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Sampled-data steering of unicycles via PBC
Mattia Mattioni, Member, IEEE , Alessio Moreschini, Salvatore Monaco Fellow, IEEE and Dorothée

Normand-Cyrot Fellow, IEEE

Abstract— In this paper, on the basis of a recently
proposed discrete-time port-Hamiltonian representation of
sampled-data dynamics, we propose a new time-varying
digital feedback for steering mobile robots. The quality
of the proposed passivity-based control is validated and
compared through simulations with the existing literature
and the continuous-time implementation using the unicycle
as a case study.

Index Terms— Sampled-data control, Nonholonomic sys-
tems, Autonomous vehicles.

I. INTRODUCTION

THE well-known Brockett’s condition [1] revealed the ob-
stacle in stabilizing nonholonomic systems using smooth

continuous control laws. As a matter of fact, this issue extends
to larger classes of control problems involving nonholomic
systems such as position steering, tracking or formation control
in a multi-agent perspective. With this in mind, several works
have been carried out with the aim of proposing design
approaches for this class of systems using different tools
as, for instance, time-varying [2], discontinuous [3] (both of
these in a continuous-time framework) or digital multi-rate
control [4] schemes. In all those works, the emphasis is on
the unicycle, a benchmark example for the class of systems
under investigation [5], [6]. In case of non-stationary modeling
the angular velocity is described by a time-varying parameter.
Thus, the overall design is performed over the obtained linear
time-varying system and a proportional control is designed
in order to ensure steering at a desired configuration provided
that the angular component is sufficiently exciting [2]. Besides
being simple and robust, this approach allows straightforward
extensions to more general control problems such as position
steering, tracking, rendez-vous or formation control [7]–[10].
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On the other side, the digital control framework has been
shown in [4] to provide a natural setting for the control of
nonholonomic systems, in view of the fact that these systems
belong to the class of dynamics that admit, under preliminary
continuous-time feedback, a finitely computable sampled-data
model. In addition, when considering the unicycle, the sampled
model has been proved to be fully invertible under multi-rate
control (of suitable order) thereby allowing the design of digi-
tal feedback laws ensuring dead-beat (i.e., in one sampling in-
stant) steering or tracking. However, some difficulties remain.
The overall controller is piecewise continuous and consists in
a fundamental continuous-time feedback component, responsi-
ble for ensuring finite discretizability. The closed loop suffers
from robustness issues with respect to model uncertainties
and sample-and-hold implementation due to the preliminary
continuous-time loop component. Finite-time convergence in
one step comes with a generally significant control effort that
makes the implementation difficult in practice. Some of those
issues have been partially solved in [11] embedding a Model
Predictive Control (MPC) scheme. Other solutions involving
sampled-data control basically rely upon emulation of the
continuous-time (time-varying) control laws; i.e., through a
direct implementation of the continuous-time control via sam-
pled and hold devices without any further design [12], [13].
An exception is represented by [14] where a new sampled-
data controller is designed with stability guarantees provided
that the sampling period is small enough with respect to the
control parameters. However, only stabilization at the origin
is there considered and with the corresponding performances
naturally limited by the amplitude of the sampling period.

This work is contextualized in this framework with the aim
of designing a new and fully digital control law ensuring,
at first, position-stabilization of a unicycle for all sampling
periods and overcoming the aforementioned pathology. The
contributions of the paper are detailed below. First, we prove
that the sampled-data equivalent model of the kinematics
admits the discrete-time port-Hamiltonian (pH) form recently
proposed in [15], [16]. Thanks to this, a time-varying digital
feedback on the linear velocity is defined via damping in-
jection from the passivating output. In this way, stabilization
at the desired position is guaranteed provided that the angular
velocity component is set to a sufficiently exciting periodic sig-
nal. For the case under investigation, the sampled-data model
that is exploited for the discrete-time design can be exactly
and explicitly computed, guaranteeing that performances are
enforced for all values of the sampling period. As a conse-
quence, the effect of sampling is compensated exactly with no
need of multi-rate and preliminary continuous-time feedback



(that require more accurate and powerful actuation devices)
while still guaranteeing good performances. In addition and
contrarily to the aforementioned cases, the controller gets a
simple structure as it is defined as the solution to a linear
equality, so that it is easy to implement as well.

The remainder of the paper is organized as follows. In
Section II, preliminaries on existing results for modeling and
steering control of unicycle in continuous time are given
and the problem stated. In Section III, a new sampled-data
model for the unicycle is provided based on a discrete pH
representation. Then, such a model is exploited for control
design involving steering in Section IV with simulations in
Section V. Section VI concludes the paper.

Notations. The sets R and N denote the set of real and
natural numbers including 0 respectively. The symbols � and
≺ (� and �) positive and negative (semi-)definite matrices.
In denotes the identity matrix of dimension n ≥ 1 whereas 0
is the zero-matrix of suitable dimensions. Given B ∈ Rn×m
with n > m, B⊥ be denotes the orthogonal complement
verifying B⊥B = 0. Given m column vectors gj ∈ Rn with
j = 1, . . . ,m we denote by diag{g1, . . . , gm} ∈ Rmn×m the
block-diagonal matrix with gj in the main diagonal whereas
col{g1, . . . , gm} = (g>1 . . . g>m)> ∈ Rnm. Given two matrices
A ∈ Rn1×n2 and B ∈ Rm1×m2 , the Kronecker product
is denoted by A ⊗ B ∈ Rn1m1×n2m2 . Given a real-valued
differentiable function V : Rn → R, ∇V represents the gra-
dient column-vector with ∇ = col{ ∂

∂xi
}i=1,...,n and ∇2V (·)

denotes its Hessian. For v, w ∈ Rn, the discrete gradient is
a vector-valued function of two variables, ∇̄V (v)|wv : Rn ×
Rn → Rn, defined as

∇̄V (v)|wv =

∫ 1

0

∇V (v + s(w − v))ds

satisfying V (w)−V (v) = (w−v)>∇̄V (v)|wv with ∇̄V (v)|vv =
∇V (v). When V (v) = 1

2ν
>Pv with P = P>, one gets

∇̄V (v)|wv = 1
2P (v + w).

II. PROBLEM STATEMENT AND RECALLS

A. Problem statement and the continuous-time solution

Consider the unicycle kinematics given by (1) as

ż =vr (1a)

θ̇ =ω (1b)

with z := (x y)> ∈ R2 the planar coordinates of the robot,
θ ∈ R the angle described by the chassis with respect to the
horizontal axis and

r =

(
cos θ
sin θ

)
, s = r⊥ =

(
− sin θ
cos θ

)
.

Assuming the input signals piecewise constant over time
intervals of length δ > 0 (the sampling period), the problem
we address consists in designing a suitable digital control law
driving the trajectories to a constant desired position in the
Cartesian space. More in detail, it is formalized below.

Problem 1 (Steering under digital control): Consider the
unicycle kinematics (1) under piecewise constant inputs over

the sampling period δ > 0, that is

ω(t) = ωk, v(t) = vk for t ∈ [kδ, (k + 1)δ[. (2)

and zd ∈ R2 a desired plane position. Assuming tthe robot
can sense its own orientation θ ∈ R and the corresponding
relative position with respect to the target point, that is

ez = R(θ)(z − zd) (3)

with

R(θ) =

(
r>

s>

)
=

(
cos θ sin θ
− sin θ cos θ

)
. (4)

The objective relies upon designing a sampled-data feedback
vk = vδ(k, zk, θk) and ωk = ωδ(k, zk, θk) ensuring zk =
z(kδ)→ zd as k →∞ for all initial conditions θ0 ∈ Rn and
z0 ∈ Rn. �

Remark 2.1: In the following convergence (i.e., zk → zd
as k → ∞) is enforced by making zd uniformly globally
asymptotically stable (UGAS) for (1a).

In the continuous-time case, steering is ensured by the time-
varying control

v = −κr>(z − zd), κ > 0 (5)

making (1a) UGAS at zd provided that ω(t) is persistently
exciting; e.g., fixing [10]

ω(t) = cosω0t, ω0 > 0. (6)

Thus, the closed-loop dynamics

ż = −κM(t)(z − zd), M(t) = rr> (7)

is UGAS at zd ∈ R2 because M(t) is bounded and the signal
r(t) = r(θ(t)) is persistently exciting.

B. Hamiltonian systems in discrete time

Consider now a discrete-time dynamics

xk+1 = xk + F (xk, uk) (8)

where, for simplicity, we denote by (xk, uk) ∈ Rn × Rm,
the pair of state and control variables at a generic time
instant k ≥ 0. A novel state space representation for discrete-
time pH structures has been proposed in [15] through an
implicit description of the drift dynamics in terms of the
discrete gradient function. More precisely, denoting the free
state evolution by x+ := x + F (x, 0) in the dynamics (8), a
discrete-time pH system is described by

x+(u) =x+ (Jd(x)−Rd(x))∇̄H|x
+

x + g(x, u)u (9a)

h(x, u) =g>(x, u)∇̄H|x
+(u)
x+ (9b)

when setting, for simplicity, xk+1 = x+k (uk) = x+(u),
x = xk, u = uk, x+ = x + F (x, 0). In particular, Jd(x) =
−Jd>(x), Rd(x) = Rd

>(x) � 0 are the interconnection
and damping matrices respectively, while H : Rn → R is
the Hamiltonian function. As in the continuous-time case,
discrete pH forms (9) verify by construction the one-step



energy-balance equality so implying passivity; namely, setting
∆H(x) = H(x+(u))−H(x), one has

∆H(x) = −∇̄>H|x
+

x Rd(x)∇̄H|x
+

x+︸ ︷︷ ︸
≤ 0, one-step dissipated energy

+ h>(x, u)u︸ ︷︷ ︸
one-step supplied energy

.

It is instrumental to note that, making reference to the
explicit form (8), the implicit pH representation (9) verifies
the following variation equalities

F (x, 0) = x+ − x = (Jd(x)−Rd(x))∇̄H|x
+

x

F (x, u)− F (x, 0) = x+(u)− x+ = g(x, u)u.

III. THE UNICYCLE MODEL UNDER SAMPLING

The evolutions of (1) under (2) at all sampling instants are
described by the exact sampled equivalent model given by

zk+1 =zk −
vk
ωk

∆s (10a)

θk+1 =θk + δωk (10b)

with

∆s := sk+1 − sk =

(
− sin θk+1 + sin θk
cos θk+1 − cos θk

)
.

Considering the extended state-space ζ = col{z, r, s} ∈ R6

and noticing that

ṙ = ωs, ṡ = −ωr

the sampled-data dynamics (10) is equivalently described by

ζk+1 = (Aδ0(ωk)⊗ I2)ζk + gδ(ζk, ωk)vk (11)

with

Aδ0(ω)=

(
1 0
0 Sδ(ω)

)
, Sδ(ω)=

(
cos δω sin δω
− sin δω cos δω

)
gδ(ζ, ω) =

1

ω

(
−
(
∆s
)>

0
)>

.

(12)

The extended sampled-data model above admits a discrete pH
structure as proved in the result below.

Theorem 3.1: The sampled-data model (11) of the unicycle
kinematics (1) admits the time-varying pH form

ζ+(v) =ζ +
1

2

(
J̄δ(ω)⊗ I2

)(
ζ+ + ζ

)
+ gδ(ζ, ω)v (13)

with ζ = ζk, v = vk, ω = ωk, ζ+(v) = ζ+(vk) = ζk+1,
ζ+ = (Aδ0(ω)⊗ I2)ζ and interconnection matrix

J̄δ(ω)=

(
0 0
0 Jδ(ω)

)
, Jδ(ω)=

(
0 sinωδ

− sinωδ 0

)
1 + cos δω

. (14)

The sampled-data dynamics (13) is passive with the output

h(ζ, ω, v) =
1

δ

(
gδ(ζ, ω)

)>(
ζ+ +

1

2
gδ(ζ, ω)v

)
(15)

and, since 1
2 (r>r + s>s) = 1, quadratic storage function

H(ζ) =
1

2
ζ>ζ =

1

2
z>z + 1. (16)

Proof: Exploiting the representation (11), the proof
consists in showing that (11) is equivalent to a discrete
conservative pH dynamics (9) detailed as

ζ+(v) = ζ + J̃δ(ω)∇̄H|ζ
+

ζ + gδ(ζ, ω)v

for a suitable skew-symmetric matrix J̃δ(ω) ∈ R6×6 and with
the quadratic Hamiltonian (16). Because ∇̄H|ζ

+

ζ = 1
2 (ζ+ζ+),

this corresponds to solve the implicit equation

ζ +
1

2
J̃δ(ω)(ζ+ + ζ) = ζ+.

Substituting ζ+ = ζ+(0) = (Aδ0(ω)⊗ I2)ζ from (11) into the
equality above, one gets

ζ +
1

2
J̃δ(ω)

(
(Aδ0(ω)⊗ I2) + I6

)
ζ = (Aδ0(ω)⊗ I2)ζ.

that is solved for all ζ ∈ R6 by

1

2
J̃δ(ω) =

(
Aδ0(ω)⊗ I2 − I6

)(
Aδ0(ω)⊗ I2 + I6

)−1
=

1

2

(
J̄δ(ω)⊗ I2

)
.

Passivity follows from the pH structure.

Remark 3.1: In the result above, we have modelled the
sampled-data kinematics as a linear time-varying pH structure
(13) deduced from (11) when considering ω ∈ R a time-
varying parameter and v ∈ R the control input.

Remark 3.2: Because
(
∆s
)>

∆s = 2(1 − cos δω), the
passive output gets the explicit form

h(ζ, ω, v) =− 1

δω

(
∆s
)>
z +

1− cos δω

δω2
v. (17)

Remark 3.3: For stabilization purposes, one can directly
shift the storage function setting V (z) = H(ζ) − 1 with
V (0) = 0 and no impact on the pH representation (13).

Remark 3.4: The result in Theorem 3.1 provides an exact
discrete-time Hamiltonian form to the sampled-data model
(11) associated to the unicycle kinematics (1). This is fun-
damental for allowing to settle (and solve) Problem 1 in the
discrete-time IDA-PBC framework [15].

IV. A NEW SAMPLED-DATA STEERING

For the sake of clarity, before providing the general solution
to Problem 1, we first address the case of zd = (0 0)>.

Theorem 4.1: For all δ > 0, consider the unicycle kinemat-
ics (1) with sampled-data equivalent model of the form (10).
Then, Problem 1 with zd = 0 is solved by the sampled-data
time-varying control

v =
κ

δω + κ
ω (1− cos δω)

(
∆s
)>
z, κ > 0 (18a)

ω =
1

δω0

(
sin
(
(k + 1)ω0δ

)
− sin

(
kω0δ

))
(18b)

provided that ω0 > 0 is chosen so to satisfy, for a fixed
sampling period δ > 0 and N ∈ N,

Tδ := Nδ =
2π

ω0
, N > 2. (19)



The corresponding closed-loop sampled system is given by

zk+1 =(I2 − κ̄(ω)Mk)zk (20a)

θk+1 =θk +
1

ω0

(
sin
(
(k + 1)ω0δ

)
− sin

(
kω0δ

))
(20b)

with

Mk =
1

δω2
∆s
(
∆s
)>
, κ̄(ω) =

κδω

δω + κ
ω (1− cos δω)

. (21)

Proof: First, we note that (18a) is the damping control
associated to the passive output (17) yielding

∆V (z) = ∆H(ζ) =vh(ζ, ω, v)

=−
κz>∆s

(
∆s
)>
z

(δω + κ
ω (1− cos δω))2

≤ 0

as, under feedback, the output reads

h(ζ, ω, v) = − 1

δω + κ
ω (1− cos δω)

(
∆s
)>
z.

Accordingly, (20) is obtained substituting (18) into the sam-
pled equivalent model (10). The closed-loop θ-dynamics (20b)
is periodic with period (19). Thus, Uniform Global Exponen-
tial Stability (UGES) of the closed loop follows by Lemma
1.1 (in Appendix) setting Φk =

√
k

ω
√
δ(1+ κ

δω (1−cos δω))
∆s that

is persistently exciting as ∆s is such under (19).
Remark 4.1: The period (19) of the sinusoidal signals in

(18a) must be large enough with respect to the sampling period
for exciting (20a) at all sampling instants. In other words, the
sampling period and the period of the signals must be chosen
in such a way that the corresponding samples, exciting the
sampled-data dynamics (20a), are sufficiently rich.

It is worth to note that (18a) is a discrete IDA-PBC feedback
[17], [18]. As a matter of fact, it gets the form of a discrete-
time damping injection over the average passivating output
(17); i.e., it is the solution to the damping equality

v = −κ
δ

(
gδ(ζ, ω)

)>∇̄H(ζ)|ζ
+(v)
ζ+

ζ+ =
(
Aδ0(ω)⊗ I2

)
ζ, ∇̄H(ζ)|ζ

+(v)
ζ+ =

1

2
(ζ+(v) + ζ+).

The closed-loop system (20) gets the discrete pH form

ζ+(v) = ζ +
1

2

(
J̄δ(ω)−Rδ(ω)

)
(ζ+(v) + ζ)

over ζ = col{z, r, s}, with damping matrix

Rδ(ω)=diag{κ(ω)Mk(I2−
κ(ω)

2
Mk)−1, 0, 0}�0. (22)

Remark 4.2: Contrarily to [14] the controller in Theorem
4.1 guarantees steering for all δ, κ > 0. The gain is inde-
pendent on the sampling period (and viceversa) and can be
arbitrarily tuned to enforce the required performances.

At this point, to generally solve Problem 1, let us compute
first the sampled-data error dynamics associated to (3) as

ezk+1
=R(θk+1)(zk+1 − zd)

=R(θk+1)R>(θk)ezk −
vk
ωk

(
−r>k+1sk

1− s>k+1sk

)
=Sδ(ωk)ezk +Bδ(ωk)vk

with Sδ(ω) as in (12) and

Bδ(ω) =
1

ω

(
r>k+1sk

s>k+1sk − 1

)
=

1

ω

(
sin δω

cos δω − 1

)
.

It can be easily shown that the error dynamics above admits,
once again, the conservative Hamiltonian structure

e+(v) = e+
1

2

(
I2 ⊗ Jδ(ω)

)
(e+ e+) +Bδ(ω)v (23)

with e = col{ez, r, s} and interconnection matrix in (14).
Passivity follows with respect to the output

h(ez, ω, v) =
1

δ

(
Bδ(ω)

)>(
Sδ(ω)ez +

1

2
Bδ(ω)v

)
.

Accordingly, the following result can be established.
Corollary 4.1: For all fixed δ > 0, consider the unicycle

kinematics (1) and the sampled-data equivalent model (10).
Then, Problem 1 is solved by the time-varying control

v=− κ

δω + κ
ω (1− cosωδ)

(
sin δω cos δω−1

)
ez (24a)

ω =
1

δω0

(
sin
(
(k + 1)ω0δ

)
− sin

(
kω0δ

))
(24b)

provided ω0 > 0 satisfies (19) for constant δ > 0 and N ∈ N.
Proof: Under the coordinates transformation

ēz = R>(θ)ez = z − zd

the feedback (24a) reads

v =
κ

δω + κ
ω (1− cos δω)

(
∆s
)>
ēz

with corresponding closed-loop dynamics

ēzk+1
= (I2 − κ̄(ω)Mk)ēzk

with Mk as in (21). Accordingly, The proof follows along the
lines of Theorem 4.1.

Remark 4.3: As δ → 0 the sampled-data controllers (24)
naturally recover the continuous-time counterparts (5)-(6). In
particular, by virtue of (3) and (4), one gets for (24a),

v → −κ
(
1 0
)
ez = −κ

(
1 0
)
R(θ)(z − zd) = −κr>(z − zd).

As in the case of zd = 0, the steering feedback gets the
form of a damping injection controller over the passive output;
namely, of the form

v = −κ
δ

(
Bδ(ω)

)>
∇̄H(e)|e

+(v)
e+

∇̄H(e)|e
+(v)
e+ =

1

2
(e+ + e+(v)).

Setting for simplicity ē = col{R>(θ)ez, r, s}, the closed-loop
system gets the dissipative Hamiltonian form

ē+(v) = ē+
1

2

(
J̄δ(ω)−Rδ(ω)

)
(ē+ ē+(v)) (25)

with interconnection and damping matrices in (14) and (22).
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Fig. 1: Steering at the origin with δ = 0.1 seconds.

V. SIMULATIONS

The aim of simulations is twofold: validating the perfor-
mances of the proposed controller with behaviors that are
close to the continuous-time ones, for all sampling periods;
comparing the proposed feedback with MPC, typically used
in applications, and the one in [14] that is similar, in the
aim, to the one we design1. The results are reported in
Figures 1-2, with δ = 0.1 and δ = 1.8 respectively with the
continuous-time controller (5)-(6) also depicted as reference.
For a fair comparison, we simulate stabilization at the origin
(i.e., zd = (0 0)>) under the initial condition z0 = (0 1)>

and all the parameters as in [14, Sec. IV.C]. As far as the
controller we propose and the continuous-time counterpart, we
fix κ = 1 and ω0 = 1 to meet the requirements in Corollary
4.1. As far as MPC is concerned, we fix the prediction
and control horizon at np = nc = 3 and unitary control
and state-regulation weighting matrices Q = I3, R = I2.
In addition, for the sake of comparison, we feed the MPC
with the same angular velocity persistently exciting signal
component as the one in Theorem 4.1. Fig. 1 highlights that
for a small sampling period (i.e. δ = 0.1) the proposed
controller achieves stabilization at the origin with similar
performances as the continuous-time one. On the other side,
the controller in [14] still achieves stabilization but with a
larger transient due to the (inversely proportional) relationship
among the values of the parameters and the sampling period
(see Remark 4.2). This is more evident when increasing the

1Further simulations are available at https://youtu.be/Cq5WffifrCE.
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Fig. 2: Steering at the origin with δ = 1.8 seconds.

sampling period (Fig. 2); when δ = 1.8, the controller in [14]
provides better performances than the ones discussed in Fig.
1 that are still, however, overcome by the new controller we
propose. Indeed, the closed-loop sampled-data system under
the controller in Corollary 4.1 is only slightly affected by the
increased sampling period, providing behaviors that remain
better than [14]. Performances of the proposed feedback are
still better, yet comparable, to the ones under MPC, even
when the latter is implemented in favored conditions with
respect to the typical ones (e.g., [19]); contrarily to common
implementations, we set for the MPC np = nc = 3 and include
a persistently exciting reference on the orientation to guarantee
boundedness of the closed loop under single rate control with
no terminal cost and constraints [11].

VI. CONCLUSIONS AND PERSPECTIVES

A new digital control law for steering a mobile robot has
been proposed. The design, based on a suitable Hamiltonian
representation of the dynamics, yields a damping feedback
over the linear velocity that ensures convergence to the desired
position provided that the angular velocity is sufficiently
persistently exciting. Current works are toward regulation
to a desired orientation with tracking and the extension to
formation control of multi-robot systems under asynchronous
communication, measurement noise and delay [20]–[24].
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APPENDIX

Lemma 1.1: Consider the linear time-varying system

zk+1 =(In − ΦkΦ>k )zk (26)

with z ∈ Rn, Φ : N → Rn and ‖Φk‖ ≤ φM for all k ∈ N.
The origin of (26) is UGES if Φ is persistently exciting; i.e.,
there exist positive µ ∈ R>0 and K ∈ N such that

k+K−1∑
j=k

ΦjΦ
>
j � µIn, for all k ∈ N. (27)

Proof: The proof follows the lines of [25, Lemma 5]
with the Lyapunov H(z) = 1

2‖z‖
2 verifying ∆H =

− 1
2‖Φ

>
k zk‖2 ≤ 0. For hk := H(zk) and all k ≥ k0, we

get hk ≤ hk0 = 1
2‖zk0‖

2

∆Kh :=hk+K − hk = −1

2

k+K−1∑
j=k

‖Φ>j zj‖2 (28)

zj =zk −
j−1∑
i=k

ΦiΦ
>
i zi, j > k. (29)

Substituting (29) into (28) and exploiting ‖a − b‖2 ≥
ρ
ρ+1‖a‖

2 − ρ‖b‖2 for all ρ > 0, one gets

∆Kh ≤− ρ

2(ρ+ 1)

k+K−1∑
j=k

‖Φ>j zk‖2

+
ρ

2

k+K−1∑
j=k

‖Φ>j
j−1∑
i=k

ΦiΦ
>
i zi‖2

≤− ρµ

2(ρ+ 1)

k+K−1∑
j=k

‖zk‖2

+
ρ

2

k+K−1∑
j=k

‖Φ>j
j−1∑
i=k

ΦiΦ
>
i zi‖2

(30)

by (27). At this point, because Φ is bounded and using both
the triangle and Cauchy-Schwartz inequalities, one obtains

k+K−1∑
j=k

‖Φ>j
j−1∑
i=k

ΦiΦ
>
i zi‖2 ≤ φ4M

k+K−1∑
j=k

j−1∑
i=k

‖Φ>i zi‖2.

Taking into account (30), the bound above and the fact that
k+K−1∑
j=k

j−1∑
i=k

‖Φ>i zi‖2 =

k+K−1∑
i=k+1

k+K−1∑
j=i

‖Φ>i zi‖2

=

k+K−1∑
i=k+1

(k +K − i)‖Φ>i zi‖2 ≤ K
k+K−1∑
i=k

‖Φ>i zi‖2 = 2∆Kh

one gets

∆Kh ≤ − ρµ

2(ρ+ 1)

k+K−1∑
j=k

‖zk‖2 + ρφ4MK∆Kh

=⇒
(
1 + ρφ4MK

)
∆Kh ≤ − ρµ

2(ρ+ 1)
‖zk‖2.

Exploiting now that 1
2‖zk‖

2 = hk ≤ hk0 , one deduces that

hk+K ≤ (1− σ)hk, σ =
ρ

ρ+ 1

µ

1 + ρφ4MK

where ρ > 0 can be chosen to make |1 − σ| < 1. From the
inequality above one gets the result as

hk ≤ (1− σ)
k−k0
K hk0 =⇒ ‖zk‖2 ≤ (1− σ)

k−k0
K ‖zk0‖2.
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