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The paper deals with the sampled-data asymptotic stabilization of the Acrobot at its upward equilibrium. The proposed controller results from the action of an Input-Hamiltonian-Matching (IHM) strategy that shapes the closedloop energy combined with a Damping Injection (DI) feedback designed on the sampled-data equivalent model. Simulations show the effectiveness of the proposed controller.

I. INTRODUCTION

The Acrobot is a planar two-link robotic arm in the vertical plane actuated at the elbow. It provides an interesting case study to simulated or experimental tests for nonlinear control methods. The upward stabilization of this underactuated mechanical system has been proposed for the first time in [START_REF] Murray | A case study in approximate linearization: The acrobat example[END_REF] and then several control strategies have been developed in the continuous-time control literature such as partial feedback linearization [START_REF] Spong | The swing up control problem for the acrobot[END_REF], trajectory tracking [START_REF] Zhang | Motion planning and tracking control for an acrobot based on a rewinding approach[END_REF], Lyapunov based control [START_REF] Zergeroglu | Lyapunov-based set-point control of the acrobot[END_REF], optimal control [START_REF] Horibe | Nonlinear optimal control for swing up and stabilization of the acrobot via stable manifold approach: Theory and experiment[END_REF], energy-based feedback [START_REF] Xin | Energy-based swing-up control for a remotely driven acrobot: Theoretical and experimental results[END_REF].

One of the most celebrated control strategies for underactuated mechanical systems relies on Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) [START_REF] Ortega | Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment[END_REF]. In this context, asymptotic stabilization is achieved by injecting damping into the passive system resulting from a suitable shaping of the total energy of the system according to the desired control objective. In [START_REF] Mahindrakar | Further constructive results on interconnection and damping assignment control of mechanical systems: The acrobot example[END_REF] such an approach has been applied to design a controller stabilizing the Acrobot at the upward position.

Following these lines and motivated by recent results on the topic [START_REF] Laila | Discrete-time IDA-PBC design for underactuated hamiltonian control systems[END_REF], [START_REF] Aoues | Discrete IDA-PBC control law for newtonian mechanical port-hamiltonian systems[END_REF], [START_REF] Moreschini | Stabilization of discrete port-hamiltonian dynamics via interconnection and damping assignment[END_REF], we propose a control strategy for solving the problem in the digital context; namely, when the control signal is piecewise constant and implemented from synchronized sampled-data measures of the state. In this context, standard strategies relying on an approximate discretetime IDA-PBC approach beyond emulation do not apply as the discrete-gradient function involved in the sampleddata model is highly nonlinear and not separable. The solution we propose combines two control components: an energy shaping feedback, designed to ensure matching at the sampling instants of the target continuous-time Hamiltonian dorothee.normand-cyrot @centralesupelec.fr Fig. 1: The acrobot system [START_REF] Mahindrakar | Further constructive results on interconnection and damping assignment control of mechanical systems: The acrobot example[END_REF]; a damping injection negative output feedback, set on the passivating average-output of the sampled-data equivalent model after the action of the energy shaping component. Simulations highlight the performances in a comparative perspective.

The paper is organized as follows. In Section II the model and preliminaries on the continuous-time stabilizer [START_REF] Mahindrakar | Further constructive results on interconnection and damping assignment control of mechanical systems: The acrobot example[END_REF] are given and the problem is formally set. The main result is proposed in Section III for the case-study. Simulations that outperform the continuous-time solution are in Section IV. Section V concludes the paper.

Notations and definitions: Functions and vector fields are assumed smooth and complete over the respective definition spaces. R and N denote the set of real and natural numbers including 0. 0 denotes the zero matrix of suitable dimension, depending on the context. For any vector z ∈ R n , z and z define respectively the norm and transpose of z. x = col(a 1 , . . . , a n ) ∈ R n1+•••+nn denotes the column vector with entries provided by a i ∈ R ni of suitable dimensions. I and I d denote respectively the identity matrix (of suitable dimension) and identity operator.

L f = n i=1 f (•) ∂ ∂xi denotes the Lie derivative and e L f = I d + i≥1 L i f i!
the exponential Lie series operator, associated with the vector field f . Given two vector fields f (x), g(x), ad f g(x) = (L f L g -L g L f )(x) denotes their Lie bracket. Given a twice continuously differentiable function S(•) : R n → R, ∇S represents its gradient (column) vector and ∇2 S its Hessian matrix. Given a smooth real-valued function S(•) : R n → R, the corresponding discrete gradient is a vector-valued function, ∇S| z

x : R n ×R n → R n satisfying, for all x, z ∈ R n , the variational equality

S(z) -S(x) = (z -x) ∇S| z x , ∇S x x = ∇S(x). (1) 
II. PRELIMINARIES AND PROBLEM STATEMENT The Acrobot is an underactuated planar two-link robotic arm in the vertical plane [START_REF] Murray | A case study in approximate linearization: The acrobat example[END_REF] as depicted in Fig. 1. More in detail, for the i th joint (i = 1, 2), we denote by q i ∈ R the angle, m i > 0 the mass, I i > 0 the link inertia moment around the vertical axis passing through the center of mass, l i the length, l ci the distance from the i th link to the center of mass, u ∈ R the input torque acting on the elbow joint and g the gravitational constant. Accordingly, the dynamics admits the canonical port-controlled Hamiltonian (pcH) representation of the form

q ṗ = 0 I -I 0 ∇ q H ∇ p H + 0 G u (2) 
with p = M (q) q the momenta vector, G = 0 1 , Hamiltonian function

H(q, p) = 1 2 p M -1 (q)p + V (q) (3) 
when setting the generalized inertia matrix as

M (q) = c 1 + c 2 + 2c 3 cos(q 2 ) c 2 + c 3 cos(q 2 ) c 2 + c 3 cos(q 2 ) c 2
and the potential energy as

V (q) = g (c 4 cos(q 1 ) + c 5 cos(q 1 + q 2 ))
with

c 1 = m 1 l 2 c1 + m 2 l 2 1 + I 1 , c 4 = m 1 l c1 + m 2 l 1 c 2 = m 2 l 2 c2 + I 2 , c 3 = m 2 l 1 l c2 , c 5 = m 2 l c2 . Setting y = G M -1 (q)p
the so defined input-output link u → y is passive with output corresponds to the velocity at the second joint. We refer to [START_REF] Murray | A case study in approximate linearization: The acrobat example[END_REF] for further details on the mathematical model of the Acrobot system.

The problem we consider consists in defining a digital control law to swing-up the Acrobot from some configuration positions in the lower half plane, or equivalently to stabilize the upright equilibrium q = (0, 0) , via Passivity-Based Control (PBC). As usual under sampling, we assume the measures of the state (q, p) available at the sampling instants t = kδ only and the control piecewise constant over sampling intervals of length δ > 0; i.e. u(t) = u k for t ∈ [kδ, (k+1)δ[, for all k ≥ 0.

A. Swing-up in continuous time

In continuous time, stabilization of the upright equilibrium relies upon Interconnection and Damping Assignment PBC (IDA-PBC) [START_REF] Ortega | Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment[END_REF] by setting the control u(q, p) = u es (q, p) + u di (q, p).

with: u es (q, p) the so-called energy shaping component designed to assign a suitably defined desired energy function

H d : R 2 × R 2 → R ≥0 of the form H d (q, p) = 1 2 p M -1 d p + V d (q) (5) 
for a constant M d 0 and possessing its minimum at x = (q 0 ) with q = (0 0) ; u es (q, p) is the socalled damping injection component designed to guarantee asymptotic convergence to the swing-up configuration while assigning a suitably defined dissipation to the closed loop.

In detail, as proposed in [8, Proposition 6.1], one first sets u = u es (q, p) + v with the energy-shaping component

u es (q, p) = G ∇ q H(q, p) -M d M -1 (q)∇ q V d (q) (6) 
assigning the conservative pcH structure

q ṗ = J(q) ∇ q H d ∇ p H d + 0 G v (7) 
with new interconnection matrix

J(q) = 0 M -1 (q)M d -M d M -1 (q) 0 (8) 
virtual generalized inertia matrix

M d = k 2 -k 2 c1 c2 k 2 k 2 k 3 , k 2 < k 3 1 - c 1 c 2
and potential energy (see the Appendix for further details)

V d (q) = N (q 1 )e Aq 2 Γ + b 1 cos(q 1 ) + b 2 cos(q 1 +q 2 ) (9) + b 3 cos(q 1 +2q 2 ) + b 4 cos(q 1 -q 2 ) + k p 2 (q 1 -µq 2 ) 2 .
The energy-shaping control makes the closed-loop link

v → y d = G M -1 d p (10) 
passive, or more properly lossless, with dissipation rate Ḣd (q, p) = p M -1 d Gv. Based on this, asymptotic stabilization at q = (0 0) is ensured by the output damping injection

u di (p) = -k v G M -1 d p, k v > 0 (11) 
assigning the desired closed-loop dynamics

q ṗ = 0 M -1 (q)M d -M d M -1 (q) -k v GG ∇ q H d ∇ p H d ( 12 
)
with Ḣd (q, p) = -k v p G Gp ≤ 0.

B. Sampled-data systems and problem statement

Consider (2) under piecewise constant control over the sampling period δ > 0. Setting x = col(q, p), the sampleddata equivalent model is given in the form of a map [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF] x

+ (u) = x + δF δ (x, u) = x + δ F δ 0 (x) + g δ (x, u)u (13) 
when denoting at time t = kδ, x = x k , u = u k , and at time

t = (k + 1)δ, x + (u) = x + (u k ) = x k+1 . From (2), setting f (x) = 0 I -I 0 ∇H, B = 0 G one computes δF δ (x, u) = e δ(L f +uL B ) x -x = i≥1 δ i i! (L f + uL B ) i x F δ 0 (x) = F δ (x, 0), g δ (x, u) = F δ (x, u) -F δ 0 (x).
The problem stands in designing a sampled-data feedback u = u δ (q, p) to swing-up the robot at the upward equilibrium q = (0 0) or equivalently making x = (0 , 0 ) asymptotically stable for the sampled-data equivalent model [START_REF] Costa-Castelló | On preserving passivity in sampleddata linear systems[END_REF]. Analogously to the continuous-time solution, we look for a feedback law of the form

u δ (x) = u δ es (x) + u δ di (x) (14) 
with u δ es (x) and u δ di (x) the energy-shaping and damping injection components respectively. The energy-shaping component is designed so that the feedback

u = u δ es (x) + v (15) 
assigns, at the sampling instants, the same energy function H d (x) = H d (q, p) as in continuous time [START_REF] Horibe | Nonlinear optimal control for swing up and stabilization of the acrobot via stable manifold approach: Theory and experiment[END_REF] with stable equilibrium at the desired configuration. As a consequence, the dissipation equality below holds

H d (x + (u)) -H d (x) = vY δ d (x, v).
with respect to a suitably defined passifying output

Y δ d (x, v). According, setting v solution to the implicit equality v = -k v Y δ d (x, v) with k v > 0 achieves asymptotic stabilization of x = (0 0 ) under damping feedback v = u δ di (q, p).

III. MAIN RESULT

The first result is based on the preservation of passivity under sampling with respect to a new output suitably defined based on discrete-time average passivity [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF]. In this case, one recovers the result in [START_REF] Costa-Castelló | On preserving passivity in sampleddata linear systems[END_REF], [START_REF] Laila | Discrete-time IDA-PBC design for underactuated hamiltonian control systems[END_REF] deduced over suitably defined approximate discrete-time models of the lossless continuous-time system (2) [START_REF] Monaco | Sampled-data stabilization; a pbc approach[END_REF]. Proposition 3.1: Consider the Acrobot dynamics (2) being lossless with respect to the output y = B M -1 (q)p Ḣ(q, p) = p M -1 (q)Bu.

(

) 16 
Then the sampled-data equivalent model [START_REF] Costa-Castelló | On preserving passivity in sampleddata linear systems[END_REF] with is lossless with respect to the modified output

Y δ (q, p, u) = 1 δ B (q + (u) -q) ( 17 
)
so verifying the dissipation equality

H(q + (u), p + (u)) -H(q, p) =δY δ (q, p, u)u =(q + (u) -q) Bu. ( 18 
)
Proof: In the lossless case, the sampled-data passivating output reduces to the time average of the continuoustime output. By integrating the continuous-time dissipation equality ( 16) over the sampling interval, one gets (k+1)δ kδ Ḣ(q(s), p(s))ds = uB (k+1)δ kδ M -1 (q(s))p(s)ds.

Substituting in the equality above q = M -1 (q)p and recalling that q + (u) = q k+1 = q((k + 1)δ) and p + (u) = p k+1 = p((k + 1)δ), one gets (18) and thus the result.

A. Sampled-data energy-shaping

The idea is to design a feedback so to make the sampleddata dynamics [START_REF] Costa-Castelló | On preserving passivity in sampleddata linear systems[END_REF] conservative with respect to the desired energy function H d (•) in [START_REF] Horibe | Nonlinear optimal control for swing up and stabilization of the acrobot via stable manifold approach: Theory and experiment[END_REF]. Namely, we design u δ es (x) : R 4 → R so to guarantee Input-Hamiltonian Matching (IHM) of the target Hamiltonian H d (x) along the continuous-time trajectories (7) when v = 0; i.e. for all x ∈ R 4

H d (x + (u δ es (x))) -H d (x) = 0.
Proposition 3.2: Consider the Acrobot dynamics (2) under the energy-shaping feedback (6) assigning the pcH structure [START_REF] Ortega | Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment[END_REF] and let (13) be its sampled-data equivalent model. Then, the IHM equality

H d (F δ (x, u)) -H(x) = (k+1)δ kδ ∇ H d (x(s))f d (x(s))ds. ( 19 
)
with f d (x) = J(q)∇H d (q, p) and J(q) in ( 8) admits a unique solution u = u δ es (x) as a series expansion in powers of δ around the continuous-time feedback

u δ es (x) = u es (x) + i>0 δ i (i + 1)! u i es (x). (20) 
Proof: Setting u = u δ es (x) in both sides of the IHM equality (19) and comparing the terms with the same power in δ, one gets the result from the Implicit Function Theorem because the rank condition B ∇H d (x) = B M -1 d p = 0 holds for p = 0. It is a matter of computations to verify that, as δ → 0, (19) is solved by the continuous-time solution [START_REF] Xin | Energy-based swing-up control for a remotely driven acrobot: Theoretical and experimental results[END_REF]. More details can be found in [START_REF] Monaco | Sampled-data stabilization; a pbc approach[END_REF].

The next result describes the passivating output that can be associated to the sampled-data dynamics in closed loop with the energy-shaping feedback computed as the solution to the matching equality (19). Theorem 3.1: Consider the Acrobot dynamics (2) with sampled-data equivalent [START_REF] Costa-Castelló | On preserving passivity in sampleddata linear systems[END_REF]. Let the control (15) with u δ es (q, p) solution to (19). Then, the closed-loop dynamics

x + (u δ es (x) + v) =x + δ F δ d (x) + g δ d (x, v)v (21) 
with

F δ d (x) =F δ (x, u δ es (x)) g δ d (x, v)v =g δ (x, u δ es (x) + v)v + g δ (x, u δ es (x) + v) -g δ (x, u δ es (x)) u δ es (x
) is stable at the upward equilibrium x = (q , 0 ) and conservative for v = 0, i.e.

H d (x + (u δ es (x))) = H d (x). Moreover, for v = 0, it is lossless H d (x + (u δ es (x) + v)) -H d (x) = Y δ d (x, v)v. ( 22 
)
with respect to the output

Y δ d (x, v) = ∇ H d | x + (u δ es (x)+v) x + (u δ es (x)) g δ d (x, v) (23) 
with discrete-gradient function defined as

∇H d | x + x = ∇V d | q + q 1 2 M -1 d (p + + p)
.

Proof: Because the energy-shaping component is solution to the IHM equality (19) and

∇ H d (x)f d (x) = ∇ H d (x)J(x)∇H d (x) = 0, one gets ∆ k H d (x) =H d (x + (u δ es (x) + v)) -H d (x) =H d (x + (u δ es (x) + v)) -H d (x + (u δ es (x))
). Exploiting the discrete gradient (1), the equality above reads

∆ k H d (x) = ∇ H d | x + (u δ es (x)+v) x + (u δ es (x)) g δ d (x, v)v = Y δ d (x, v)v.
Thus, because

H d (x ) = 0 one has ∇H d | x
x ∇H d (x ) = 0 and by the matching equality (19), the upright equilibrium is stable for the sampled-data dynamics (21). 

Y δ d (x, v) = 1 δ (k+1)δ kδ ∇ H d (x(s))Bds = 1 δ G M -1 d (k+1)δ kδ p(s)ds = 1 δ G M -1 d M (q + (u δ es + v))q + (u δ es + v) -M (q)q - 1 δ G M -1 d (k+1)δ kδ Ṁ (q(s))q(s)ds
Again, by losslessness of the continuous-time the passivating output is the time average of the continuous-time one in [START_REF] Aoues | Discrete IDA-PBC control law for newtonian mechanical port-hamiltonian systems[END_REF] but over the sampled-data trajectories under [START_REF] Nešić | Explicit computation of the sampling period in emulations of controllers for nonlinear sampleddata systems[END_REF]. Accordingly, such an output is not the same as the one deduced in [START_REF] Laila | Discrete-time IDA-PBC design for underactuated hamiltonian control systems[END_REF] which is based on an approximate discrete-time model of the dynamics.

B. Sampled-data damping injection

At this point, the main result can be stated.

Theorem 3.2: Consider the Acrobot dynamics (2) with sampled-data equivalent [START_REF] Costa-Castelló | On preserving passivity in sampleddata linear systems[END_REF]. Let the control (15) with u δ es (q, p) solution to (19). Consider the corresponding closedloop dynamics provided by (21) passive with the output (23). Then, the damping injection equality

v = -k v Y δ d (x, v), k v > 0 (24) 
admits a unique solution v = u δ di (x) in the form of a series expansion in powers of δ; namely, one gets

u δ di (x) = u di (x) + i>0 δ i (i + 1)! u i di (x) (25) 
and u di (x) the continuous-time damping feedback [START_REF] Moreschini | Stabilization of discrete port-hamiltonian dynamics via interconnection and damping assignment[END_REF]. Consequently, the piecewise constant feedback law [START_REF] Monaco | Sampled-data stabilization; a pbc approach[END_REF], with energy shaping and damping injection components solutions to (19) and ( 24) respectively, makes the upright configuration x = (q 0) asymoptotically stable for (2).

Proof: Existence of a solution to (24) in the form (25) follows from [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF] by virtue of the Implicit Function Theorem. Accordingly, substituting (24) into the dissipation equality (22) one gets

∆ k H d (x) = -k v Y δ d (x, u δ di (x)) 2 ≤ 0, k v > 0
and asymptotic stability of x = (q 0) with q = (0 0) follows by zero-state detectability of (21) with output (23).

C. Computational aspects

Similarly to the continuous-time counterpart, the sampleddata stabilizer of the upright position of the Acrobot is a PBC feedback of the form ( 14) with both components computed as the implicit solutions to the corresponding series equalities (19) and ( 24) respectively. In particular, both of them admit a power expansion in powers of δ, the sampling period, and around the continuous time solutions ( 6) and ( 11) which are, then, naturally recovered as δ → 0. Despite exact forms cannot be computed in practice, each term of the series expansions (20)-( 25) can be computed via an iterative and constructive procedure solving, at each step, a linear equality in the corresponding unknown. Substituting (20)-( 25) into ( 19)-( 24) and equating the terms with the same power of δ, one gets for the first terms u 1 es (x) =(∇ q u es (q, p))M -1 (q)p -(∇ p u es (q, p))M d M -1 (q)∇ q V d (q)

u 1 di (x) =k 2 v (u di (q, p)G M -1 d G -G M -1 (q)∇ q V d (q) -G M -1 d Gk v G M -1 d p) -k v (∇ q V d (q)M -1 (q) -p M -1 d ∇ p ∇ q H(q, p))G.
Accordingly, the feedback law [START_REF] Monaco | Sampled-data stabilization; a pbc approach[END_REF] rewrites in the form

u δ (x) = u(x) + i>0 δ i (i + 1)! u i (x), u i (x) = u i es (x) + u i di (x). (26) 
As typical under sampling, only feedback laws deduced by truncating (26) at any fixed and arbitrary order r ≥ 0 in δ can be implemented in practice. For, r th -order approximate feedback laws are formally defined as

u δ [r] (x) = u(x) + r i=1 δ i (i + 1)! u i (x) (27) 
recovering, for r = 0, the well-known emulation-based control [START_REF] Nešić | Explicit computation of the sampling period in emulations of controllers for nonlinear sampleddata systems[END_REF], typically implemented in practice. For r > 0, performances are improved by including the so-called correcting terms u i (x), for i = 1, . . . , r, ensuring practical asymptotic stability in closed loop. As a matter of fact, approximate solutions guarantee convergence of the closedloop trajectories to a ball of radius O(δ r+1 ) centered the equlibrium to stabilize [START_REF] Mattioni | Immersion and invariance stabilization of strict-feedback dynamics under sampling[END_REF]. 

IV. SIMULATIONS

Simulations reported in Fig. 2 and Fig. 3 are performed comparing the effect of the continuous-time feedback (4) with the emulation design, that is the controller (27) when setting r = 0, and the proposed approximate second-order sampled-data control, that is (27) with r = 2. The parameters considered in the simulations are displayed in Table I with k 2 = 1, k 3 = 5.9073, Γ 2 = 10, k p = 280, and k v = 12 set as in [START_REF] Mahindrakar | Further constructive results on interconnection and damping assignment control of mechanical systems: The acrobot example[END_REF] and initial condition q 0 = (-2π 3 , 0) , p 0 = (0, 0) . We notice in Fig. 2 that for small sampling periods, such as δ = 5 • 10 -3 , both the emulation and the proposed sampled-data design achieve stabilization of the Acrobot system in the upright configuration. However, the benefit of the proposed approximate controller with respect to the more standard emulation approaches of the continuous-time design (4) is emphasized in Fig. 3 for δ = 5 • 10 -2 . In fact, despite the larger sampling period, the proposed sampled-data controller stabilizes the Acrobot at its upright position, with a piecewise constant torque vanishing after few , t fin = k fin δ for r = 0, 2, and t fin = 40. The result highlights that the effort required by proposed sampled-data controller, and thus the control effort, is generally the half then the one used by the emulation design as δ increases.

V. CONCLUSIONS

In this paper, a new control scheme for stabilization of the Acrobot system at the upward equilibrium has been proposed via sampled-data PBC. The control consists of two components: the first one, whose design is based on [START_REF] Mattioni | On feedback passivation under sampling[END_REF], assigns of the system so to possess a minimum the desired equilibrium; then, damping injection is performed to guarantee asymptotic swing up. Future works concern PBC of underactuated mechanical structures at large.
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APPENDIX

The desired potential energy given in [START_REF] Laila | Discrete-time IDA-PBC design for underactuated hamiltonian control systems[END_REF], and formally computed in [START_REF] Mahindrakar | Further constructive results on interconnection and damping assignment control of mechanical systems: The acrobot example[END_REF], comes with N (q 1 ) = col(sin(q 1 ), cos(q 2 )) , Γ = col(0, Γ 2 ) for arbitrary

and constants