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Abstract

In this paper, new results for passivation and stabilization of discrete-time nonlinear systems via energy balancing are
established. When specified on sampled-data systems, the approach is constructive for computing stabilizing digital controllers
that assign, at all sampling instants, a target energy profile while stabilizing a target equilibrium. The class of mechanical
systems is discussed as an example. Simulations are reported highlighting, for position regulation of a 2R robot, the effect of
approximate solutions with respect to standard emulation.

Key words: passivity-based control; nonlinear discrete-time systems; digital implementation; asymptotic stabilization;
sampled-data stabilization.

1 Introduction

Passivity-based control (PBC) via energy balancing
(EB) represents the first step toward energy-based
control at large. The aim stands in stabilizing a given
passive system at a desired equilibrium x⋆ by assigning
a target energy behavior possessing a minimum at x⋆.
This method is remarkably appealing and applies to
classes of dynamics including fully actuated mechanical
ones. Starting from a passive system, for which the stor-
age function represents the energy, the idea is to design
a controller in order to modify the energy consumption
of the system; more precisely, the feedback is designed
so that the stored energy is equal to the difference be-
tween the stored and supplied energies (Astolfi et al.,
2001; Hatanaka et al., 2015; Jeltsema et al., 2004; Or-
tega et al., 2001). This yields a simple but still elegant
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procedure to reshape the energy to achieve stabilization
of a target equilibrium. The class of systems for which
a solution exists is however quite restrictive because of
the so called dissipation obstacle limiting the applica-
tion to systems with no pervasive damping (i.e., with
finite dissipation, Ortega and Mareels (2000)).
However, all of this makes reference to continuous-time
dynamics with only a few results for discrete-time sys-
tems (Lopezlena and Scherpen, 2002), which are signif-
icant for a large variety of processes in the information
industry and, most important, digital systems. As al-
ready mentioned, continuous-time EB-PBC applies to
Lagrangian systems which are however controlled via
digital devices; this justifies the need of a similar stabi-
lizing procedure in the discrete-time framework. Besides
the practical interest, the purely discrete-time case is
always challenging even from a theoretical perspective.
This is due to the typical technical issues to face as, for
instance, the implicit characterization of the control law
and the standard definition of passivity making sense
only for dynamics with direct throughput (Byrnes and
Lin, 1994; Laila and Nešić, 2003; Monaco and Normand-
Cyrot, 1999; Navarro-López, 2005; Navarro-López and
Fossas-Colet, 2004).
Part of those issues have been addressed in several of
the authors’ contributions describing in an algebraic-
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differential framework the basic control aspects, such as
passivity (Monaco and Normand-Cyrot, 2011), feedback
passivation (Mattioni et al., 2021) and, more recently,
discrete-time Hamiltonian dynamics (Moreschini et al.,
2021). Starting from those works, the objective of this
paper is to extend EB-PBC design to discrete-time dy-
namics first and then specify the solution to dynamics
issued from sampling. More in details, the contributions
of this work are listed below.

Contributions. Discrete-time EB-PBC strategies are
characterized in terms of the solution to an algebraic
equality that is the counterpart of the partial derivative
one typical in continuous time.
When dealing with dynamics issued from sampling
(i.e., continuous-time dynamics under piecewise con-
stant control with state measures available only at the
sampling instants), it is shown that the existence of
a continuous-time solution implies the existence of a
discrete-time solution for the equivalent sampled-data
dynamics. Accordingly, the existence of a continuous-
time EB-PBC implies the existence of a piecewise-
constant EB-PBC feedback law with the same energy
as in continuous time so that the sampled-data average
dissipation obstacle is no more conservative than the
continuous-time one. The proof is constructive. The
piecewise constant EB-PBC admits the form of a series
expansion in powers of the sampling period around the
continuous-time solution. Accordingly, approximate so-
lutions defined as truncation of the series solutions at a
desired order are easily computable.
Finally, the case of fully actuated mechanical systems is
discussed and the corresponding EB-PBC stabilizer is
explicitly constructed. Simulations highlight improve-
ment with respect to standard emulation.

The paper is organized as follows. In Section 2, after a
few recalls on continuous-time EB-PBC, the necessary
background to handle discrete-time dynamics and pas-
sivity is given. The main result on discrete-time EB-
PBC is provided and proved for purely discrete-time sys-
tems in Section 3. In Section 4, the result is specified
for sampled-data dynamics proving that the existence
of a continuous-time EB-PBC implies the existence of a
sampled-data one. The proof is constructive for the dig-
ital controller. In Section 5, the result is applied to fully
actuated mechanical dynamics and specified for position
regulation of a 2R robot with illustrative simulations.
Finally, Section 6 concludes the paper.

Notations. Throughout the paper functions and vector
fields are assumed smooth and complete over the re-
spective definition spaces. Given a real-valued function
V (·) : Rn → R assumed differentiable, ∇V (·) represents
the gradient column-vector with ∇ = col{ ∂

∂xi
}i=1,...,n

and ∇2V (·) denotes its Hessian. For v, w ∈ Rn, the dis-
crete gradient is a vector-valued function of two vari-

ables, ∇̄V |wv : Rn × Rn → Rn, defined as

∇̄V |wv = col
{
∇̄iV |wv

}
i=1,...,n

=

∫ 1

0

∇V (v + s(w − v))ds

satisfying V (w) − V (v) = (w − v)⊤∇̄V |wv with
∇̄V |vv = ∇V (v). Given a vector-valued function F (x) =
col(F1(x), . . . , Fn(x)), J [F (x)] = { ∂

∂xj
Fi(x)}i,j=1,...,n

denotes the Jacobian of F . I and Id denote the identity
matrix and identity operator respectively. 0 denotes the
0 vector (or matrix) of suitable dimension depending
on the context. Given a smooth vector field f(·) over
Rn, Lf =

∑n
i=1 fi(x)

∂
∂xi

is the Lie operator with, re-

cursively, Li
f = LfL

i−1
f and L0

f = Id. Accordingly, the
exponential Lie series operator is defined as

eLf = Id +
∑
i≥1

1

i!
Li
f .

Given two vector fields f and g on Rn, adfg = LfLg −
LgLf denotes their Lie-bracket and, recursively, adifg =

adf ◦ adi−1
f g and ad0fg = g. A function R(x, δ) = O(δp)

is said of order δp, p ≥ 1 if, whenever it is defined, it
can be written as R(x, δ) = δp−1R̃(x, δ) and there exist

a function θ ∈ K∞ and δ∗ > 0 s. t. ∀δ ≤ δ∗, |R̃(x, δ)| ≤
θ(δ). The symbols ” > 0” and ” < 0” denote positive
and negative definite functions whereas ≺ and ≻ (⪯ and
⪰) positive and negative (semi) definite matrices.

2 Discrete-time passivation via Energy Balance

2.1 EB-PBC in continuous time: recalls

Let an input-affine system

ẋ =f(x) + ug(x), x ∈ Rn, u ∈ R (1a)

y =h(x) = LgH(x) (1b)

possess an equilibrium at x = 0 with u = 0 so that
h(0) = 0 and assume that it is passive with storage
function H(·) : Rn → R≥0 such that H(0) = 0. In the
context of the present study, referring to a physically
inspired vocabulary, the system (1) naturally satisfies
the so-called energy-balancing (EB) equality

H(x(t))−H(x(0)) =

∫ t

0

u⊤(s)y(s)ds− d(x(t)) (2)

splitting the stored energy into the energy supplied by
the control and a natural dissipation term d(x(t)) ≥ 0.
Note that, by virtue of the well-known Kalman-
Yakubovitch-Popov (KYP) conditions (Byrnes et al.,
1991), there is no loss of generality in assuming the pas-
sive output of the form in (1b).
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The so-called first generation of PBC, for stabilization at
the origin, is based on damping injection u(t) = −Ky(t),
K > 0, with the same energy function as in open loop.
The second generation of PBC relies on energy shaping
(ES): one seeks for a feedback law u = β(x) + v making
the closed-loop system passive with new (target) storage
function embedding the desired energy properties, say
Hd(·) and with respect to a suitably defined output func-
tion, say z. More in detail, consider a possibly non-zero
equilibrium to stabilize, say x⋆, verifying Hd(x⋆) = 0
and ∇Hd(x⋆) = 0; passivation through energy shaping
is guaranteed if one finds β(·) : Rn → R, such that
setting u = β(x) + v, the closed-loop system verifies

Hd(x(t))−Hd(x(0)) =

∫ t

0

v⊤(s)z(s)ds− dd(x(t)) (3)

with new damping dd(x) ≥ 0. EB-PBC belongs to this
class as specified in the following definition.

Definition 2.1 (EB-PBC) Consider the system (1)
that is assumed passive with positive definite storage
function H(·) : Rn → R≥0. Let x⋆ ∈ Rn be a de-
sired equilibrium. A feedback u = β(x) + v, is said to
be a continuous-time EB-PBC if there exists a func-
tion Ha(·) : Rn → R≥0 so that ∇Ha(x⋆) = −∇H(x⋆)
and the closed-loop energy is equal to the difference
between the stored and supplied energies when setting
Hd(x) = H(x) +Ha(x), namely

Hd(x(t))−Hd(x(0)) = H(x(t))−H(x(0))

−
∫ t

0

β(x(s))g⊤(x(s))∇H(x(s))ds.
(4)

Paraphrasing the requirement, the closed-loop sys-
tem is passive with respect to the new output z =
g⊤(x)∇Hd(x) with new storage function Hd(x) =
H(x) + Ha(x) and stabilization with additional damp-
ing to the target equilibrium x⋆ is achievable under
new negative output feedback v = −Kg⊤(x)∇Hd(x)
whenever Hd(·) qualifies as a Lyapunov function (i.e.,
Hd(x⋆) = 0 and Hd(x) > 0 in a neighborhood of the
equilibrium). The EB-PBC β(·) exists if a suitably de-
fined partial-differential equality (PDE) is solvable, as
detailed in the following result (Ortega et al., 2001).

Proposition 2.1 (CT-EB-PBC) Consider the pas-
sive system (1) with positive definite storage function
H(·) : Rn → R≥0 and let x⋆ ∈ Rn be a desired equilib-
rium. Then u = β(x) + v is an EB-PBC in the sense of
Definition 2.1 if β(x) solves the PDE

−β(x)g⊤(x)∇H(x) = (f(x) + β(x)g(x))⊤∇Ha(x) (5)

for some Ha(·) : Rn → R≥0 such that ∇Ha(x⋆) =
−∇H(x⋆).

In brief, the existence of an EB-PBC requires finding
a function β(x) such that the energy supplied by the
controller can be expressed as a function of the state.
EB-PBC is appealing for its simplicity and its wide range
of applicability as characterized by the condition below.

Remark 2.1 We note that (4)-(5) are not fully equiva-

lent to −uy = Ḣa. The EB conditions must not hold for
all u but for a specific β(x) that, together with Ha(x),
provides the solution to the problem. Accordingly, when
setting u = β(x)+ v, the energy is correctly shaped, with
the new input-output passive link v 7→ z.

Remark 2.2 (Dissipation obstacle) A necessary
condition for passivation through energy-balancing (5)
is that for all x̄ such that f(x̄) + β(x̄)g(x̄) = 0, then
β(x̄)LgH(x̄) = 0. This corresponds to requiring that the
extracted power from the control (i.e., β(x)LgH(x)) is
zero at all equilibria.

2.2 Generalities on discrete-time systems

Consider now a generic discrete-time system over Rn

described in the form of a map as

x+(u) = x+ F (x, u), u ∈ R (6a)

y(x, u) = h(x, u) (6b)

where the time dependencies are dropped out; namely,
x = xk, u = uk and x+(u) = x+

k (uk) = xk+1, at each
time step k ≥ 0. The map x+(u) describes any curve in
Rn parameterized by u ∈ R and, for convenience (even
if not necessary), the output map h(x, u) : Rn×R → R,
is set u-dependent to cope with a standard passivity
inequality (direct input to output link). We denote by
x+ = x+(0) = x+ F0(x) with F0(x) = F (x, 0) the drift
term associated to (6a). In the following, it is assumed
that (6) possesses an equilibrium at x⋆ = 0 when u = 0,
that is, F (0, 0) = 0.
In Monaco and Normand-Cyrot (1999), an alternative
representation to (6) has been proposed to split the
control-dependent part as

g(x, u)u = F (x, u)− F0(x) =

∫ u

0

G(x+(w), w)dw (7)

with F0(x) = F (x, 0) and control vector field G(·, ·) over
Rn so to satisfy

G(x+ F (x, u), u) =
∂F (x, u)

∂u
. (8)

Accordingly, the control action in the state equation (6a)
is specified by (7) that gets the form

g(x, u) =

∫ 1

0

G(x+(su), su)ds
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with g(x, 0) = G(F0(x), 0). We note that g(·, u) admits
formal series expansion in powers of u of the form

g(x, u) = g0(x) +
∑
i>0

1

(i+ 1)!
gi(x)u

i

with, in particular, g0(x) = g(x, 0) = G(F0(x), 0).
Among many, the interest of this representations relies
on the possibility of splitting the variation of any real-
valued function V (·) on Rn along the dynamics (6a)
into free and control dependent components as

V (x+(u))− V (x) =V (x+(0))− V (x) (9)

+

∫ u

0

LG(·,w)V (x+(w))dw

with

LG(·,w)V (x+(w)) =
(∂V (x,w)

∂x
G(x,w)

)∣∣∣
x=x+(w)

the Lie derivative with respect to the first argument
evaluated at x = x+(w). This is at the basis of average
passivity for discrete-time systems proposed by Monaco
and Normand-Cyrot (2011) and recalled below.

Definition 2.2 (Average passivity) The system (6)
with storage function H(·) : Rn → R≥0 is said average
passive if it is passive with respect to the average output

Y (x, u) =
1

u

∫ u

0

y(x+(w), w)dw; (10)

i.e., for all (x, u) ∈ Rn × R, the inequality below holds

H(x+(u))−H(x) ≤
∫ u

0

y(x+(w), w)dw = uY (x, u).

(11)

From the inequality (11), stabilization at the origin is
achieved by the feedback solution of the implicit damp-
ing equality u = −KY (x, u), K > 0. Solving such
implicit equality with respect to u may be a difficult
problem unavoidable in discrete time. Approximate
bounded solutions efficient for preserving stabilization
can be easily computed as proposed in Mattioni et al.
(2019); Mazenc and Nijmeijer (1998).
Because KYP-like necessary and sufficient conditions
for passivity do not hold in discrete time in general,
the following result has been proved in Monaco and
Normand-Cyrot (2011).

Proposition 2.2 Let the system (6) be passive with
storage function H(·) : Rn → R≥0. Then it is aver-
age passive with respect to h(·, u) = LG(·,u)H(·) and,

equivalently, passive with respect to the average output

Y (x, u) =
1

u

∫ u

0

LG(·,w)H(x+(w))dw (12)

withG(·, u) verifying (8); namely, for all (x, u) ∈ Rn×R

H(x+(u))−H(x) = H(x+(0))−H(x)

+

∫ u

0

LG(·,w)H(x+(w))dw ≤ uY (x, u).
(13)

When H(x) is an energy function, the dissipation equal-
ity (13) can be seen as the one-step ahead EB equality
below

H(x+(u))−H(x) = uY (x, u)− d(x) (14)

with supplied energy uY (x, u) and natural dissipation
d(x) ≥ 0. Iterating the reasoning over k-steps, one gets
the discrete-time EB equality over [0, k) as

H(xk)−H(x0)︸ ︷︷ ︸
stored energy

=

k−1∑
ℓ=0

uℓY (xℓ, uℓ)︸ ︷︷ ︸
supplied

−
k−1∑
ℓ=0

d(xℓ)︸ ︷︷ ︸
dissipated

(15)

with dissipation d(xℓ) at time ℓ ∈ [0, k).

Remark 2.3 In (14), we have referred to the term
uY (x, u) as supplied energy and not supplied power, as
one might expect. This is motivated by the fact that it
can be seen as the supplied energy over one time step
(at k + 1 starting from k). One might also refer to it as
supplied power by implicitly relating the power to a one
step increment which plays the role, in discrete time, of
the differentiation in continuous time.

Remark 2.4 In the Hamiltonian framework, mak-
ing reference to the recent description of discrete-time
Hamiltonian structures in (Moreschini et al., 2019),
the passive average output (12) rewrites in terms of the
discrete gradient function as

Y (x, u) = g⊤(x, u)∇̄H|x
+(u)

x+ (16)

with g(x, u) defined in (7), the drift x+ = x+(0) and the
supplied energy at time step k > 0 as

uY (x, u) = ug⊤(x, u)∇̄H|x
+(u)

x+ . (17)

This highlights a straight analogy with the same concepts
set in continuous time.
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Remark 2.5 In the multi-input case, the extension of
(6) is straightforward by defining u = (u1 . . . um)⊤,

F (x, u) = F0(x) +

m∑
i=1

gi(x, u)ui

and Gi(·, ·) : Rn × Rm → Rn so that

Gi(x+ F (x, u), u) =
∂F (x, u)

∂ui

so rewriting gi(x, u)ui as

gi(x, u)ui =

∫ ui

0

Gi(x+(w̄i), w̄i)dwi (18)

with w̄i = (u1, · · · , ui−1, wi, 0, · · · , 0) for i = 1, . . . ,m.
Identically, one sets for i = 1, . . . ,m

Y i(x, u) = (gi(x, u))
⊤∇̄H|x

+(u)
x+ . (19)

3 EB-PBC in discrete time

From now on we consider a discrete dynamics (6), as-
sumed average passive with respect to the output map
h(·, u) = LG(·,u)H(·), equivalently passive with respect
to the average output Y (x, u) defined in (12) or, equiv-
alently, (16).
As in continuous time, the origin is usually not the equi-
librium of practical interest. It is thus essential to drive
the trajectories to a new admissible equilibrium for (6),
say x⋆ ∈ Rn. Mimicking the discussion in Section 2, one
can formally define control by energy-shaping in discrete
time as below.

Definition 3.1 (DT-ES-PBC) Consider the discrete-
time dynamics (6) and a desired equilibrium x⋆ ∈ Rn.
The feedback u = β(x)+v is said to be a Energy-Shaping
(ES) PBC if, for some function Hd(·) : Rn → R≥0 with
isolated minimum at x⋆ ∈ Rn, the closed-loop system

x+(β(x) + v) = x+ F (x, β(x) + v) (20)

verifies the energy-balance equality

Hd(xk)−Hd(x0) =

k−1∑
ℓ=0

vℓZ(xℓ, vℓ)−
k−1∑
ℓ=0

dd(xℓ) (21)

with new damping dd(xℓ) and new passive output
Z(x, v) : Rn × R → R.

Remark 3.1 In the general definition above, we are not
apriori fixing the new passive output Z(x, v). As it will be
shown hereinafter in the context of energy-balancing, it

can depend explicitly on the original output of the system,
when suitably modified under feedback.

Accordingly, one sets the definition of discrete-time
energy-balance passivity-based controllers as follows.

Definition 3.2 (DT-EB-PBC) Let the discrete-time
dynamics (6) be average passive and, equivalently, pas-
sive with respect to the average output (12). A feedback
u = β(x) + v is said to be a discrete-time EB-PBC if
there exists a function Ha(·) : Rn → R≥0 such that
∇Ha(x⋆) = −∇H(x⋆) and the closed-loop energy is equal
to the difference between the stored and supplied energies
when setting Hd(x) = H(x) +Ha(x), namely

Hd(xk)−Hd(x0) =H(xk)−H(x0)

−
k−1∑
ℓ=0

β(xℓ)Y (xℓ, β(xℓ)).
(22)

Accordingly, passivation through energy-balancing relies
on the definition of a function β(x) : Rn → R making
the supplied energy a function of the state that is

−
k−1∑
ℓ=0

β(xℓ)Y (xℓ, β(xℓ)) = Ha(xk) +K. (23)

From the energy-balancing equality (21), whenever
Ha(x⋆) = H(x⋆) and Hd(x) > 0 otherwise (at least in
a neighborhood of x⋆), one concludes that the desired
equilibrium x⋆ ∈ Rn, the point of minimum energy, is
stable. The following result can be proved.

Proposition 3.1 Let the discrete-time dynamics (6) be
average passive, equivalently passive with output (12) and
storage function H(·) : Rn → R; let x⋆ ∈ Rn be an
admissible equilibrium. If there exists a function β(x)
such that the algebraic equation

−
∫ β(x)

0

LG(·,w)H(x+(w))dw=Ha(x
+(β(x))−Ha(x) (24)

admits a solution for some Ha(·) : Rn → R≥0, then the
feedback u = β(x) + v is a discrete-time EB-PBC in the
sense of Definition 3.2; namely, the closed-loop system
(20) is passive with new average output

Z(x, v)=
1

v

∫ v

0

LG(·,β(x)+w)Hd(x
+(β(x) + w))dw (25)

and storage function

Hd(x) = H(x) +Ha(x) (26)

verifying the desired energy-balance equality (21). In ad-
dition, if Hd(x⋆) = 0, ∇Hd(x⋆) = 0 and Hd(x) > 0 for
x ̸= x⋆, then x⋆ is a stable equilibrium of (20).
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Proof: The proof follows noting that (24) rewrites as

Ha(x
+(β))−Ha(x) = −β(x)Y (x, β(x)).

Accordingly, the feedback u = β(x) + v makes the aver-
age map v → Z(x, v) with Z(·, v) as in (25) passive with
the new energy function (26) because

Hd(x
+(β(x) + v))−Hd(x) = Hd(x

+(β(x)))−Hd(x)

+

∫ v

0

LG(·,β(x)+w)Hd(x
+(β(x) + w))dw ≤ vZ(x, v).

Stability of x⋆ follows if it is a minimum of Hd(x). ◁

From the result above, one immediately gets that
the feedback v solution to the damping equality
v = −KZ(x, v) achieves asymptotic stabilization of x⋆

provided suitable technical properties are satisfied (see
Monaco and Normand-Cyrot (2011) for further details).

Remark 3.2 (Discrete-time dissipation obstacle)
A necessary condition for solving (24) is that∫ β(x̄)

0

LG(·,v)H(x+(v))dv = β(x̄)Y (x̄, β(x̄)) = 0

with x+(v) = x̄ + F (x̄, v) at all equilibria x̄ ∈ Rn of
the closed loop system, that is F (x̄, β(x̄)) = 0. This im-
plies that stabilization via EB-PBC admits a solution
only for systems with finite dissipation as the extracted
power β(x̄)Y (x̄, β(x̄)) must be zero (and thus finite) at
all equilibria of (20).

Remark 3.3 In terms of the discrete gradient function,
condition (24) rewrites as

−β(x)g⊤(x, β(x))∇̄H|x
+(β(x))

x+

=
(
F (x, β(x))

)⊤∇̄Ha|x
+(β(x))

x .
(27)

The discrete-time problem requires solving the algebraic
equation (24) that is the discrete-time counterpart of the
PDE (5) to solve in continuous time. The computation
of the EB-PBC feedback as the solution to the nonlinear
implicit equality (24) may be hard in practice. We show
in the next section that the problem greatly simplifies
for discrete-time dynamics issued from sampling.

4 Energy Balance PBC under sampling

In this section, we show how the proposed DT-EB-PBC
applies to dynamics issued from sampling. More in de-
tail, we show that the existence of a solution to (5),
implies the existence of a solution to its discrete-time
counterpart (24), when specified on the sampled-data

equivalent model (28). Moreover the proof is construc-
tive for the digital feedback solution that is described
through its series expansion in powers of the sampling
period around the continuous-time solution. The follow-
ing standing assumption is introduced.

Assumption 1 Let the continuous-time nonlinear sys-
tems (1) be passive with energy function H(·) : Rn → R.
There exists a EB-PBC feedback u = β(x) + v solution
to (5) for some function Ha(·) : Rn → R≥0 making
x⋆ ∈ R a stable equilibrium in closed loop with Hd(x) =
H(x) +Ha(x) > 0 for x ̸= x⋆ and Hd(x⋆) = 0.

Assume now that measures of the state of (1) are avail-
able at the sampling instants t = kδ only and that
it is fed by piecewise constant input signals over sam-
pling times of length δ ∈]0, T ⋆[; i.e., u(t) = uk as t ∈
[kδ, (k+1)δ[ for all k ≥ 0. As a consequence, at all sam-
pling instants, (1) is described by the so-called sampled-
data equivalent model in the form of a map (Monaco and
Normand-Cyrot, 2007)

x+(u) = x+ δF δ(x, u) (28)

parameterized by δ and that can be computed according
to the exponential flow

δF δ(x, u) = eδ(Lf+uLg)x− x = δF δ
0 (x) + δgδ(x, u)u.

The sampled-data dynamics is described according to
its series expansion in powers of δ; i.e.,

F δ(x, u) =
∑
i>0

δi−1

i!
(Lf+uLg)

ix

with gδ(x, u)u = F δ(x, u)−F δ
0 (x), F

δ
0 (x) = F δ(x, 0). In

what follows, the sampling δ is assumed to belong to a
bounded interval ]0, T ⋆[, where T ⋆ is chosen to ensure
convergence of the corresponding series expansions.
As proved in Monaco and Normand-Cyrot (2011), pas-
sivity of (1) implies passivity of its discrete-time equiva-
lent model (28) with respect to the output described in
(12) which in this contexts takes the form

Y δ(x, u) =
1

δu

∫ u

0

LGδ(·,w)H(x+(w))dw (29)

with by definition (Monaco and Normand-Cyrot, 1999)

Gδ(x, u) =

∫ δ

0

e−s adf+uggds

e−s adf+ugg =g +
∑
i>0

(−s)i

i!
adif+ugg.
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Remark 4.1 In terms of the discrete gradient function,
the average output (29) rewrites as

Y δ(x, u) =
(
gδ(x, u)

)⊤∇̄H|x
+(u)

x+ . (30)

The next result shows that the existence of a continuous-
time EB-PBC for (1) (i.e., Assumption 1) implies the
existence of a discrete-time EB-PBC for the sampled-
data equivalent model (28) in the sense of Proposition
3.1, with the same functionHa(x) as in continuous time.
In addition, the sampled-data EB-PBC feedback can be
explicitly constructed from the continuous-time one.

Theorem 4.1 (SD passivation through DT-EB)
Consider the continuous-time dynamics (1) under As-
sumption 1. Then, there exists a sampled-data EB-PBC
u = βδ(x) + v in the sense of Definition 3.2; namely,
there exists T ⋆ > 0, such that, for all δ ∈]0, T ⋆[, the
equality

−1

δ

∫ βδ(x)

0

LGδ(·,w)H(x+(w))dw=
Ha(x

+(βδ(x)))−Ha(x)

δ
(31)

admits a unique solution βδ(·) : Rn → R of the form

βδ(x) = β(x) +
∑
i>0

δi

(i+ 1)!
βi(x). (32)

Moreover, the closed-loop sampled-data model

x+(βδ(x) + v) = x+ δF δ(x, βδ(x) + v) (33)

is passive with respect to the output

Zδ(x, v)=
1

δv

∫ v

0

LGδ(·,βδ(x)+w)Hd(x
+(βδ(x) + w))dw

(34)

and the same energy function Hd(x) = H(x) + Ha(x),
as in continuous time.

Proof: The existence of a unique solution βδ(x) to (31)
in the form (32) follows from the Implicit Function The-
orem (Rudin et al., 1976). Starting from (31), we define

δS(δ, u, x) :=eδ(Lf+uLg)H(x)− eδLfH(x)

+ eδ(Lf+uLg)Ha(x)−Ha(x).

Equality (31) admits a solution u for all δ if and only
if S(δ, u, x) = 0 does, for S(δ, u, x) defined above. In
addition, by definition of the Lie exponential operator
and smoothness of all vector fields and functions, one

can rewrite S(δ, u, x) = 0 as a formal series equality in
powers of δ; i.e.

S(δ, u, x) = S0(u, x) +
∑
i>0

δi

(i+ 1)!
Si(u, x) = 0

with

S0(u, x) =β(x)g⊤(x)∇H(x)

+ (f(x) + β(x)g(x))⊤∇Ha(x)

Si(u, x) =(Lf + uLg)
iH(x)− Li

fH(x)

+ (Lf + uLg)Ha(x), i = 1, 2, . . . .

With this in mind, when δ → 0, S(δ, u, x) → S0(u, x)
and the sampled-data equality S(δ, u, x) = 0, recovers
the continuous-time one (5). Thus, as δ → 0, (31) is
solved by the continuous-time solution βδ(x) = β(x).

Then, since ∂S(δ,u,x)
∂u

∣∣∣
δ→0,u=β(x)

= LgHd(x) ̸= 0, one

concludes the existence of a solution u = βδ(x) to the
equality S(δ, u, x) = 0 admitting an expansion in the
form (32) around the continuous-time solution β(x)
for δ ∈]0, T ⋆[ and T ⋆ small enough. The condition
LgHd(x) ̸= 0, at least in a neighborhood of x⋆, follows
from Assumption 1, KYP properties (Byrnes et al.,
1991), and relative degree one. The rest of the proof
follows from Proposition 3.1. ◁

Remark 4.2 Along the lines of Remark 3.3, (31)
rewrites, in terms of the discrete-gradient as

− βδ(x)
(
gδ(x, βδ(x))

)⊤∇̄H|x
+(βδ(x))

x+

=
(
F δ(x, βδ(x))

)⊤∇̄Ha|x
+(βδ(x))

x

that is the sampled-data equivalent to (5).

The proof of Theorem 4.1 is constructive in the sense
that by comparing the terms of the same power in δ in
equality (31), one computes iteratively each additional
term βi(x) (referred to as ith-order correcting term) in
the expansion (32) as solution to a linear equality. This
is done substituting all terms of the corresponding se-
ries expansion (32) into the equality (31) (equivalently,
setting S(δ, βδ(x), x) = 0) and equating the terms ap-
pearing with the same power of δ.
For the first terms, setting fd(x) = f(x)+β(x)g(x), the

7



equalities to solve iteratively are the following

β0(x) = β(x)

β1(x)LgHd(x) = β̇(x)LgHd(x)− β(x)LgLfH(x)

β2(x)LgHd(x) = β̈(x)LgHd(x)

− 3

2
β1(x)Lg(Lf + β(x)Lg)Hd(x)

+ (2β̇(x)− 3

2
β1(x))(Lf + β(x)Lg)LgHd(x)

−
(
(Lf+β(x)Lg)

2−L2
f

)
LfH(x)+β(x)β̇(x)L2

gHd(x)

β̇(x) = Lfdβ(x), β̈(x) = L2
fd
β(x).

As in the discrete-time case, exact solutions are hard to
be computed. As a consequence, only controllers com-
puted as approximate solutions can be implemented in
practice. We define the pth-order approximate feedback
solution to (31) as the truncation of (32), at any desired
order p ≥ 0, as

βδ,[p](x) = β(x) +

p∑
i=1

δi

(i+ 1)!
βi(x). (35)

Remark 4.3 Quantifying (also qualitatively) the max-
imum allowable sampling period under approximate so-
lutions of the form (35) is a tough problem that has been
addressed in a wide literature when restricted to Euler
or emulation-based approximation schemes (i.e., with
p = 0) in general. In this sense, one can refer to sev-
eral tools available for investigating the problem: the con-
cept of consistency (Nešić et al., 1999); set stabilization
and practical stability within the hybrid framework (e.g.,
Nesic et al. (2009)); modeling and analysis in the time-
delay framework ((Mazenc et al., 2013; Pepe and Frid-
man, 2017)) and so on. The benefits of including correct-
ing terms to emulation (i.e., setting p ≥ 1 have been in-
vestigated in (Mattioni et al., 2017; Tanasa et al., 2015).

5 Fully actuated mechanical systems

An interesting feature of continuous-time EB-PBC
strategies is to be applicable to the large class of fully ac-
tuated mechanical systems. Let us specify the sampled-
data solution in that case. Consider the position reg-
ulation of a fully actuated mechanical systems with
generalized coordinates q ∈ Rn, momentum p = M(q)q̇,
and total energy function

H(q, p) =
1

2
p⊤M−1(q)p+ V (q). (36)

M(q) = M⊤(q) is the generalized inertia matrix and
V (q) : Rn → R≥0 is the potential energy verifying

V (q) ≥ c for c ∈ R. Accordingly, the dynamics is(
q̇

ṗ

)
=

(
0 I

−I 0

)(
∇qH(q, p)

∇pH(q, p)

)
+

(
0

I

)
u (37)

where u ∈ Rn is the control torque and y = M−1(q)p =
q̇, the passive output verifying the dissipation equality

Ḣ(q, p) = q⊤M−1(q)u = y⊤u (38)

J =

(
0 I

−I 0

)
, B =

(
0

I

)
.

5.1 Continuous-time EB-PBC

As proved inOrtega et al. (2001), denoting x = (q⊤ p⊤)⊤

and x⋆ = (q⊤⋆ 0⊤)⊤, (37) satisfies Assumption 1 with

Ha(q) = −V (q) + Vd(q − q⋆) (39a)

Vd(q) =
1

2
q⊤Kpq, Kp = K⊤

p ≻ 0 (39b)

Hd(q, p) =
1

2
p⊤M−1(q)p+ Vd(q − q⋆) (39c)

β(q) = ∇V (q)−Kp(q − q⋆). (39d)

The feedback u = β(q) + v(q, p) with damping injection

v(q, p) = −KdM
−1(q)p, Kd ≻ 0 (40)

makes the equilibrium x⋆ asymptotically stable.

5.2 Digital EB-PBC

For fully actuated mechanical systems, the output mak-
ing (37) passive under sampling takes a simple, yet rep-
resentative, structure as detailed in the result below.

Proposition 5.1 Consider the mechanical system (37)
being passive (lossless) with output y = M−1(q)p and dis-
sipation equality (38). Then the corresponding sampled-
data equivalent model is passive with average output

Y δ(q, p, u) =
1

δ
(q+(u)− q) (41)

and dissipation equality

H(q+(u), p+(u))−H(q, p) =δu⊤Y δ(q, p, u)

=u⊤(q+(u)− q).
(42)

Proof: The proof follows by integrating the continuous-
time dissipation equality (38) over the sampling interval
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[kδ, (k + 1)δ[; namely, one gets∫ (k+1)δ

kδ

Ḣ(q(s), p(s))ds = u⊤
∫ (k+1)δ

kδ

M−1(q(s))p(s)ds.

Substituting in the equality above q̇ = M−1(q)p and
recalling that q+(u) = qk+1 = q((k + 1)δ) and p+(u) =
pk+1 = p((k + 1)δ), one gets (42) so that passivity with
respect to the output (41) follows. The fact that (42)
coincides with the average output (29) follows because
(37) is lossless (Monaco andNormand-Cyrot, 2011), that
is LfH(q, p) ≡ 0 with f = J∇H(q, p). ◁

Remark 5.1 In open loop the sampled-data supplied en-
ergy is given by the scalar product of the one-step incre-
ment of position and torque, that is

δu⊤Y δ(q, p, u) = u⊤(q+(u)− q).

Remark 5.2 The discrete gradient of (36) is

∇̄H|x
+

x =

(
∇̄V |q+q + 1

2

∫ 1

0
∇q[p

⊤M(q))p]q=q+s(q+−q)ds

1
2M(q)(p+ + p)

)

when setting, for the ease of notations, x = (q⊤ p⊤)⊤.

At this point, from Theorem 4.1, the position regulation
problem can be solved under digital control via discrete-
time EB-PBC as summarized in the result below.

Proposition 5.2 Consider the mechanical system (37)
with energy function (36) and x⋆ = (q⊤⋆ 0⊤)⊤ an equi-
librium to stabilize. Then there exists a digital EB-PBC
feedback βδ(q, p) : R2n → Rn solution to the EB equality

(q+(βδ(q, p))− q)⊤βδ(q, p) =
(
∇̄V |q

+(βδ(q,p))
q

− 1

2
Kp(q

+(βδ(q, p))) + q − 2q⋆)
)⊤(

q+(βδ(q, p))− q+
)

with Kp = K⊤
p ≻ 0. Equivalently, the feedback u =

βδ(q, p)+v makes the sampled-data equivalent dynamics
(28) passive with respect to the average output

Zδ(q, p, v) = q+(βδ(q, p) + v)− q (43)

and continuous-time target energy (39c). In addition,
x⋆ = (q⊤⋆ 0⊤)⊤ is asymptotically stable with

v = vδ(q, p) = v0(q, p) +
∑
i>0

δi

(i+ 1)!
vi(q, p)

defined as the unique solution to the damping equality

v = −Kd

(
q+(βδ(q, p) + v)− q

)
, Kd ≻ 0. (44)

Proof: The proof follows from Theorem 4.1 when rewrit-
ing the energy-balance equality (31) as

βδ⊤(x)
(
gδ(x, βδ(x))

)⊤∇̄Hd|x
+(βδ(x))

x+ =
(
F δ
0 (x)

)⊤∇Ha|x
+

x

with F δ
0 (x) = eδLfx and f(x) = J∇H(x),

∇̄Ha(x)|x
+

x =

(
−∇̄V |q+q + 1

2Kp(q
+ + q − 2q⋆)

0

)

and Ha(x) = Ha(q, p) as in (39a). At this point, the rest
of the proof follows from Theorem 4.1. ◁

Denoting K̂ℓ = diag{Kℓ, 0} for ℓ = {d, p}, the final
feedback is again in the form of a series expansion in
powers of δ with, setting S := J −BKdB

⊤ for the first
terms

β0(q, p) =β(q) = ∇V (q)−Kp(q − q⋆)

β1(q, p) =− (∇2V (q)− K̂p)J∇Hd(q, p)

β2(q, p) =J [β1(q, p)]J∇Hd(q, p) (45)

−
(
∇⊤Hd(q, p)B

)†
β⊤
1 (q, p)B⊤×(

∇2Hd(q, p)J∇H(q, p)

− 3

2
∇2H(q, p)J∇Hd(q, p)

)
v0(q, p) =v(q, p) = −KdM

−1(q)p

v1(q, p) =− K̂dB
⊤∇2Hd(q, p)S∇Hd(q, p) (46)

− K̂dB
⊤(∇2H(q, p)J∇Hd(q, p)

−∇2Hd(q, p)J∇H(q, p)
)

v2(q, p) =J [v1(q, p)]S∇Hd(q, p)−K̂dB
⊤∇2HdB

(
β1(q, p)

+
3

2
v1(q, p)− J [v0(q, p)]S∇Hd(q, p)

)
.

Approximate solutions defined, for i ≥ 0, as

uδ,[i](q, p) =

i∑
ℓ=0

δℓ

(ℓ+ 1)!
(βℓ(q, p) + vℓ(q, p)) (47)

ensure practical asymptotic stability of (q⊤⋆ 0⊤)⊤ in
closed loop (Mattioni et al., 2017, Proposition 4.2); i.e.,
the closed-loop trajectories converge to a neighborhood
of the desired equilibrium with radius δi+1.

5.3 A simulated example: the case of a 2R robot

Consider a fully actuated 2R robot of the form (37) with

M(q) =

(
c1 + c2 + 2c3 cos (q2) c2 + c3 cos (q2)

c2 + c3 cos (q2) c2

)
V (q) =− c4g cos (q1)− c5g cos (q1 + q2)
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Fig. 1. Fully actuated 2R Robot with δ = 0.01.

for (q, p) ∈ R4, c1 = m1l
2
c1 +m2l

2
1 + I1, c2 = m2l

2
c2 + I2,

c3 = m2l1lc2 , c4 = m1lc1 + m2l1, c5 = m2lc2 and
g = 9.81, m1 = m2 = 2, l1 = 2, lc1 = 1, lc2 = 0.5,
I1 = 0.667, I2 = 0.083. The continuous-time control law
u(q) = β(q) + v(q, p) as in (39d)-(40) is compared with
approximate sampled-data feedback laws of the form
(47) with correcting terms as in (45)-(46). We refer to
the case p = 0 as the emulated control, typically involved
in the literature.
Simulations are reported in Figures 1-2 fixing the initial
and desired configurations as x0 = 0, q⋆ = (π, 0) with
the gains Kp = 4I, Kd = 2I. The solid blue line repre-
sents the continuous-time controller, the dashed yellow
the emulated controller, the dashed red the controller
(47) truncated in O(δ2), the dashed green the controller
(47) truncated inO(δ3), and the dashed black represents
the stabilizing controller resulting from Laila and Astolfi
(2006) when adapted to this case.
The results show that the emulated controller is prone
to instability even under small sampling period (δ = 0.1,
Figure 2), so failing in assigning the desired closed-loop
energy behavior. Still, higher order approximate con-
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Fig. 2. Fully actuated 2R Robot with δ = 0.1.

trollers (even with only one correcting term, i.e., with
i = 1) achieve stabilization on the closed loop guaran-
teeing the desired energy profile with remarkable perfor-
mances. This testifies the striking improvement of ap-
proximate solutions in practice. As expected, for much
smaller values of the sampling period (δ = 0.01, Figure
1), even emulation guarantees stabilization.

6 Conclusions

The problem of designing EB-PBCs for discrete dynam-
ics was addressed providing conditions for its solvabil-
ity. Also, it was also shown that such solution naturally
applies to discrete-time dynamics issued from sampling
and that a constructive solution exists whenever passiva-
tion via energy balancing holds in continuous time. Fu-
ture works concern the extension of these arguments to
cope with time delays and general mechanical systems.
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