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A gradient descent algorithm built on approximate
discrete gradients

Alessio Moreschini1, Mattia Mattioni2, Salvatore Monaco2, and Dorothée Normand-Cyrot3

Abstract—We propose an optimization method obtained by the
approximation of a novel discretization approach for gradient
dynamics recently proposed by the authors. It is shown that the
proposed algorithm ensures convergence for all amplitudes of the
step size, contrarily to classical implementations.

Index Terms—Optimization; Nonlinear Systems; Modeling,
Simulation and CAD Tools.

I. INTRODUCTION

Over past years many researchers have been inspired by
digital-based modeling to solve intelligent tasks through ma-
chines, computers, and microprocessors, such as noise can-
cellation, image reconstruction, financial forecasting, iterative
learning [1]–[3]. Those problems are generally formulated
in terms of optimization of a certain objective function to
be minimized in a digital (discrete) environment. Recent
developments and achievements in this optimization direction
have brought to a substantial number methods intended to
achieve a satisfactory solution.

The Gradient descent (GD) method is by far the most known
optimization algorithm and used for convex optimization in
many research areas. It is a relatively simple iterative method
which exploit the gradient of the objective function to de-
termine the suitable direction of searching of its minimum.
More precisely, given an objective function, the search for an
isolated minimum relies upon the definition of a dynamics,
the so-called gradient dynamics, possessing an asymptotically
stable equilibrium at the local extremum of the objective
function. In practice, such dynamics are implemented digitally
via a discrete-time algorithm. In its standard implementation,
the search for an isolated minimum consists of an iterative
procedure computing the sampled evolution of the gradient
dynamics over time intervals of amplitude δ. In this setting,
the GD provides the search direction for the next point with
the step size δ determining how far we go in that particular
direction. In this formulation, as also the intuition suggests,
convergence is ensured when the step size (that is the fre-
quency of the update) is chosen small enough [4], [5].
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Another well-known optimization algorithm is the Newton
method. The idea behind the Newton method is that to find
the isolated minimum of a given objective function, we ap-
proximate the objective function as a second-order truncation
of its Taylor series, and then compute the minimum of that
extension, which means taking its first derivative and setting
it equal to zero, [6], [7]. The result of this procedure would be
an update rule which iteratively tends to converge towards the
isolated minimum of the objective function. However, a known
drawback of the Newton method is that it includes the inverse
of the Hessian of the objective function, which might lead to
instability as the Hessian tends to zero. Accordingly, several
modifications have been proposed with respect to its standard
formulation depending on the specific context to cope with
the arising criticalities, such as Gauss-Newton (see [8, Eq. 8])
and Regularized Newton (see [9, Eq. 31]). Yet, to the best
of the Authors’ knowledge, no solution ensuring convergence
independently of the step size is available in the literature.
Moreover, such a requirement is essential in several contexts
such as deep learning [10], iterative learning control [11], [12],
inverse map [13], observer design [14], and barrier functions
[15], where the amplitude of the step size cannot be apriori
fixed.

This work is inspired by the recent contribution of the
authors [16], [17] where an exact sampled-data equivalent
model to a gradient dynamics has been computed. It results
that the discrete-time dynamics is implicitly defined via the
discrete-gradient function [18]–[20]. Since such a dynamics
represents exactly the dynamics of the gradient at the sampling
instants (corresponding to the step size), one can naturally
raise the question: is it possible to define an optimization
algorithm based on a suitably computed approximation of the
discrete equivalent dynamics? It is shown that, for a class of
objective functions, the approximation of the discrete gradient
at the first order provides a modified algorithm ensuring
convergence independently on the step-size. The update rule
is now realized by moving along a modified direction which
inversely depends on the Hessian of the involved function.
Several examples illustrate the benefits of the proposed method
with respect to several choices of the step-size with respect to
the number of steps required for converging.

The paper is organized as follows. In Section II we present
the problem statement and the necessary background. In
Section IV we state the main result proposing a new opti-
mization algorithm based on the approximation of the discrete
equivalent dynamics. In Section IV the result is applied by



means of two training examples. Finally, Section V concludes
the paper.

Notation: Throughout the paper all functions and vector
fields are assumed smooth and complete over the respective
definition spaces. R and N denote, respectively, the set of real
and natural numbers including 0. For any vector v ∈ Rn, v⊤

defines the transpose of v. Given a real-valued differentiable
function S(·) : Rn → R, ∇S(·) represents its vector gradient
function when ∇ denotes the Rn vector of partial derivatives
as ∇2S(·) represents its Hessian matrix.

II. RECALLS AND PROBLEM STATEMENT

In this paper we focus on the unconstrained optimization
problem concerning the minimum seeking of the objective
function S(·) : Rn → R, that is

min
x∈Rn

S(x). (1)

We assume the optimization problem with a non-empty solu-
tion set X⋆ defined as

X⋆ = {x ∈ Rn | ∇S(x) = 0 and ∇2S(x) ≻ 0},

containing all (local) minima of the objective function S(x). In
the following, we will say the optimization problem is locally
solved if we compute x⋆ ∈ X⋆ from an initial condition x0 =
x(0) ∈ Rn contained in a neighborhood of x⋆, say

x0 ∈ Bϵ(x⋆) = {x ∈ Rn | ||x− x⋆|| < ϵ, for ϵ > 0}.

The objective function is assumed to be ℓ-smooth [7], i.e.

S(y) ≤ S(x) +∇⊤S(x)(y − x) +
ℓ

2
||y − x||2 (2)

for all x, y ∈ Rn and ℓ > 0. For twice-differentiable objective
functions, the condition (2) yields a boundary condition upon
the Hessian matrix, that is

∇2S(x) ⪯ ℓI, (3)

which is typically a reasonable assumption in many optimiza-
tion problems, see [7], [21], [22].

One popular and consolidated approach solving (1) is the
gradient descent (GD) method [21]–[23]. The GD algorithm
finds a local minimum x⋆ starting from an initial guess
by iteratively proceeding along the negative gradient of the
objective function. In particular, for a given initial guess
x0 = x(0) ∈ Rn, the GD aims at iteratively updating the point
xk = x(k), for k ∈ N, using information upon the steepest
descent of the objective function, i.e.

xk+1 = xk − δ∇S(xk) (4)

where δ > 0 denotes the step-size, or learning rate as known
in the machine learning context. Methods of the form (4)
are first-order optimization method and their strength is the
low computational complexity. However, their convergence is
ensured only for δ sufficiently small. As a matter of fact, the
method (4) leads to instabilities of the algorithm for large
choices of the step size [4], [5], and thus generally one needs
additional conditions to regulate the step-size, [24], [25].

Other popular algorithms for solving (1) are second-order
optimization methods, usually known as Newton’s methods,
[8], [9], [26], [27]. These are methods which attempt to solve
(1) by constructing an algorithm upon a sequence of second-
order Taylor approximations of the objective function around
the iterates, [26]. In the sequel we present the most known
methods.

The first most known method is the Standard Newton (SN),
which is given by the following (see e.g. [9, Eq. 29] and [27,
Eq. 2])

xk+1 = xk − δ(∇2S(xk))
−1∇S(xk). (5)

Although this method is generally very fast and improves
the seeking of the minimum by means of the information upon
the curvature of the objective function, its main drawback is
that the minimum seeking becomes inefficient in the proximity
to x⋆ due to the inverse of the Hessian. To overcome this inef-
ficiency, numerous modifications have been proposed, where
the most common are: the Gauss-Newton (GN) method (see
[8, Eq. 8])

xk+1 = xk − δ
(
µ+ ||∇S(xk)||2

)−1∇S(xk), (6)

involving a freely tunable parameter µ, and the Regularized
Newton (RN) method (see [9, Eq. 31])

xk+1 = xk − δ
(
||∇S(xk)||I +∇2S(xk)

)−1∇S(xk). (7)

All the aforementioned methods suffers from the choice
of the step-size parameter, and additional pre-computation
conditions must be verified, [24], [25].

On the basis of the foregoing considerations and invoking
differential arguments, one can see that for initial conditions
sufficiently close to x⋆ the evolutions described by the follow-
ing equation

ẋ = −ρ∇S(x), ρ > 0. (8)

locally converge toward x⋆ with a decay rate modulated by the
choice of ρ, and with the variation of the objective described
by

Ṡ(x) = −ρ||∇S(x)||2 ≤ 0. (9)

This variation of the objective function, along the direction
governed by (8), can be represented through the discrete
gradient function [18], that is a vector-valued function ∇̄S|wv :
Rn × Rn → Rn which satisfies

S(y)− S(x) = (y − x)⊤∇̄S|yx, (10)

for all x, y ∈ Rn with ∇̄S|xx = ∇S(x).
Now the question is, how to deduce from the gradient

dynamics (8) an iterative procedure that computes y from
x ensuring decreasing along the objective function towards
x⋆ while preserving the discrete gradient constraint (10)? To
solve this problem, it comes to our aid the result recently
proposed by the authors in [16], [17] where the problem of the
characterization of a discrete-time model [19] describing the



sampled evolution of a gradient dynamics has been addressed.
The result is formally restated below.

Theorem 2.1 ( [16]): Given the differential gradient dy-
namics (8), then for all δ ∈]0, T [, its sampled-data equivalent
dynamics admits the implicit representation

xk+1 − xk = F δ(xk) := −δIδ(xk)∇̄S|xk+1
xk

(11)

with xk+1 = x((k+1)δ), xk = x(kδ), and non-singular square
matrix

Iδ(x) = ρM δ(x)(I − δρQδ(x))−1, (12)

where

Mδ(x) =
1

δ

∫ δ

0

J [e−sρ∇Sx]ds,

Qδ(x) =
(∫ 1

0

s

∫ 1

0

J [∇S](x+ τ(sF δ(x)))dτds
)
M δ(x).

The proposed discrete dynamics (11), that is implicitly de-
fined due to the discrete gradient function, match the variation
of the function S(·) at the sampling instants, i.e.

S(xk+1)−S(xk) = −δ∇̄⊤S|xk+1
xk
Iδ(xk)∇̄S|xk+1

xk
≤ 0. (13)

As a matter of fact, the abovementioned result would
suggest to exploit (11) as an iterative procedure to solve
the optimization problem (1). However, since only power
series expansion of this dynamics can be computed (see [16],
[17]), the crucial question is whether we can use satisfactory
approximations of the dynamics (11) to solve the optimization
problem (1).

In this paper we propose an iterative procedure obtained by
performing suitable approximations of the implicit dynamics
(11). The resulting algorithm is explicitly defined, and for
objective functions satisfying the ℓ-smooth condition with
ℓ > 0, converges towards x⋆ for all finite fixed step-size. In
addition, if also the Polyak-Łojasiewicz (PL) condition [22] is
satisfied, i.e. for 0 < λ ≤ 1

1

2
||∇S(x)||2 ≥ 1

2λℓ
(S(x)− S(x⋆)), (14)

we show that the proposed method arises with a linear con-
vergence rate.

III. MAIN RESULT

The proposed iteration method is presented in the following
statement.

Theorem 3.1: Consider the problem (1) with non-empty
solution set X⋆ and assume S(·) : Rn → R to be ℓ-smooth and
twice-differentiable. Then, for all x0 ∈ Bϵ(x⋆), the one-step
numerical procedure

xk+1 = xk − δ

(
I +

δ

2
∇2S(xk)

)−1

∇S(xk), (15)

locally solves the optimization problem (1).

Proof: The procedure (15) is obtained approximating Iδ(x)
and ∇̄S|xk+1

xk into the right-hand side of (11). In particular,
from [16] one has

Iδ(x) = I − δ2

12
∇2S(x)∇2S(x) +O(δ4)

∇̄S|xk+1
xk

=∇S(xk)+
1

2
∇2S(xk)(xk+1−xk)+O(∥xk+1−xk||2),

and, substituting them into (11), one gets

xk+1−xk = −δ(∇S(xk)+
1

2
∇2S(xk)(xk+1 − xk))+O(δ3).

By truncating the above implicit equation in O(δ3), one
obtains the explicit representation (15) because

xk+1 = xk − δ∇S(xk)−
δ

2
∇2S(xk)(xk+1 − xk)

= xk − δ

(
I +

δ

2
∇2S(xk)

)−1

∇S(xk).

Then, S(x) has a local minimum x⋆ ∈ X⋆ and thus its
derivative vanishes at x⋆, i.e ∇S(x⋆) = 0, and this implies
that x⋆ is an equilibrium of (15) since x⋆ is also contained in
the set {

x ∈ Rn |
(
I +

δ

2
∇2S(x)

)−1

∇S(x) = 0

}
.

Then, substituting the approximate model (15) into the ℓ-
smooth condition (2), one gets the variation inequality

S(xk+1)−S(xk)≤∇⊤S(xk)(xk+1−xk)+
ℓ

2
||(xk+1−xk)||2

= −δ∇⊤S(xk)

(
I +

δ

2
∇2S(xk)

)−1

∇S(xk)

+
δ2ℓ

2

∣∣∣∣∣∣ (I + δ

2
∇2S(xk)

)−1

∇S(xk)
∣∣∣∣∣∣2.

Because S(x) is assumed twice-differentiable, from (3) one
directly deduces(

1 +
δℓ

2

)−1

I ⪯
(
I +

δ

2
∇2S(x)

)−1

,

so that at the boundary case, for all ℓ > 0 and δ > 0, the
variation inequality for all xk ̸= x⋆ reads

S(xk+1)− S(xk) <− δ∇⊤S(xk)

(
1 +

δℓ

2

)−1

∇S(xk)

+
δ2ℓ

2

∣∣∣∣∣∣ (1 + δℓ

2

)−1

∇S(xk)
∣∣∣∣∣∣2

=− 4δ

(2 + δℓ)2
||∇S(xk)||2 < 0, (16)

and since S(xk+1) − S(xk) = 0 only for xk = x⋆, this
provides convergence of the sequence (15) toward x⋆ for all
x0 ∈ Bϵ(x⋆).

◁

The representation of the proposed model (11) defines an
approximation of the model occurred over the discrete gradient



that does not match the evolution of S(x) with respect to the
differential model (8) for any value of δ. Unlike Newton’s
methods in (5), (6), and (7), the proposed model (15) for δ → 0
converges to the standard GD method (4), namely

lim
δ→0

(
I +

δ

2
∇2S(x)

)−1

∇S(x) = ∇S(x).

In the following, exploiting the assumption made in [22] for
Gradient descent dynamics of the form (4), we show that the
proposed method (15) comes with a linear rate of convergence
for all step-size δ ∈]0,+∞[ when assuming the objective
function satisfying also the PL condition (14). This result is
stated below.

Corollary 3.1: Assume that the problem (1) has a non-empty
solution set X⋆ with an objective function S(·) : Rn → R that
is twice-differentiable, ℓ-smooth with ℓ > 0, and for 0 < λ ≤
1 satisfies (14). Then, for all x0 ∈ Bϵ(x⋆), (15) converges for
any step-size δ ∈]0,+∞[, with a linear convergence rate

S(xk)− S(x⋆) ≤ Ωk (S(x0)− S(x⋆)) , (17)

and decay term

Ω =

(
1− 8δℓλ

(2 + δℓ)2

)
, (18)

verifying |Ω| < 1.
Proof: By using the PL condition (14), namely

−||∇S(xk)||2 ≤ −2λℓ(S(xk)− S(x⋆)),

and substituting it into the convergence rate (16) one gets in
the boundary case the following variation inequality

S(xk+1) ≤ S(xk)−
4δ

(2 + δℓ)2
||∇S(xk)||2

≤ S(xk)−
4δ

(2 + δℓ)2
(2λℓ(S(xk)− S(x⋆)))

=S(xk)+S(x⋆)−S(x⋆)−
8δℓλ

(2 + δℓ)2
(S(xk)−S(x⋆))

≤ S(x⋆) +

(
1− 8δℓλ

(2 + δℓ)2

)
(S(xk)− S(x⋆))

which leads in the whole time horizon k ∈ [0,∞[ the upper
bound upon the variation of the objective function

S(xk)− S(x⋆) ≤
(
1− 8δℓλ

(2 + δℓ)2

)
(S(xk−1)− S(x⋆))

=

(
1− 8δℓλ

(2 + δℓ)2

)k

(S(x0)− S(x⋆)).

Finally, due to the definition space of λ and ℓ, i.e. λ ∈]0, 1]
and ℓ ∈]0,∞[, for any step-size δ ∈]0,∞[ one gets

|Ω| =
∣∣∣∣1− 8δℓλ

(2 + δℓ)2

∣∣∣∣ < 1,

which implies that the right-hand side of (17) is approaching
zero since Ωk → 0 as k →∞. ◁

Differently from the result in [22], the proposed model
shows a linear convergence rate provided by the decay term

Fig. 1: Surface depicting Ω with λ ∈]0, 1] and δℓ ∈]0,∞[.

Ω for all ℓ, δ ∈]0,∞[ and λ ∈]0, 1] as depicted in Fig. 1. As a
matter of fact, for x0 sufficiently close to x⋆, the method (15)
always provides finite convergence without involving other
methods to regulate the step-size, as in [24], [25].

IV. EXAMPLES

In this section we investigate two training standard problems
in machine learning like logistic regression and least squares
to provide numerical evidence of the proposed method, based
upon the proposed method in Theorem 3.1 showing linear
convergence rate in Corollary 3.1. The implementation of the
proposed method (15) is reported in Algorithm 1 considering

Algorithm 1:
Result: xk

initialize x0 and k ← 0;
define step-size δ and tolerance ε;
while |S(xk+1)− S(xk)| > ε do

gk ← −
(
I + δ

2∇
2S(xk)

)−1∇S(xk);
xk+1 ← xk + δgk;
k ← k + 1;

end

an initial guess x0 and arbitrary tolerance ε, needed to
determine whether the sequence xk has arrived close to the
minimum point x⋆. Simulations have been performed using
Matlab on an Intel(R) Core(TM) i7-8550U CPU and 16.0 GB
RAM.

A. Training Example 1

Consider a toy example assuming an objective function S :
R → R with the unconstrained optimization problem (see,
Example 1.4.3 in [28])

min
x∈R

S(x) = log(exp(x) + 1)− x

2
+

x2

2
(19)

The function (19) is ℓ-smooth and satisfies (14), and the
proposed model takes the form xk+1 = xk + δg(xk) with

g(x)=
(exp(x) + 1) (2x+ exp(x) + 2x exp(x)− 1)

2(1+2 exp(x)+exp(2x))+δ(1+3 exp(x)+exp(2x))
.
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Fig. 2: Number of iterations for minimizing (19)

Simulations: Simulations reported in Fig. 2 and Fig. 3
compare the behaviour of the proposed second-order method
(15) with the gradient descent in (4), Standard Newton in
(5), Gauss Newton in (6), and Regularized Newton in (7).
In particular, Fig. 2 shows the number of iterations required
by each method to solve (19) for different step-sizes, and Fig.
3 shows the computational cost, that is the time required by
each algorithm to solve (19). In this scenario, we consider
tolerance ε = 10−8, initial condition x0 = −0.5, and
step-size δ ∈ [10−2, 102]. Figures highlight that, unlike the
proposed method (15), all the other involved optimization
methods explode after a certain value of the step-size and no
longer solve the minimization problem (19) for values of δ
sufficiently large. In particular, the standard gradient method
(4) for small step-sizes seems the fastest, as it converges with
fewer iterations than the other methods, but it is also the
first method to explode and fail to solve (19) for δ > 1.5.
The Standard Newton (5) and Regularized Newton (7) shows
roughly the same performance. Although for small step-sizes
the methods are relatively slow compared to the standard
gradient, both methods solve the problem for slightly larger
values of the step-size, i.e. δ ≈ 2. The Gauss Newton (6)
for small step-sizes is the slower method but it converges to
the minimum for a larger range of δ than the other methods.
Differently form the others, the proposed method is the only
one that does not explode after a certain value of δ and solve
(19) for larger step-sizes, such as δ ≈ 102. Moreover, for small
step-sizes the algorithm is fast as the standard gradient and
achieves the minimum of the objective function with similar
performance and similar time of convergence, as seen in Fig.
3. Finally, the best performance of the proposed method for
(19) is achieved with δ ≈ 1.6.

B. Training Example 2

For sake of illustration, we consider now an objective
function S : Rn → R, of the form

min
x∈Rn

S(x) =
1

2

n∑
i=1

(αixi − bi)
2, (20)
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Fig. 3: Elapsed time for minimizing (19)

generally used as loss function describing the error of the
difference between bi ∈ R (playing the role of given data)
and xi ∈ R (playing the role of predicted data) with model
parameter αixi ∈ R. The function (20) belongs to the class
of objective functions satisfying (14). In particular, straight-
forward computations yield

∇S=

α2
1x1−α1b1

...
α2
nxn−αnbn

 ,∇2S=

α2
1 · · · 0
...

. . .
...

0 · · · α2
n


with x⊤

⋆=
(
α−1
1 b1

... α−1
n bn

)⊤
and thus from the ℓ-smooth

condition and (14) one gets

ℓ ∈

]
0,max

x

(
n∑

i=1

(xiαi − bi)
2

(xi − α−1
i bi)2

)]
, λ ≤

n∑
i=1

α2
i

ℓ
.

The upper-boundary condition of ℓ provides λ is contained
in its definition set λ ∈]0, 1]. Finally, the proposed model
yields the structure xk+1 = xk + δg(xk) with

g(x) =
(

2α1(α1x1−b1)
2+δα2

1
· · · 2αn(α1xn−bn)

2+δα2
n

)⊤
. (21)

Simulations. Simulations reported in Fig. 4 and Fig. 5
compare the behaviour of the proposed second-order method
(15) with the gradient descent in (4), Standard Newton in (5),
Gauss Newton in (6), and Regularized Newton in (7). In the
simulations we fix n = 200 and random initial conditions,
αi = 5, bi = 1, tolerance ε = 10−8 and δ ∈ [10−2, 102].

V. CONCLUSIONS

In this paper we took the idea from the approximation
of sampled-data equivalent gradient dynamics in [16], [17]
and proposed an easily implementable algorithm to solve a
class of optimization problems. Under standard assumption on
the objective function, we proved that the proposed method
solves the minimization problem for any arbitrarily chosen
step-size. Two numerical examples illustrate the advantage of
the proposed algorithm when compared with some popular
optimization methods. This first achievement in the optimiza-
tion context paves the way for further investigations upon the
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Fig. 4: Number of iterations for minimizing (20)

convergence properties due to higher-order approximations of
the gradient dynamics of the form (11). Future works are
aimed at applying this method in real-time optimal control
involving, for instance, sampled-data MPC [29], [30].
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