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We propose an optimization method obtained by the approximation of a novel discretization approach for gradient dynamics recently proposed by the authors. It is shown that the proposed algorithm ensures convergence for all amplitudes of the step size, contrarily to classical implementations.

I. INTRODUCTION

Over past years many researchers have been inspired by digital-based modeling to solve intelligent tasks through machines, computers, and microprocessors, such as noise cancellation, image reconstruction, financial forecasting, iterative learning [START_REF] Ghosh | Comparative study of financial time series prediction by neural network with gradient descent learning[END_REF]- [START_REF] Shang | Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era[END_REF]. Those problems are generally formulated in terms of optimization of a certain objective function to be minimized in a digital (discrete) environment. Recent developments and achievements in this optimization direction have brought to a substantial number methods intended to achieve a satisfactory solution.

The Gradient descent (GD) method is by far the most known optimization algorithm and used for convex optimization in many research areas. It is a relatively simple iterative method which exploit the gradient of the objective function to determine the suitable direction of searching of its minimum. More precisely, given an objective function, the search for an isolated minimum relies upon the definition of a dynamics, the so-called gradient dynamics, possessing an asymptotically stable equilibrium at the local extremum of the objective function. In practice, such dynamics are implemented digitally via a discrete-time algorithm. In its standard implementation, the search for an isolated minimum consists of an iterative procedure computing the sampled evolution of the gradient dynamics over time intervals of amplitude δ. In this setting, the GD provides the search direction for the next point with the step size δ determining how far we go in that particular direction. In this formulation, as also the intuition suggests, convergence is ensured when the step size (that is the frequency of the update) is chosen small enough [4], [START_REF] Gannot | A frequency-domain analysis of inexact gradient methods[END_REF].

{mattia.mattioni,salvatore .monaco}@uniroma1.it dorothee.normand-cyrot@centralesupelec.fr Another well-known optimization algorithm is the Newton method. The idea behind the Newton method is that to find the isolated minimum of a given objective function, we approximate the objective function as a second-order truncation of its Taylor series, and then compute the minimum of that extension, which means taking its first derivative and setting it equal to zero, [START_REF]The theory of newton's method[END_REF], [START_REF] Boyd | Convex optimization[END_REF]. The result of this procedure would be an update rule which iteratively tends to converge towards the isolated minimum of the objective function. However, a known drawback of the Newton method is that it includes the inverse of the Hessian of the objective function, which might lead to instability as the Hessian tends to zero. Accordingly, several modifications have been proposed with respect to its standard formulation depending on the specific context to cope with the arising criticalities, such as Gauss-Newton (see [START_REF] Tan | Review of second-order optimization techniques in artificial neural networks backpropagation[END_REF]Eq. 8]) and Regularized Newton (see [START_REF] Polyak | Regularized newton method for unconstrained convex optimization[END_REF]Eq. 31]). Yet, to the best of the Authors' knowledge, no solution ensuring convergence independently of the step size is available in the literature. Moreover, such a requirement is essential in several contexts such as deep learning [10], iterative learning control [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF], [START_REF] Turrisi | On-line learning for planning and control of underactuated robots with uncertain dynamics[END_REF], inverse map [START_REF] Menini | A newton-like algorithm to compute the inverse of a nonlinear map that converges in finite time[END_REF], observer design [START_REF] Astolfi | Design of local observers for autonomous nonlinear systems not in observability canonical form[END_REF], and barrier functions [START_REF] Astolfi | Redesign of discrete-time nonlinear observers with state estimate constrained in prescribed convex set[END_REF], where the amplitude of the step size cannot be apriori fixed.

This work is inspired by the recent contribution of the authors [16], [START_REF] Moreschini | Gradient and hamiltonian dynamics under sampling[END_REF] where an exact sampled-data equivalent model to a gradient dynamics has been computed. It results that the discrete-time dynamics is implicitly defined via the discrete-gradient function [START_REF] Mclachlan | Geometric integration using discrete gradients[END_REF]- [START_REF] Mattioni | Quaternion-based attitude stabilization via discrete-time ida-pbc[END_REF]. Since such a dynamics represents exactly the dynamics of the gradient at the sampling instants (corresponding to the step size), one can naturally raise the question: is it possible to define an optimization algorithm based on a suitably computed approximation of the discrete equivalent dynamics? It is shown that, for a class of objective functions, the approximation of the discrete gradient at the first order provides a modified algorithm ensuring convergence independently on the step-size. The update rule is now realized by moving along a modified direction which inversely depends on the Hessian of the involved function. Several examples illustrate the benefits of the proposed method with respect to several choices of the step-size with respect to the number of steps required for converging.

The paper is organized as follows. In Section II we present the problem statement and the necessary background. In Section IV we state the main result proposing a new optimization algorithm based on the approximation of the discrete equivalent dynamics. In Section IV the result is applied by means of two training examples. Finally, Section V concludes the paper.

Notation: Throughout the paper all functions and vector fields are assumed smooth and complete over the respective definition spaces. R and N denote, respectively, the set of real and natural numbers including 0. For any vector v ∈ R n , v ⊤ defines the transpose of v. Given a real-valued differentiable function S(•) : R n → R, ∇S(•) represents its vector gradient function when ∇ denotes the R n vector of partial derivatives as ∇ 2 S(•) represents its Hessian matrix.

II. RECALLS AND PROBLEM STATEMENT

In this paper we focus on the unconstrained optimization problem concerning the minimum seeking of the objective function S(•) : R n → R, that is

min x∈R n S(x). (1) 
We assume the optimization problem with a non-empty solution set X ⋆ defined as

X ⋆ = {x ∈ R n | ∇S(x) = 0 and ∇ 2 S(x) ≻ 0},
containing all (local) minima of the objective function S(x). In the following, we will say the optimization problem is locally solved if we compute x ⋆ ∈ X ⋆ from an initial condition

x 0 = x(0) ∈ R n contained in a neighborhood of x ⋆ , say x 0 ∈ B ϵ (x ⋆ ) = {x ∈ R n | ||x -x ⋆ || < ϵ, for ϵ > 0}.
The objective function is assumed to be ℓ-smooth [START_REF] Boyd | Convex optimization[END_REF], i.e.

S(y) ≤ S(x)

+ ∇ ⊤ S(x)(y -x) + ℓ 2 ||y -x|| 2 (2) 
for all x, y ∈ R n and ℓ > 0. For twice-differentiable objective functions, the condition (2) yields a boundary condition upon the Hessian matrix, that is

∇ 2 S(x) ⪯ ℓI, (3) 
which is typically a reasonable assumption in many optimization problems, see [START_REF] Boyd | Convex optimization[END_REF], [START_REF] Bertsekas | Nonlinear Programming: 3rd Edition[END_REF], [START_REF] Karimi | Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition[END_REF]. One popular and consolidated approach solving (1) is the gradient descent (GD) method [START_REF] Bertsekas | Nonlinear Programming: 3rd Edition[END_REF]- [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF]. The GD algorithm finds a local minimum x ⋆ starting from an initial guess by iteratively proceeding along the negative gradient of the objective function. In particular, for a given initial guess x 0 = x(0) ∈ R n , the GD aims at iteratively updating the point x k = x(k), for k ∈ N, using information upon the steepest descent of the objective function, i.e.

x k+1 = x k -δ∇S(x k ) (4) 
where δ > 0 denotes the step-size, or learning rate as known in the machine learning context. Methods of the form (4) are first-order optimization method and their strength is the low computational complexity. However, their convergence is ensured only for δ sufficiently small. As a matter of fact, the method (4) leads to instabilities of the algorithm for large choices of the step size [4], [START_REF] Gannot | A frequency-domain analysis of inexact gradient methods[END_REF], and thus generally one needs additional conditions to regulate the step-size, [START_REF] Zhou | Gradient methods with adaptive stepsizes[END_REF], [START_REF] Frassoldati | On adaptive step-size selections in gradient methods[END_REF].

Other popular algorithms for solving (1) are second-order optimization methods, usually known as Newton's methods, [START_REF] Tan | Review of second-order optimization techniques in artificial neural networks backpropagation[END_REF], [START_REF] Polyak | Regularized newton method for unconstrained convex optimization[END_REF], [START_REF] Ketabchi | Computing minimum norm solution of linear systems of equations by the generalized newton method[END_REF], [START_REF] Rebentrost | Quantum gradient descent and newton's method for constrained polynomial optimization[END_REF]. These are methods which attempt to solve (1) by constructing an algorithm upon a sequence of secondorder Taylor approximations of the objective function around the iterates, [START_REF] Ketabchi | Computing minimum norm solution of linear systems of equations by the generalized newton method[END_REF]. In the sequel we present the most known methods.

The first most known method is the Standard Newton (SN), which is given by the following (see e.g. [START_REF] Polyak | Regularized newton method for unconstrained convex optimization[END_REF]Eq. 29] and [27, Eq. 2])

x k+1 = x k -δ(∇ 2 S(x k )) -1 ∇S(x k ). (5) 
Although this method is generally very fast and improves the seeking of the minimum by means of the information upon the curvature of the objective function, its main drawback is that the minimum seeking becomes inefficient in the proximity to x ⋆ due to the inverse of the Hessian. To overcome this inefficiency, numerous modifications have been proposed, where the most common are: the Gauss-Newton (GN) method (see [START_REF] Tan | Review of second-order optimization techniques in artificial neural networks backpropagation[END_REF]Eq. 8])

x k+1 = x k -δ µ + ||∇S(x k )|| 2 -1 ∇S(x k ), (6) 
involving a freely tunable parameter µ, and the Regularized Newton (RN) method (see [9, Eq. 31])

x k+1 = x k -δ ||∇S(x k )||I + ∇ 2 S(x k ) -1 ∇S(x k ). (7) 
All the aforementioned methods suffers from the choice of the step-size parameter, and additional pre-computation conditions must be verified, [START_REF] Zhou | Gradient methods with adaptive stepsizes[END_REF], [START_REF] Frassoldati | On adaptive step-size selections in gradient methods[END_REF].

On the basis of the foregoing considerations and invoking differential arguments, one can see that for initial conditions sufficiently close to x ⋆ the evolutions described by the following equation

ẋ = -ρ∇S(x), ρ > 0. ( 8 
)
locally converge toward x ⋆ with a decay rate modulated by the choice of ρ, and with the variation of the objective described by

Ṡ(x) = -ρ||∇S(x)|| 2 ≤ 0. (9) 
This variation of the objective function, along the direction governed by [START_REF] Tan | Review of second-order optimization techniques in artificial neural networks backpropagation[END_REF], can be represented through the discrete gradient function [START_REF] Mclachlan | Geometric integration using discrete gradients[END_REF], that is a vector-valued function ∇S| w v : R n × R n → R n which satisfies sampled evolution of a gradient dynamics has been addressed. The result is formally restated below.

Theorem 2.1 ( [16]):

Given the differential gradient dynamics [START_REF] Tan | Review of second-order optimization techniques in artificial neural networks backpropagation[END_REF], then for all δ ∈]0, T [, its sampled-data equivalent dynamics admits the implicit representation

x k+1 -x k = F δ (x k ) := -δI δ (x k ) ∇S| x k+1
x k [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF] with x k+1 = x((k+1)δ), x k = x(kδ), and non-singular square matrix

I δ (x) = ρM δ (x)(I -δρQ δ (x)) -1 , (12) 
where

M δ (x) = 1 δ δ 0 J[e -sρ∇S x]ds, Q δ (x) = 1 0 s 1 0 J[∇S](x + τ (sF δ (x)))dτ ds M δ (x).
The proposed discrete dynamics [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF], that is implicitly defined due to the discrete gradient function, match the variation of the function S(•) at the sampling instants, i.e.

S(x

k+1 )-S(x k ) = -δ ∇⊤ S| x k+1 x k I δ (x k ) ∇S| x k+1 x k ≤ 0. ( 13 
)
As a matter of fact, the abovementioned result would suggest to exploit [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF] as an iterative procedure to solve the optimization problem (1). However, since only power series expansion of this dynamics can be computed (see [16], [START_REF] Moreschini | Gradient and hamiltonian dynamics under sampling[END_REF]), the crucial question is whether we can use satisfactory approximations of the dynamics [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF] to solve the optimization problem [START_REF] Ghosh | Comparative study of financial time series prediction by neural network with gradient descent learning[END_REF].

In this paper we propose an iterative procedure obtained by performing suitable approximations of the implicit dynamics [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF]. The resulting algorithm is explicitly defined, and for objective functions satisfying the ℓ-smooth condition with ℓ > 0, converges towards x ⋆ for all finite fixed step-size. In addition, if also the Polyak-Łojasiewicz (PL) condition [START_REF] Karimi | Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition[END_REF] is satisfied, i.e. for 0 < λ ≤ 1

1 2 ||∇S(x)|| 2 ≥ 1 2λℓ (S(x) -S(x ⋆ )), (14) 
we show that the proposed method arises with a linear convergence rate.

III. MAIN RESULT

The proposed iteration method is presented in the following statement.

Theorem 3.1: Consider the problem (1) with non-empty solution set X ⋆ and assume S(•) : R n → R to be ℓ-smooth and twice-differentiable. Then, for all x 0 ∈ B ϵ (x ⋆ ), the one-step numerical procedure

x k+1 = x k -δ I + δ 2 ∇ 2 S(x k ) -1 ∇S(x k ), (15) 
locally solves the optimization problem [START_REF] Ghosh | Comparative study of financial time series prediction by neural network with gradient descent learning[END_REF].

Proof: The procedure ( 15) is obtained approximating I δ (x) and ∇S|

x k+1 x k into the right-hand side of [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF]. In particular, from [16] one has

I δ (x) = I - δ 2 12 ∇ 2 S(x)∇ 2 S(x) + O(δ 4 ) ∇S| x k+1 x k =∇S(x k )+ 1 2 ∇ 2 S(x k )(x k+1 -x k )+O(∥x k+1 -x k || 2 ),
and, substituting them into [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF], one gets

x k+1 -x k = -δ(∇S(x k )+ 1 2 ∇ 2 S(x k )(x k+1 -x k ))+O(δ 3 ).
By truncating the above implicit equation in O(δ 3 ), one obtains the explicit representation (15) because

x k+1 = x k -δ∇S(x k )- δ 2 ∇ 2 S(x k )(x k+1 -x k ) = x k -δ I + δ 2 ∇ 2 S(x k ) -1 ∇S(x k ).
Then, S(x) has a local minimum x ⋆ ∈ X ⋆ and thus its derivative vanishes at x ⋆ , i.e ∇S(x ⋆ ) = 0, and this implies that x ⋆ is an equilibrium of ( 15) since x ⋆ is also contained in the set

x ∈ R n | I + δ 2 ∇ 2 S(x) -1 ∇S(x) = 0 .
Then, substituting the approximate model ( 15) into the ℓsmooth condition (2), one gets the variation inequality

S(x k+1 )-S(x k ) ≤ ∇ ⊤ S(x k )(x k+1 -x k )+ ℓ 2 ||(x k+1 -x k )|| 2 = -δ∇ ⊤ S(x k ) I + δ 2 ∇ 2 S(x k ) -1 ∇S(x k ) + δ 2 ℓ 2 I + δ 2 ∇ 2 S(x k ) -1 ∇S(x k ) 2 .
Because S(x) is assumed twice-differentiable, from (3) one directly deduces

1 + δℓ 2 -1 I ⪯ I + δ 2 ∇ 2 S(x) -1
, so that at the boundary case, for all ℓ > 0 and δ > 0, the variation inequality for all

x k ̸ = x ⋆ reads S(x k+1 ) -S(x k ) < -δ∇ ⊤ S(x k ) 1 + δℓ 2 -1 ∇S(x k ) + δ 2 ℓ 2 1 + δℓ 2 -1 ∇S(x k ) 2 = - 4δ (2 + δℓ) 2 ||∇S(x k )|| 2 < 0, (16) 
and since S(x k+1 ) -S(x k ) = 0 only for x k = x ⋆ , this provides convergence of the sequence (15) toward x ⋆ for all x 0 ∈ B ϵ (x ⋆ ). ◁

The representation of the proposed model [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF] defines an approximation of the model occurred over the discrete gradient that does not match the evolution of S(x) with respect to the differential model ( 8) for any value of δ. Unlike Newton's methods in ( 5), [START_REF]The theory of newton's method[END_REF], and ( 7), the proposed model ( 15) for δ → 0 converges to the standard GD method (4), namely

lim δ→0 I + δ 2 ∇ 2 S(x) -1

∇S(x) = ∇S(x).

In the following, exploiting the assumption made in [START_REF] Karimi | Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition[END_REF] for Gradient descent dynamics of the form (4), we show that the proposed method ( 15) comes with a linear rate of convergence for all step-size δ ∈]0, +∞[ when assuming the objective function satisfying also the PL condition ( 14). This result is stated below.

Corollary 3.1: Assume that the problem (1) has a non-empty solution set X ⋆ with an objective function S(•) : R n → R that is twice-differentiable, ℓ-smooth with ℓ > 0, and for 0 < λ ≤ 1 satisfies [START_REF] Astolfi | Design of local observers for autonomous nonlinear systems not in observability canonical form[END_REF]. Then, for all x 0 ∈ B ϵ (x ⋆ ), (15) converges for any step-size δ ∈]0, +∞[, with a linear convergence rate

S(x k ) -S(x ⋆ ) ≤ Ω k (S(x 0 ) -S(x ⋆ )) , (17) 
and decay term

Ω = 1 - 8δℓλ (2 + δℓ) 2 , ( 18 
)
verifying |Ω| < 1. Proof: By using the PL condition ( 14), namely

-||∇S(x k )|| 2 ≤ -2λℓ(S(x k ) -S(x ⋆ )),
and substituting it into the convergence rate (16) one gets in the boundary case the following variation inequality

S(x k+1 ) ≤ S(x k ) - 4δ (2 + δℓ) 2 ||∇S(x k )|| 2 ≤ S(x k ) - 4δ (2 + δℓ) 2 (2λℓ(S(x k ) -S(x ⋆ ))) = S(x k )+S(x ⋆ )-S(x ⋆ )- 8δℓλ (2 + δℓ) 2 (S(x k )-S(x ⋆ )) ≤ S(x ⋆ ) + 1 - 8δℓλ (2 + δℓ) 2 (S(x k ) -S(x ⋆ ))
which leads in the whole time horizon k ∈ [0, ∞[ the upper bound upon the variation of the objective function

S(x k ) -S(x ⋆ ) ≤ 1 - 8δℓλ (2 + δℓ) 2 (S(x k-1 ) -S(x ⋆ )) = 1 - 8δℓλ (2 + δℓ) 2 k (S(x 0 ) -S(x ⋆ )).
Finally, due to the definition space of λ and ℓ, i.e. λ ∈]0, 1] and ℓ ∈]0, ∞[, for any step-size δ ∈]0, ∞[ one gets

|Ω| = 1 - 8δℓλ (2 + δℓ) 2 < 1,
which implies that the right-hand side of ( 17) is approaching zero since Ω k → 0 as k → ∞.

◁ Differently from the result in [START_REF] Karimi | Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition[END_REF], the proposed model shows a linear convergence rate provided by the decay term Ω for all ℓ, δ ∈]0, ∞[ and λ ∈]0, 1] as depicted in Fig. 1. As a matter of fact, for x 0 sufficiently close to x ⋆ , the method ( 15) always provides finite convergence without involving other methods to regulate the step-size, as in [START_REF] Zhou | Gradient methods with adaptive stepsizes[END_REF], [START_REF] Frassoldati | On adaptive step-size selections in gradient methods[END_REF].

IV. EXAMPLES

In this section we investigate two training standard problems in machine learning like logistic regression and least squares to provide numerical evidence of the proposed method, based upon the proposed method in Theorem 3.1 showing linear convergence rate in Corollary 3.1. The implementation of the proposed method ( 15) is reported in Algorithm 1 considering Algorithm 1:

Result: x k initialize x 0 and k ← 0; define step-size δ and tolerance ε;

while |S(x k+1 ) -S(x k )| > ε do g k ← -I + δ 2 ∇ 2 S(x k ) -1 ∇S(x k );
x k+1 ← x k + δg k ; k ← k + 1; end an initial guess x 0 and arbitrary tolerance ε, needed to determine whether the sequence x k has arrived close to the minimum point x ⋆ . Simulations have been performed using Matlab on an Intel(R) Core(TM) i7-8550U CPU and 16.0 GB RAM.

A. Training Example 1

Consider a toy example assuming an objective function S : R → R with the unconstrained optimization problem (see, Example 1.4.3 in [START_REF] Doikov | New second-order and tensor methods in convex optimization[END_REF])

min x∈R S(x) = log(exp(x) + 1) - x 2 + x 2 2 (19) 
The function ( 19) is ℓ-smooth and satisfies [START_REF] Astolfi | Design of local observers for autonomous nonlinear systems not in observability canonical form[END_REF], and the proposed model takes the form x k+1 = x k + δg(x k ) with g(x)= (exp(x) + 1) (2x + exp(x) + 2x exp(x) -1) 2(1+2 exp(x)+exp(2x))+δ(1+3 exp(x)+exp(2x)) . Simulations: Simulations reported in Fig. 2 and Fig. 3 compare the behaviour of the proposed second-order method [START_REF] Astolfi | Redesign of discrete-time nonlinear observers with state estimate constrained in prescribed convex set[END_REF] with the gradient descent in (4), Standard Newton in [START_REF] Gannot | A frequency-domain analysis of inexact gradient methods[END_REF], Gauss Newton in [START_REF]The theory of newton's method[END_REF], and Regularized Newton in [START_REF] Boyd | Convex optimization[END_REF]. In particular, Fig. 2 shows the number of iterations required by each method to solve [START_REF] Moreschini | Discrete port-controlled hamiltonian dynamics and average passivation[END_REF] for different step-sizes, and Fig. 3 shows the computational cost, that is the time required by each algorithm to solve [START_REF] Moreschini | Discrete port-controlled hamiltonian dynamics and average passivation[END_REF]. In this scenario, we consider tolerance ε = 10 -8 , initial condition x 0 = -0.5, and step-size δ ∈ [10 -2 , 10 2 ]. Figures highlight that, unlike the proposed method [START_REF] Astolfi | Redesign of discrete-time nonlinear observers with state estimate constrained in prescribed convex set[END_REF], all the other involved optimization methods explode after a certain value of the step-size and no longer solve the minimization problem [START_REF] Moreschini | Discrete port-controlled hamiltonian dynamics and average passivation[END_REF] for values of δ sufficiently large. In particular, the standard gradient method (4) for small step-sizes seems the fastest, as it converges with fewer iterations than the other methods, but it is also the first method to explode and fail to solve [START_REF] Moreschini | Discrete port-controlled hamiltonian dynamics and average passivation[END_REF] for δ > 1.5. The Standard Newton [START_REF] Gannot | A frequency-domain analysis of inexact gradient methods[END_REF] and Regularized Newton [START_REF] Boyd | Convex optimization[END_REF] shows roughly the same performance. Although for small step-sizes the methods are relatively slow compared to the standard gradient, both methods solve the problem for slightly larger values of the step-size, i.e. δ ≈ 2. The Gauss Newton (6) for small step-sizes is the slower method but it converges to the minimum for a larger range of δ than the other methods. Differently form the others, the proposed method is the only one that does not explode after a certain value of δ and solve [START_REF] Moreschini | Discrete port-controlled hamiltonian dynamics and average passivation[END_REF] for larger step-sizes, such as δ ≈ 10 2 . Moreover, for small step-sizes the algorithm is fast as the standard gradient and achieves the minimum of the objective function with similar performance and similar time of convergence, as seen in Fig. 3. Finally, the best performance of the proposed method for ( 19) is achieved with δ ≈ 1.6.

B. Training Example 2

For sake of illustration, we consider now an objective function S : R n → R, of the form generally used as loss function describing the error of the difference between b i ∈ R (playing the role of given data) and x i ∈ R (playing the role of predicted data) with model parameter α i x i ∈ R. The function [START_REF] Mattioni | Quaternion-based attitude stabilization via discrete-time ida-pbc[END_REF] belongs to the class of objective functions satisfying [START_REF] Astolfi | Design of local observers for autonomous nonlinear systems not in observability canonical form[END_REF]. In particular, straightforward computations yield

min x∈R n S(x) = 1 2 n i=1 (α i x i -b i ) 2 , (20) 
∇S =    α 2 1 x 1 -α 1 b 1 . . . α 2 n x n -α n b n    , ∇ 2 S =    α 2 1 • • • 0 . . . . . . . . . 0 • • • α 2 n    with x ⊤ ⋆ = α -1 1 b 1 . . . α -1 n b n ⊤
and thus from the ℓ-smooth condition and ( 14) one gets ℓ ∈ 0, max 

x n i=1 (x i α i -b i ) 2 (x i -α -1 i b i ) 2
Simulations. Simulations reported in Fig. 4 and Fig. 5 compare the behaviour of the proposed second-order method [START_REF] Astolfi | Redesign of discrete-time nonlinear observers with state estimate constrained in prescribed convex set[END_REF] with the gradient descent in (4), Standard Newton in (5), Gauss Newton in [START_REF]The theory of newton's method[END_REF], and Regularized Newton in [START_REF] Boyd | Convex optimization[END_REF]. In the simulations we fix n = 200 and random initial conditions, α i = 5, b i = 1, tolerance ε = 10 -8 and δ ∈ [10 -2 , 10 2 ].

V. CONCLUSIONS

In this paper we took the idea from the approximation of sampled-data equivalent gradient dynamics in [16], [START_REF] Moreschini | Gradient and hamiltonian dynamics under sampling[END_REF] and proposed an easily implementable algorithm to solve a class of optimization problems. Under standard assumption on the objective function, we proved that the proposed method solves the minimization problem for any arbitrarily chosen step-size. Two numerical examples illustrate the advantage of the proposed algorithm when compared with some popular optimization methods. This first achievement in the optimization context paves the way for further investigations upon the [START_REF] Mattioni | Quaternion-based attitude stabilization via discrete-time ida-pbc[END_REF] convergence properties due to higher-order approximations of the gradient dynamics of the form [START_REF] Kong | Contraction analysis of nonlinear noncausal iterative learning control[END_REF]. Future works are aimed at applying this method in real-time optimal control involving, for instance, sampled-data MPC [START_REF] Elobaid | Sampleddata tracking under model predictive control and multi-rate planning[END_REF], [START_REF]Station-keeping of l 2 halo orbits under sampled-data model predictive control[END_REF].
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S(y) -S(x) = (y -x) ⊤ ∇S| y x ,(10)for all x, y ∈ R n with ∇S| x x = ∇S(x). Now the question is, how to deduce from the gradient dynamics (8) an iterative procedure that computes y from x ensuring decreasing along the objective function towards x ⋆ while preserving the discrete gradient constraint(10)? To solve this problem, it comes to our aid the result recently proposed by the authors in [16],[START_REF] Moreschini | Gradient and hamiltonian dynamics under sampling[END_REF] where the problem of the characterization of a discrete-time model[START_REF] Moreschini | Discrete port-controlled hamiltonian dynamics and average passivation[END_REF] describing the