝑡 =  𝛽𝑡−1 + 𝑎(𝛽𝑚𝑎𝑥 − 𝛽𝑡−1) 

This model also has five unknown parameters to optimise, the learning and forgetting rates α and α2, 

the initial value of the inverse temperature β0, the maximum value to which it converges βmax, and the 

rate 𝑎 at which it approaches this maximum. The crucial difference between these two models is that 

although both display the desired curved shape of increase, the former is a divergent function while 

the second converges to a known fixed value. The diverse mechanisms these models implement are 

shown in Figure 5. 

All five models were optimised using the same procedure as previously described and were then 

compared together with the previous two models using the AIC (Table 2) and BIC (Table 3). According 

to the AIC, meta-learning models are better for 15 individuals the remaining 9 being better fit by a 

monotonically increasing model. Of the 15 individuals for which meta-learning is best, only 4 

individuals favour the six-parameter variant of the sigmoid model. For no individual is the forgetting 

QL model the best model. For the BIC, 16 subjects are best fit by a meta-learning model, and only 5 

by a monotonic increase. We also compared the seven models by running 100 simulations with 

optimised parameters then calculating the mean squared errors between average simulations and the 

experimental data (Table 4). For performance, the best fit was achieved with simulations of the linear 

meta-learning model, while the best fit of win-shift was instead by the two sigmoid variants, but 

crucially neither the geometric nor the logarithmic time-dependent models fitted the data better than 



the linear meta-learning model. Overall, the linear meta-learning model has the lowest aggregate 

scores, both for the AIC and BIC, as well as the lowest mean-squared error for performance, which is 

why we selected this one for further study. 

When simulated this model produced average performance and win-shift curves with significant 

session and risk effects as intended in Figure 6. Contrary to the forgetting Q-learning model and 

similarly to the staggered model, simulations of this model have improved performance and 

decreased exploration between sessions. Figures 7 and 8 which plot simulations for each risk and 

session group against the corresponding experimental data further illustrate the very good agreement 

between the simulated and experimental datasets. 

 

Analysis of the effect of variations of the inverse temperature 
 

One of the most interesting features of this novel meta-learning model is the separation of exploration 

from learning. This means there are potentially periods during which, despite similar Q-values, 

behaviour is noticeably different due to different values of the inverse temperature. We extracted 

from each trial the estimated Q-values and 𝛽𝑡  by running simulations of the linear meta-learning 

model with optimised parameters constrained to the original experimental data, i.e. without letting 

the model generate its own actions, but instead letting it observe the actions and outcomes actually 

experienced by the subject. To disentangle the effect of Q-values and regulated inverse temperature, 

we synthesised the three Q-values estimated by the model into a single discriminability score that tells 

us how easy it is to recognise the biggest Q-value: 

𝑑𝑡  =
max(𝑄𝑖,𝑡)

∑𝑄𝑖,𝑡
 

We then assessed the separate impacts of this discriminability score and of the current trial value of 

the inverse temperature using a logistic regression model fitting the success or failure to select what 

appears to be the lever with the highest Q-value, in other words to follow an exploitation strategy. 

We applied this analysis to all rats and to each rat separately. When applied to the population as a 

whole, we find as expected a highly significant (p = 0 according to the fitglm function of MATLAB) 

positive relationship between discriminability and the odds ratio of exploitation. In addition, there is 

also a very significant effect (p = 0) of the value of β on the odds ratio of exploitation with an estimated 

9.6% increase in the odds ratio for each unit increase of β. With the exception of two rats for whom 

the effect of β was either non-significant or negative, similar results were obtained when the logistic 

model was fitted on a rat per rat basis. The lowest odds ratio increase per unit increase of beta was 

3% and the largest 58%. 

When applying a logistic regression model, there is a risk that predictors, in our case discriminability 

and β, are collinear. This would mean that we cannot distinguish the potential effect of these two 

predictors. To check for such an issue, we used Brian Lau’s Collinearity Diagnostics Toolbox for 

MATLAB which calculates so-called condition indices. When this condition index is greater than 30, 

then a strong collinearity is possible. Applied to the population as a whole, the condition index for 

collinearity between discriminability and β was 2.7 indicative of only weak collinearity. When applied 

to rats separately, all condition indices ranged between 3.3 and 13.9, with only three individuals above 

the threshold of 10 which suggests only moderate collinearity. No individual condition index was 

above 30, the threshold for potentially strong collinearity. 



To more concretely illustrate the effect of a varying inverse temperature, we ranked trials depending 

on their inferred discriminability binning trials according to whether discriminability was lower than 

0.6, between 0.6 and 0.8, and higher than 0.8. By definition discriminability, which is the ratio of the 

highest Q-value over the sum of three Q-values, is greater than 0.3. For each individual, we further 

classified trials based on whether β was in the first, second or third tercile of the total range bounded 

by individual values of βmin and βmax. For each combination of β and discriminability, we could then 

calculate a probability of choosing the action with the highest Q-value based on the observed 

frequency of making these choices – something we could not do if we hadn’t binned trials together – 

and determine the separate effects of these two factors as depicted in Figure 9. As expected, 

increasing discriminability increased the probability of exploiting the action with the highest Q-value. 

For a discriminability lower than 0.6, probability of exploitation was roughly 0.5, while it was over 0.6 

for discriminabilities ranging between 0.6 and 0.8, and about 0.8 for the highest values of 

discriminability. In addition, the fluctuating value of β also had a noticeable effect on exploitation as 

in all cases, increasing β did indeed increase the probability of exploitation. These increases were 

statistically significant (Wilcoxon signed-rank tests with Bonferroni corrections) for intermediate and 

high values of discriminability as shown in Figure 9. In summary, in trials in which the inferred values 

of β according to the meta-learning model are high, there is an experimentally observable increase in 

exploitation while controlling for the effect of learning. 

DISCUSSION 
In this work, we compared the ability of different computational models to account for rats’ 

progressive tuning of the exploration-exploitation trade-off while they were learning the structure of 

a three-armed bandit task. Our task included three levers with different reward probabilities, and two 

risk conditions: a low-risk condition and a high-risk condition. The task was moreover non-stationary 

in that the reward probabilities of the levers changed without signal every 24 trials. 

We found that rats’ significantly performance improved within- and between-sessions and that 

performance improvement was sharper in low-risk conditions. We moreover found that the 

percentage of exploratory trials (i.e., win-shift trials after a rewarded choice of the correct lever) was 

higher during the first 6 sessions, without further significant changes during the remaining 18 sessions. 

This indicated that the exploration-exploitation trade-off was progressively learned and stabilized in 

adaptation to the task. Such behavioural tendencies cannot be captured by a standard reinforcement 

learning model. Instead, we found that a meta-learning model, which linearly tunes the inverse 

temperature parameter based on variations in the average reward rate, provided the best account of 

these long-term variations in rats’ behaviour. We further confirmed these modelling results by model 

simulations and analyses. Importantly, we confirmed that the current trial value of the inverse 

temperature was predictive of the rats’ tendency to deviate from the currently optimal lever, even 

when controlling for the level of discriminability between learned lever values. These results suggest 

that rats progressively tune their exploration-exploitation trade-off while learning the structure of 

new decision-making tasks. 

We limited ourselves in this study to the hypothesis that meta-learning concerned the inverse 

temperature which regulates the exploration-exploitation trade-off. In making this choice we pursued 

a line of inquiry begun in (Humphries, 2012), a theoretical study which presented a model of the basal 

ganglia. In that model, the entropy of action selection, i.e. random exploration, decreased with 

average dopamine levels. This hypothesis was investigated experimentally in (Cinotti et al., 2019) 

where we showed that systemic pharmacological inhibition of dopamine enhanced exploration 

without affecting the learning rate. Together with the assumption that tonic dopamine represents the 

average reward rate (Niv et al., 2007; Hamid et al., 2016), this leads to the idea that the reward rate 



controls exploration through tonic dopamine levels. Another possibility which we did not present here 

is that it is the learning rate or the forgetting rate or a combination of these parameters that is being 

regulated over time. Such a complete analysis would require a huge number of optimisations, but we 

did in fact test different meta-learning models of the learning rate (data not shown). We found them 

to be very similar to the meta-learning models of the inverse temperature both in terms of the 

optimisation criteria AIC and BIC. In terms of simulations, we found no way to separate the two 

models. However, regulation of the learning rate has previously been linked to task volatility (Behrens 

et al., 2007) or uncertainty (Jepma et al., 2016) rather than the reward rate, and might depend on a 

different neurotransmitter than dopamine such as serotonin (Iigaya et al., 2018) or noradrenaline 

(Jepma et al., 2016). The difficulty we encountered in separating meta-learning on learning rate or 

inverse temperature may be due to the fact that online estimation of uncertainty, like the reward rate, 

is dependent on the past history of rewards, so that there could be large overlap between the two 

signals. Taken together, these data point toward a larger class of meta-learning models in which 

uncertainty controls the learning rate and the reward rate the inverse temperature. 

The idea that an increase in reward rate should cause an increase in exploitation could have important 

implications in another field of decision-making, the transition from goal-directed to habitual 

behaviour. Goal-directed behaviour is characterised by flexibility, the ease with which an organism 

adjusts behaviour when its goal is manipulated (Robinson and Berridge, 2013). On the other hand, 

animals display habitual behaviour when they repeat previously reinforced actions even when these 

actions are no longer rewarded or are even punished. This is particularly relevant for the study of 

addiction which could, partly, be explained by habitual modes of behaviour struggling for control with 

higher-level goal-directed decision-making (Everitt and Robbins, 2005; Redish, Jensen and Johnson, 

2008). The computational account for these two types of behaviour usually hinges on assigning 

habitual behaviour to a slower model-free learning process such as the Q-learning algorithm, and goal-

directed behaviour to a model-based learning algorithm in which the organism relies on a 

representation of the task or environment structure to guide its actions (Daw, Niv and Dayan, 2005). 

The transition from goal-directed to habitual behaviour could be explained as a reduction in 

computational complexity when a certain level of performance is achieved. The meta-learning model 

we presented offers another possible and complementary explanation. In a first phase in which an 

action reliably produces a reward, the accumulation of rewards causes an increase in inverse 

temperature alongside the increase of the value of that action. If the link between action and reward 

is altered, the now very strong tendency to exploitation will cause the animal to persevere longer in 

repeating that action despite its falling value. This is because, as shown through the slow inter-session 

effect on behaviour contrasted with the fast and efficient evolution of behaviour within blocks, the 

dynamics of the inverse temperature are potentially much slower than those of Q-values. Hence, an 

action could see its Q-value fall dramatically, and still be selected. Of course, this increased 

perseverance should occur only as long as the Q-value of the previously rewarded action remains 

above any alternative actions, the inverse temperature blindly favouring whichever action currently 

has the highest value. 

A slow evolution of the inverse temperature could explain a puzzling lack of effect of the risk level of 

blocks. As the reward rate is lower in high-risk blocks, we would expect this to have an effect on 

exploration in addition to that on learning. Indeed, performance and win-shift are different in high- 

and low-risk blocks, but simulations of a model with a single inverse temperature is entirely capable 

of producing this type of behaviour (data not shown) so that differences in the Q-values in the two 

types of blocks is a sufficient explanation. Furthermore, we also optimised a model with separate 

inverse temperatures for high- and low-risk blocks, a strategy previously used by (Eisenegger et al., 

2014) to compare human populations with different type 2 dopamine receptors, and did find 

significantly higher optimised values in low risk blocks, consistent with increased exploitation as 



predicted by the model (analyses not shown). However, in a counterfactual test where we optimised 

the same model with separate inverse temperatures based on block risk level on data simulated with 

a model using a single inverse temperature, we also found significant differences meaning that such 

methods are not advisable unless counterfactual checks are carried out, as we did in (Cinotti et al., 

2019). Maybe if the blocks were longer than 24 trials, then variations in exploration could 

unambiguously be detected. To also distinguish meta-learning from time-related increases in 

exploitation, a possible experimental design would be to alternate low-risk and high-risk periods for 

greater amounts of trials, perhaps even entire sessions. We could then perhaps detect changes in 

behaviour following long periods of low reward rates corresponding to a predicted decrease in 

exploitation which would contradict the effect of time only. 

Overall, this work constitutes one of the rare attempts to account for rats’ progressive adjustment of 

their exploration strategy while they are learning the structure of a new task. Because our method 

allowed to relate the random exploration rate in the model to the rats’ probability to deviate from the 

currently optimal lever, independently from the discriminability between learned lever values, it 

provides a concrete means to identify exploration patterns in behaving rats. This contributes to a 

promising line of research which could help better understand why animals behave according to a 

precisely tuned exploration-exploitation trade-off in the post-training phases of decision-making 

tasks. 
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Table 1: Initialisations points and bounds of the parameters of the different models. 

 

Table 2: Individual and total AIC of the different models. 
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Table 4: Mean squared errors of simulated performance and win-shift for each model. 

 

 




















