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A new distributed protocol for consensus of discrete-time systems
Filippo Cacace1, Mattia Mattioni2, Salvatore Monaco2 and Dorothée Normand-Cyrot3

Abstract— In this paper, a new distributed protocol is pro-
posed to force consensus in a discrete-time network of scalar
agents with an arbitrarily assignable convergence rate. Several
simulations validate the performances and the improvements
with respect to more standard protocols.

Index Terms— Linear systems; Consensus control and esti-
mation; Network analysis and control.

I. INTRODUCTION

Numerous problems in engineering and beyond can be
lead to enforcing consensus in a network of discrete-time
dynamics as, for instance, controlling multi-agent systems
under sampled-data communication [1], modeling opinion
dynamics and social networks [2], [3], non-cooperative or
selfish routing in network systems [4], identification and
filtering in, among many, sensor networks [5]. In all those
cases, the problem consists in defining a suitable distributed
interconnection protocol driving the dynamics of all agents
of the network to a shared behavior, commonly referred
to as consensus [6]. In general, such an interconnection
is performed by emulating the continuous-time counterpart.
Despite such a rule is simple to implement, it guarantees
consensus of the network only under very restrictive con-
ditions on the coupling strength (the gain weighting the
influence of the network on each agent). As a matter of
fact, even for networks of discrete-time scalar agents, the
standard connection protocol guarantees convergence to an
agreement state only if the coupling is small enough with
respect to the network size [7], [8]. Accordingly, these
results provides conservative values for the gain that are
generally inversely proportional to either the smallest non
zero eigenvalue of the Laplacian (which must be known to all
agents) or, alternatively, the number of agents involved in the
network. As a consequence the coupling gain decreases with
the size of the network affecting both the convergence rate
to consensus, slowed down significantly for large networks,
and the amount of information the agents need to exchange
before reaching an agreement.

In such a context, this paper aims at designing a new
distributed protocol overcoming the aforementioned issues
for a network of discrete-time scalar dynamical agents.
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A first step toward this goal is in [9], where a new cou-
pling control is provided for discrete-time networks forcing
consensus for all the coupling strength values that can be
then arbitrarily set. However, despite well-performing in the
nominal cases, the proposed protocol suffered from two
main issues: (i) it cannot be implemented in a distributed
manner as the coupling protocol is implicitly defined; (ii)
the convergence rate cannot be fixed arbitrarily as directly
proportional to the coupling gain.

Starting from this result, the contribution of this paper is
twofold. First, the centralized protocol in [9] is improved
by allowing to fix the convergence rate to consensus ar-
bitrary fast as directly proportional to the coupling gain.
However, such a protocol is implicitly defined by a linear
equality whose solution, defining the control action, cannot
be instantaneously and independently computed by each
node. Accordingly, as second and major contribution, we
propose a distributed version of the aforementioned protocol
allowing to approximately solve, in an arbitrary number of
steps, the linear equation that defines it. The resulting design
approach is reminiscent of a time-scale separation procedure
typically employed in distributed filtering [10]–[12]. Roughly
speaking, two consensus processes are nested over a time
window of length γ, so resorting to a multi-rate consensus
controller. The local control at step t, ui(t), is computed via
an intra-consensus forward computation over a time window
of length γ. At all steps t + τ (with τ = 1, . . . , γ), each
agent computes an approximate solution (say vi(t, τ)) to
the equation defining the consensus protocol only based on
the available (local) information and then sends it to the
corresponding neighbors. At step t+ γ, the actual control is
deduced as the result of the approximating consensus phase
after γ steps, i.e., ui(t) = vi(t, γ). The so deduced controller
is ensured to enforce consensus for all values of γ with
performance of the centralized implementation recovered as
γ increases.

The rest of the paper is organized as follows. In Section II
the problem is settled with the centralized and decentralized
solutions presented in Section III. Simulations are given
in Section IV with concluding remarks and perspectives in
Section V.

Notations. C, R and N denote the set of complex,
real and natural numbers including 0 respectively. I and 0
denote respectively the identity and zero matrices of suitable
dimensions. | · | ∈ R denotes, depending on the argument,
either the cardinality of a set S or the absolute value of a
complex number λ ∈ C. 0 denotes either the zero scalar
or the zero matrix of suitable dimensions. 1c denotes the
c-dimensional column vector whose elements are all ones
while I is the identity matrix of suitable dimensions. Given



a matrix A ∈ Rn×n, σ{A} ⊂ C is its spectrum, ∥A∥ its norm
and ρ(A) its spectral radius. A matrix is said non-negative
if all its entries are non-negative. Given x : t 7→ x(t) with
t ∈ N and x(t) ∈ Rn, we denote for simplicity x = x(t) and
x+ = x(t + 1). A scalar real-valued function H : Rn → R
we denote by ∆H(x) = H(x+) −H(x) the corresponding
one step increment.

II. PROBLEM STATEMENT AND RECALLS

A. Recalls on graph

We consider an unweighted directed graph (or digraph for
short) G = (V, E) with |V| = N , E ⊆ V × V . The set
of neighbors to a node i ∈ V is defined as Ni = {j ∈
V s.t. (j, i) ∈ E}. For all pairs of distinct nodes i, j ∈ V , a
directed path from i to j is defined as i⇝ j := {(r, r + 1) ∈
E s.t. ∪ℓ−1

r=0 (r, r + 1) ⊆ E with 0 = i, ℓ = j and ℓ > 0}.
The reachable set from a node i ∈ V is defined as R(i) :=
{i} ∪ {j ∈ V s.t. i⇝ j}. A set R is called a reach if it is a
maximal reachable set, that is, R = R(i) for some i ∈ V and
there is no µ ∈ V such that R(i) ⊂ R(j). Since G possesses
a finite number of vertices, such maximal sets exist and are
uniquely determined by the graph itself. Denoting by Ri for
i = 1, . . . , µ, the reaches of G, the exclusive part of Ri is
defined as Hi = Ri\∪µ

ℓ=1,ℓ̸=iRj with cardinality hi = |Hi|.
Finally, the common part of G is given by C = V\ ∪µ

i=1 Hi

with cardinality c = |C|.
The Laplacian matrix associated to G is given by L =

D−A with D ∈ RN×N and A ∈ RN×N being respectively
the in-degree and the adjacency matrices. As proved in [13],
L possesses one eigenvalue λ = 0 with both algebraic and
geometric multiplicities coinciding with µ, the number of
reaches of G. In the following, it is assumed that µ = 1, that
is the network only possesses one reach.

B. Motivation and problem formulation

Consider a multi-agent system exchanging information via
a communication digraph G = (V, E) with each vertex i ∈ V
being a dynamical unit of the form

x+
i =xi + ui (1)

with xi, ui ∈ R and i = 1, . . . , N . When coupling all agents
via the standard protocol [6], [7]

ui = −κl

∑
νj∈N (νi)

(xi − xj) (2)

consensus is achieved only if the coupling gain κla > 0
is small enough. More precisely, denoting the agglomerate
vectors

x =col{xi, i = 1, . . . , N} ∈ RN

u =col{ui, i = 1, . . . , N} ∈ RN .
(3)

the network dynamics

x(t+ 1) =(I − κlL)x(t) (4)

possesses dynamic matrix I − κlL with one eigenvalue in
λd = 1 with unitary geometric multiplicity; however, all

agents converge to a suitable consensus xs ∈ R only if all
other eigenvalues lie within the open unit circle, that is when

κl ≤
1

λmax
, λmax = max

λ>0
{λ ∈ σ{L}}. (5)

Accordingly, if κl is not small enough consensus might be
lost and the network might be unstable. In addition, even in
the best case scenario (when consensus is preserved), because
κl should be small, the exchange of information is signifi-
cantly filtered by all agents so notably affecting both the
convergence rate to consensus and the amount of information
that must be exchanged. Finally, λmax might not be known
by all agents and, even if upper bounds can be computed,
the transient performances might not be acceptable. In [9],
a new consensus protocol solving part of those issues have
been proposed. However, the proposed solution is centralized
and cannot assign an arbitrary convergence rate to consensus.
In this paper, we try to make a step farther investigating
and solving the problem of designing, if any, a local and
distributed control law of the form

ui(t) = κφi(xi(t), col{xj(t), uj(t− 1) s.t. j ∈ Ni})

making all agents asymptotically converge to some consen-
sus xs ∈ R for all κ > 0; namely, as t → ∞

x(t) → 1Nxs, (6)

for suitably defined consensus xs ∈ R.

III. MAIN RESULT

A. A refined centralized consensus protocol

First, we refine and extend the centralized algorithm
proposed in [9] where the necessity of a direct input term in
the output all agents exchange through the network.

Theorem 3.1: Consider a network of N discrete-time
agents of the form (1) with communication digraph G with
only one reach, i.e. the Laplacian L has a zero eigenvalue
with multiplicity 1. Then, for all i = 1, . . . , N the local
control law

u = −κ
(
IN + κgL

)−1
Lx (7)

whose components are solutions to

ui =− κ
∑
j∈Ni

(yi − yj) (8a)

yi =xi + gui (8b)

guarantee consensus for all κ > 0 and g ≥ 1
2 ; namely, for

the network dynamics

x(t+ 1) = Θc(κ, g)x(t) (9)

Θc(κ, g) =
(
IN + κgL

)−1(
IN + κ(g − 1)L

)
(10)

as t → ∞, one gets that (6) holds with

xs = v⊤1 x(0) (11)

with v⊤1 ∈ RN such that v⊤1 L = 0 and v⊤1 1N = 1.



Proof: The proof follows along the lines of [9,
Thorem 4.1] noticing that for all choices of κ, g ∈ R, the
eigenvalues of Θc(κ, g) are given by

λi
d(κ, g) =

1 + κ(g − 1)λi

1 + κgλi
, for all λi ∈ σ{L}. (12)

Thus, Θc possesses an eigenvalues in λd = 1 with multiplic-
ity 1, corresponding to the eigenvalue λ = 0 of the Laplacian
L. In addition, all other eigenvalues are in the open unit circle
if and only if, fixing κ > 0, g > 1

2 . As a consequence, the
center subspace associated to the one eigenvalue

Vc = ker{L} = span{1N}

is attractive and coincides with the consensus subspace.
Introducing now(

xs

xr

)
= v⊤1 x =

(
V ⊤
0

V ⊤
r

)
x (13)

with

V −⊤ = Z =
(
1N Zr

)
V ⊤LZ =

(
0 0
0 Λ

)
, Λr = diag{σ{L}\{0}}

one gets that

V ⊤Θc(κ, g)Z =

(
1 0
0 Λr

d

)
Λr
d(κ, g) = diag{σ{Θc(κ, g)}\{1}}.

In detail, xs ∈ R is the projection of the trajectories onto
Vc, whereas xr ∈ RN−1 is the orthogonal component
that converges to zero, by construction of κ and g. When
consensus is achieved (i.e., x ∈ Vc), one gets xr ≡ 0 and
thus

x = 1Nxs

so that the proof follows.
Remark 3.1: The output (8b) agents exchange through the

network is the one making all agents Input-Feedforward
Passive [14]; that is, fixing the storage S(xi) = 1

2x
2
i one

gets the dissipation inequality

∆S(xi) ≤ uiyi − (g − 1

2
)u2

i . (14)

Accordingly, when g > 1
2 , ui 7→ yi is strictly passive

whereas it is passive for g = 1
2 .

Remark 3.2: When fixing g = 1
2 , the consensus protocol

proposed in [9] is recovered. However, in this case, one
cannot fix the convergence rate to consensus arbitrarily small
via κ > 0. As a matter of fact, one cannot compute the gain
κ to make all eigenvalues of Θc(κ,

1
2 )

λi
d(κ,

1

2
) =

1− κ
2λ

i

1 + κ
2λ

i
, for all λi ∈ σ{L}.

arbitrarily close to 0. On the other side, the value of the
largest eigenvalue (in module) can be minimized depending
on the particular spectrum of L, which must be thus known
to all nodes apriori.

Fig. 1. Plot of the farthest eigenvalue of Θc from 0 for increasing values
of κ > 0 and g ≥ 1

2
.

Remark 3.3: When fixing g = 1 in the consensus protocol
(8), one can modulate the convergence rate to consensus
arbitrarily via κ > 0. More precisely, the eigenvalues of
Θc(κ, 1)

λi
d(κ, 1) =

1

1 + κλi
, for all λi ∈ σ{L}

are as close to 0 (in module) as κ increases; namely, trajecto-
ries of the network (9) converge to the multi-consensus with
a velocity that is directly proportional to κ > 0. With this
in mind, contrarily to the case [6], [9], one can assign the
convergence rate arbitrarily small picking κ → ∞, with no
knowledge of the spectrum of the Laplacian. For a randomly
generated graph of 10 nodes, Fig. 1 depicts the location of
the slowest eigenvalue of Θc(κ, g) for increasing values of
both κ and g.

The coupling rule (8) defining the consensus control (7)
is implicitly defined and, in general, cannot be computed (at
least statically) in a fully distributed manner. As a matter of
fact, at each step k ∈ N, the ith agent needs the input uj

of all its neighbors for computing the corresponding ui so
creating a bottleneck that cannot be solved locally.

The feedback (7) can be rewritten as

u =− κW (κ, g)Lx (15)

W (κ, g) :=(IN + κgL)−1 (16)

with the term W (κ, g)L being a new weighted Laplacian.
This new Laplacian is associated to a new dummy graph in
which new (and weighted) edges appear within connected
components due to the presence of the weighting matrix
W (κ, g) which depends on the original Laplacian L. Such a
matrix cannot be computed locally by each agent unless all
of them possess exact knowledge on the original topology
of G.

B. A distributed implementation of the new protocol
In this section we study the problem of a distributed

(dynamic) implementation of the coupling rule defined by



Approximate γ steps implementation of (8) at node i.
1: At each time t ≥ 0, send xi(t) to the neighbors.
2: Receive xj(t) from the neighbors, j ∈ Ni, and compute,

with di = |Ni|,

vi(t, 0) =
−κ

1 + gκdi

∑
j∈N(i)

(
xi(t)− xj(t)

)
(17)

3: For h = 0, . . . , γ − 1 do:
3.1: Send vi(t, h) to the neighbors
3.2: Compute

vi(t, h+1) = vi(t, 0)+
gκ

1 + gκdi

∑
j∈Ni

vj(t, h) (18)

4: Set ui(t) = vi(t, γ).

Fig. 2. Distributed approximate multi-step implementation of (8)

(8). The problem is not trivial, as it is evident for general
reasons. Since, as remarked in Remark 3.3, (8) allows for
an arbitrary rate of convergence to consensus, it follows
that its distributed implementation would yield distributed
practical convergence in any finite number of steps, including
1. However, this is not possible, since the speed of the infor-
mation trough a graph with discrete-time communications is
obviously limited.

One possible way to overcome this conceptual limitation is
to separate the time-scale of the information exchange and of
the system evolution by resorting to a multi-rate controller.
The idea of multiple information exchanges per time unit
is not new and it has been used extensively in the field of
distributed filtering [10], [11]. The coupling rule defined by
(8) can be written

ui = −κ
∑
j∈Ni

(xi − xj)− gκ
∑
j∈Ni

(
ui − uj

)
. (19)

By solving with respect to ui one gets, with di = |Ni|,

ui = − κ

1 + gκdi

∑
j∈Ni

(xi − xj) +
gκ

1 + gκdi

∑
j∈Ni

uj , (20)

where the first term of the right-hand is immediately avail-
able at each time t, whereas the second one can be approxi-
mated by a truncated fixed-point iteration with γ ∈ N steps.
The resulting approximate distributed implementation of (8)
is summarized in Fig. 2.

Theorem 3.2: If the graph G has exactly one reach, then
at each node i and time t the sequence vi(t, γ) generated by
(18) is such that, for all κ, g > 0 and γ ∈ N,

lim
γ→∞

vi(t, γ) = ui(t), (21)

where ui(t) is the i-th component of u = −κ
(
IN +

κgL
)−1

Lx.
Proof: Introduce the matrices

D̃ =(IN + κgD)−1 (22)

G =(IN + κgD)−1κgA = κgD̃A. (23)

G is non-negative with ρ(G) < 1, i.e. G is Schur. G is non-
negative because D̃, A are non-negative. Since each row i

of G is obtained from the corresponding row of A divided
by 1+κgdi, an application of the Gerschgorin criterion [15]
to the rows of G allows to conclude that ρ(G) < 1 for any
positive values of κ and g. In fact, Gii = 0 is the center of the
circles and the radius is

∑
j ̸=i Gij = κgdi/(1 + κgdi) < 1,

that implies ρ(G) < 1. In vector form (18) reads

V (t, γ) = −κ
(
IN +G+ · · ·+Gγ

)(
I + κgD

)−1
Lx(t).

(24)

From L = D −A we obtain(
IN + κgL

)
=IN + κgD − κgA = D̃−1(IN − κgD̃A)

=(IN + κgD)(IN −G) (25)

one gets

V (t, γ) = −κ

γ∑
h=0

Gh
(
IN + κgL

)−1
Lx(t).

Since when ρ(G) < 1 it holds that (IN −G)−1 =
∑∞

i=0 G
i

one concludes, as γ → ∞,

V (t, γ) → −κ
(
IN + κgL

)−1
Lx(t)

that is exactly the centralized control (7).
Theorem 3.2 shows that with a sufficient number of

consensus steps for time unit, we can approximate the per-
formance of the centralized controller (7) as much as desired.
In particular with g = 1 it is possible to choose any rate of
convergence to the consensus value. In practice it is also of
interest to investigate when the consensus is reached for a
finite number of consensus steps γ. We therefore investigate
the consensus properties of the control ui(t) = vi(t, γ). The
following result is instrumental to this goal.

Lemma 3.1: With the control law ui(t) = vi(t, γ) the
network dynamics takes the form

x(t+ 1) = Θd(κ, g, γ)x(t) (26)

with

Θd(κ, g, γ) = IN − κ(IN −Gγ+1)W (κ, g)L (27)

and where W (κ, g) = (IN +κgL)−1 in (16) is non-negative.
Proof: The proof follows from (24), (25) and∑γ

h=0 G
h = (IN −Gγ+1)(IN −G)−1. We get

V (t, γ) = −κ
(
I −Gγ+1

)
W (κ, g)Lx(t) (28)

with G as in (23) and W (κ, g) as in (16). Thus, x(t+1) =
x(t) + u(t) can be written

x(t+ 1) =
(
IN − κ

(
IN −Gγ+1

)
W (κ, g)L

)
x(t)

=Θd(κ, g, γ)x(t). (29)

Finally, (25) implies W = (IN − G)−1D̃ and since both
(IN − G)−1 =

∑∞
h=0 G

h and D̃ are non-negative, W is
non-negative too.
Notice that by using (15) the matrix Θc(κ, g) in (10) can
be written Θc = IN − κWL and, since G is Schur,
limγ→∞ Θd(κ, g, γ) = Θc(κ, g), in accordance with The-
orem 3.2.



The following result specifies conditions allowing to en-
force consensus under the distributed approximation in (18)
with no consensus iteration (i.e., when γ = 0).

Lemma 3.2: When κg ≥ 1 and the graph contains only
one reach, the control law ui = vi(t, 0) (i.e. γ = 0) makes
the agents converge to the same consensus value.

Proof: From (24), V (t, 0) = −κD̃Lx(t) and (27) reads

Θd(κ, g, 0) = IN − κD̃L. (30)

Θd(κ, g, 0) is row-stochastic, i.e. Θd(κ, g, 0)1N = 1N .
Moreover, if κg ≥ 1 then Θd(κ, g, 0) is non-negative. An ap-
plication of the Gerschgorin circles to the rows of Θd(κ, g, 0)
yields ρ(Θd(κ, g, 0)) ≤ 1. Since it is immediate to verify that
λ1 = 1 ∈ σ{Θd(κ, g, 0)} with right eigenvector u1 = 1N

we have ρ(Θd(κ, g, 0)) = 1. When the graph is strongly
connected, Θd(κ, g, 0) is irreducible and, by the presence
of at least a non zero element on the diagonal, primitive
[15]. Consequently, λ1 = 1 is the only eigenvalue on the
unit circle and it has algebraic and geometric multiplicity
1 by the Frobenius-Perron theorem. Thus, x(t) tends to the
eigenspace of λ1, that is, to a vector of the form 1Nxs, xs =
v⊤1 x(0) ∈ R, where v1 is the corresponding left eigenvector
of Θd(κ, g, 0) for λ1 = 1 satisfying v⊤1 1N = 1. When
the graph is weakly connected and with one reach only, the
multiplicity of λ1 = 1 is still 1 (see [13, Theorem 3.2]). In
this situation, the set of roots of the graph form a strongly
connected sub-graph and therefore they reach consensus. The
consensus of the remaining nodes of the graph follows from
a simple partioning of L between root and non-root nodes
(see [16, Section 2]).

Theorem 3.1 and Lemma 3.2 show that the distributed
control (18) on weakly connected digraphs with only one
reach (i.e. µ = 1) guarantees consensus for, respectively,
γ = ∞ and γ = 0 consensus iterations. Our main result,
here below, states that this property holds for any number of
consensus iterations and for all γ ≥ 0, κ > 0, g ≥ 1.

Theorem 3.3: If the graph G has exactly one reach, then
the control ui(t) = vi(t, γ) generated by (18) makes the
agents converge to the same consensus value xs ∈ R for all
γ ≥ 0, κ > 0, g ≥ 1.

Proof: We know from Lemma 3.1 that the collective
dynamics of the nodes is x(t + 1) = Θd(κ, g, γ)x(t) with
Θd(κ, g, γ) given in (27), that can be re-written as

Θd(κ, g, γ) =IN − κW (κ, g)L+ κGγ+1W (κ, g)L

=Θc(κ, g) + κGγ+1W (κ, g)L. (31)

Let W = W (κ, g) for concision. We now prove that W =
IN − κgWL. In fact,

IN − κgWL =W (W−1 − κgL) = W · IN = W.

Consequently, κWL = (IN −W )/g and

Θc(κ, g) =IN − κWL = IN − 1

g
(IN −W )

Replacing into (31) yields

Θd(κ, g) = IN − 1

g
IN +

1

g
Gγ+1+

1

g

(
IN −Gγ+1

)
W. (32)

Fig. 3. Network of N = 100 scalar agents over an undirected graph.

We notice that, for g ≥ 1, IN − 1
g IN > 0 and Gγ+1 > 0

because G is positive. Finally,(
IN−Gγ+1

)
W =

γ∑
h=0

Gh(IN−G)W =

γ∑
h=0

GhD̃ ≥ 0, (33)

where we have used (IN − G)W = D̃ that descends from
(25), and D̃ ≥ 0. We can now conclude Θ(κ, g, γ) ≥ 0
whenever g ≥ 1, κ > 0, γ ≥ 0. Since Θ(κ, g, γ)1N = 1N

we can repeat the same steps as in Lemma 3.2 to conclude
that ρ(Θ(κ, g, γ)) = 1, with exactly one eigenvalue λ1 = 1
on the unit circle, and this guarantees consensus.

Remark 3.4: Notice that in general the consensus value
will depend on κ, g and γ. If v⊤1 (κ, g, γ) is the left-
eigenvector for λ1 = 1 of Θd(κ, g), then x(t) →
1Nv⊤1 (κ, g, γ)x(0), or xi(t) → v⊤1 (κ, g, γ)x(0).

IV. SIMULATIONS

In this section, we report the results of the proposed
algorithm (in both the centralized and distributed implemen-
tation) when applied to different networks. Performances are
compared with respect to the standard discrete-time protocol
(2) when fixing the coupling gain as the largest value
guaranteeing that (5) holds. For evaluating performances, we
use the following parameters: the M%-consensus settling
time tMs defined as the minimum amount of steps that is
required for the trajectories of the network to reach M% of
the corresponding consensus value. For (2), and the proposed
centralized algorithm in Proposition 3.1, tMs provides an
estimate of the minimum number of iterations that are
required for consensus to be achieved; for the distributed
implementation in Theorem 3.3, such a quantity is given by
(γ + 1)tMs , with γ ∈ N as in (28) and M = 10−1.



Fig. 4. Network of N = 15 scalar agents over a digraph.

In Fig. 3, an undirect network of N = 100 is simulated
when fixing, for the proposed algorithm, κ = 10 and γ = 1.
Despite the amount of agents, the network controlled via
the centralized algorithm converges to consensus in three
iterations (and t10

−1

s = 3); for the distributed implementation
one gets that t10

−1

s = 10 so getting convergence with good
performances even when γ = 1 and, in this case, in exactly
20 time steps. Those performances are far better than the
ones exhibited by the standard consensus algorithm for which
t10

−1

s = 100.
In Fig. 4, the simulations are performed for a directed

network of N = 15 agents. Similar considerations as
in the previous case hold. In particular, fixing κ = 1
consensus is achieved in 14 iterations in exactly 20 time
steps; the corresponding distributed implementation with
γ = 1 requires 148 iterations to converge to consensus (with
t10

−1

s = 74). Such a result is notably better than the one
provided by the standard algorithm for which approximately
t10

−1

s = 298. We underline that, as highlighted in Fig.
4, performances of the distributed algorithm improve (over
the big-consensus steps) as γ increases. In that case, the
distributed algorithm approaches the nominal performances
(i.e., the ones under (7)) for finite and reasonable values of γ
at the price of larger computational delays introduced by the
consensus steps. Summarizing, performances achieved by the
distributed algorithm are always far better than the usual one
even when γ is small and fixed to 1, the worst case scenario.

Remark 4.1: κl is in general fixed smaller and inversely

proportional to the size of the network [7] . However, in
our specific case, we have fixed it as the minimal value
guaranteeing that network dynamics (2) is critically stable
with, thus, an attractive consensus. This choice has been
performed to compare the the solution we propose with the
most favorable implementation of algorithm in the literature.

V. CONCLUSIONS AND PERSPECTIVES

The centralized consensus protocol proposed in [9] has
been generalized to assign the convergence rate to consensus
arbitrarily fast. Then, a distributed implementation of such
an algorithm is proposed. It is based on a multi-rate forward
computation over an arbitrary number of consensus steps.
Future works include the extension of this protocol to deal
with multi-consensus of heterogeneous networks in discrete
time and the presence of delays too [17].
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