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I. INTRODUCTION

The idea of modeling a dynamical system as a network composed of interconnected subsystems is rooted in [START_REF] Kron | Tensor analysis of networks[END_REF] for the analysis of electromechanical systems. Interconnected systems, which appear in energy-conserving systems, were modeled in the context of Poisson structures in [START_REF] Van Der Schaft | On the Hamiltonian formulation of nonholonomic mechanical systems[END_REF] and [START_REF] Maschke | Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties[END_REF], and later in the general context of Dirac structures in [START_REF] Van Der Schaft | The Hamiltonian formulation of energy conserving physical systems with external ports[END_REF]. A Dirac structure is a geometric object that generalizes Poisson structures, bond graphs, and presymplectic structures on manifolds [START_REF] Courant | Dirac manifolds[END_REF] and forms the foundation for the port-Hamiltonian framework. The port-Hamiltonian framework in [START_REF] Maschke | An intrinsic Hamiltonian formulation of network dynamics: Non-standard poisson structures and gyrators[END_REF] and [START_REF] Maschke | Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties[END_REF] emerges from the need to provide a systematic framework for the analysis and control of complex, possibly networked, physical systems. In the case of port-Hamiltonian systems, the key characteristic of a Dirac structure is its compositional closure, which results in the preservation of energy under power-conserving interconnections [START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF]. As a consequence, this interconnection-based modeling among subsystems has led to the definition of numerous passivity-based controllers, such as Interconnection and Damping Assignment (IDA-PBC), Energy Shaping, and Control by Interconnection, [START_REF] Ortega | Putting energy back in control[END_REF]- [START_REF] Ortega | Control by interconnection and standard passivity-based control of port-Hamiltonian systems[END_REF].

The majority of the energy-based approaches for modeling and controlling port-Hamiltonian systems are carried out in the continuous-time domain. Yet, computer-aided technologies operate in discrete time and hence continuous-time systems must be approximated with discrete-time models for implementation purposes. Nevertheless, the discretization procedure may thereby cause the loss of the structural properties of the continuous-time system, see [START_REF] Stramigioli | Sampled data systems passivity and discrete port-Hamiltonian systems[END_REF]- [START_REF] Macchelli | Trajectory tracking for discrete-time port-Hamiltonian systems[END_REF]. In this respect, it is of utmost importance to define faithful discretetime representations for numerical integration, simulation, and control. Various definitions of discrete-time port-Hamiltonian systems have been developed to ensure energy preservation. These include dynamics based on discrete manifolds [START_REF] Talasila | Discrete port-Hamiltonian systems[END_REF], midpoint discretization [START_REF] Laila | Construction of discrete-time models for port-controlled Hamiltonian systems with applications[END_REF], spatial-discretization [START_REF] Kotyczka | Discrete-time port-Hamiltonian systems: A definition based on symplectic integration[END_REF], pseudo-spectral discretization [START_REF] Moulla | Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws[END_REF], or first-order discrete gradient methods [START_REF] Aoues | Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability[END_REF]. The disadvantage of these representations is that, unlike in the continuous-time domain, the power balance derived from the forward difference of the Hamiltonian function does not enable the identification of the power supplied by the stored energy. This limitation hinders the precise characterization of the power balancing equation, which is essential for discrete-time energy-based control approaches such as negative output feedback [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF], energy balance [START_REF] Mattioni | Discrete-time energy-balance passivity-based control[END_REF], and Control by Interconnection [START_REF] Moreschini | Interconnection through u-average passivity in discrete time[END_REF].

The purpose of this work is to characterize the underlying Dirac structure of the discrete-time port-Hamiltonian system recently proposed by the authors in [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF]. The proposed discrete-time port-Hamiltonian modeling, which overcomes the aforementioned difficulty in characterizing the power balance, relies upon the notions of Difference and Differential Representation (DDR) of discrete-time dynamics [START_REF] Monaco | A unified representation for nonlinear discrete-time and sampled dynamics[END_REF], discrete gradient function [START_REF] Gonzalez | Time integration and discrete Hamiltonian systems[END_REF]. and average passivity [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF]. The DDR is a well-established model for systems evolving in discrete time. It consists of a difference equation that represents the system's free evolution through jumps, and a differential equation that captures the influence of control. This representation has inspired numerous results in the study of the geometric properties of discretetime systems, including Lie conditions for accessibility, controllability, and invariance [START_REF] Albertini | Discrete-time transitivity and accessibility: analytic systems[END_REF]- [START_REF] Monaco | Discrete-time state representations, a new paradigm[END_REF].

In this article, we focus our attention on the construction of a Dirac structure associated with the class of systems proposed in [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF]. In detail, we identify the flow and effort elements that characterize the Dirac structure of the input-affine port-Hamiltonian structure proposed in [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF]. In the same vein, we discuss how the underlying Dirac structure is transformed and preserved under negative output feedback and feedback interconnection. Finally, we demonstrate that the power-preserving interconnection of two average passive systems, as proposed in [START_REF] Moreschini | Interconnection through u-average passivity in discrete time[END_REF], recovers the composition of Dirac structures.

The article is structured as follows. In Section II we recall the notion of discrete-time systems in a Difference and Differential Representation (DDR), the notion of u-average passivity, and the general theory of port-Hamiltonian systems. In Section III we first introduce the definition of discrete port-Hamiltonian system defined by a discrete Dirac structure, and then we reveal how the discrete-time system in [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF] can be characterized in terms of an underlying Dirac structure. In Section IV we show how the proposed Dirac structure is transformed under negative output feedback and negative feedback interconnection. In particular, we emphasize how the port-Hamiltonian structure is preserved whilst the underlying Dirac structure grows in dimension. In Section V the proposed framework is illustrated by means of a discrete-time system which describes the approximated behaviour of the gravity pendulum. Finally, in Section VI we provide some concluding remarks.

Notation: Throughout the article all functions and vector fields are assumed smooth and complete over the respective definition spaces. For ease of notation, we drop the argument of the functions whenever this does not cause confusion. We denote by R and N the set of real and natural numbers respectively (with 0 ∈ N). For any real-valued vector v ∈ R n , v ⊤ defines the transpose of v. The inner product is denoted by ⟨•, •⟩, that is for any v, w ∈ R n we let ⟨v, w⟩ = v ⊤ w. Let S be a differentiable function S : R n → R, the gradient of S is denoted by ∇S, where ∇ is the vector of partial derivatives in R n .

II. PRELIMINARIES

In this article, a discrete-time dynamical system evolving on R n is a system in which the state variable x(k) ∈ R n evolves in discrete instants k ∈ N. The evolution of the state is described by a difference equation of the form

x(k + 1) = F (x(k), u(k)), (1) 
where F : R n × R → R n is a smooth map and u(k) ∈ R denotes the input (control) variable 1 . Throughout the article, we omit the kdependency of the variables to simplify the notation. Without loss of generality, we decompose F (x, u) as follows

F (x, u) = x + F 0 (x) + g(x, u)u, (2) 
where x + F 0 (x) := F (x, 0) describes the free evolution of the dynamics (1) and g(x, u)u describes the effect of the control.

A. Difference and Differential Representation (DDR)

As proposed in [26, Section 2], under mild conditions (e.g. submersivity of the map F (x, u)), the dynamics (1) can be equivalently described by a pair of difference and differential equations (DDR) of the form

x + = x + F 0 (x) (3a) dx + (u) du = G(x + (u), u) with x + (0) = x + (3b) 
where x + (u) := F (x, u) and G : R n × R → R n is such that

∂F (x, u) ∂u = G(F (x, u), u). (4) 
In the DDR form of the dynamics, the free evolution is described by the discrete-time dynamics (3a), while the effect of the control results from the integration of the differential equation (3b) that models the rate of change of the dynamics under the action of u. Accordingly, integrating (3b) over the set [0, u] with initial condition x + (0) = x + F 0 (x), one recovers (1); i.e.

x

+ (u) = F (x, u) = x + F 0 (x) + u 0 G(x + (s), s)ds. (5) 
We recall that, G(x, u) in (3b) takes the form of a vector field that is dependent on u. This type of vector field has been previously used in [START_REF] Jakubczyk | Automatique théorique. orbites de pseudo-groupes de difféomorphismes et commandabilité des systemes non linéaires en temps discret[END_REF] to characterize accessibility properties around equilibria. An integral relationship in terms of u between the control map g(x, u) in (2) and the u dependent vector field G(x, u) in (3b) follows by construction. In particular, for all pair (x, u) ∈ R n × R the equation

g(x, u)u := u 0 G(x + (s), s)ds (6) 
holds, where G(x, u) admits the power series expansion

G(x, u) = G 1 (x) + i≥1 u i i! G i+1 (x). (7) 
The vector fields G i and their Lie algebra have played a crucial role in characterizing geometric properties of discrete-time dynamics in [START_REF] Jakubczyk | Automatique théorique. orbites de pseudo-groupes de difféomorphismes et commandabilité des systemes non linéaires en temps discret[END_REF] and [START_REF] Monaco | A unified representation for nonlinear discrete-time and sampled dynamics[END_REF]. Furthermore, they have been recently employed to characterize passivity in [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF], as well as to define port-controlled Hamiltonian structures in [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF] and [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF]. One of the computational properties inherited from the DDR structure (3) is that, given a smooth real-valued map λ : R n → R, its evolution along the dynamics (3) can be specified by the equation

λ(x + (u)) = λ(x + ) + u 0 G ⊤ (x + (s), s)∇λ(x + (s))ds. (8) 
This property, which distinguishes the independent free evolution from the dependent controlled part, is crucial in the following steps for determining the rate of change of the Hamiltonian function (or any energy-like function) along the discrete-time dynamics (3).

Remark 2.1: This article focuses on single-input dynamics, but the same framework can be applied to the multi-input case by using a set of partial differential equations that describe the rate of change for each control component, see [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF]Sec. 6].

B. Discrete-time average passivity

The concept of average passivity has been introduced in [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF] to weaken the necessity of a throughput term in the given discrete-time system. The formal definition is here recalled.

Definition 2.1: The discrete-time system defined by the dynamics (1) with output map h : R n → R, is said average passive, if there exists a positive semi-definite function S : R n → R ≥0 (the storage function) such that, for all

(x, u) ∈ R n × R S(x + (u)) -S(x) ≤ u 0 h(x + (s))ds = uh av (x, u), (9) 
with u-average output defined by

h av (x, u) := 1 u u 0 h(x + (s))ds. ( 10 
)
The average passivity of the input-output behaviour associated with the output map h(x) is equivalent to the usual notion of passivity of the input-output behaviour associated with the u-average output map h av (x, u). The notion of average passivity from some non-zero control value ū is recalled below to deal with systems under state feedback [START_REF] Moreschini | Interconnection through u-average passivity in discrete time[END_REF].

Definition 2.2: The discrete-time system defined by the dynamics (1) and output map h : R n → R, is said u-average passive from ū ∈ R, if there exists a positive semi-definite function S : R n → R ≥0 (the storage function) such that for all

(x, u) ∈ R n × R S(x + (ū + u)) -S(x) ≤ uh av ū (x, u) (11) 
with u-average output from ū defined as

h av ū (x, u) = 1 u u 0 h(x + (ū + s), ū + s)ds. (12) 

C. Discrete gradient function

The discrete gradient function (or simply discrete gradient) has been introduced by Gonzalez in [START_REF] Gonzalez | Time integration and discrete Hamiltonian systems[END_REF] to establish a framework for designing time-integration schemes that conserve energy in Hamiltonian systems. The definition of discrete gradient is given below.

Definition 2.3: Given a smooth real-valued function

H : R n → R, its discrete gradient is a function of two variables ∇H| w v : R n × R n → R n satisfying (w -v) ⊤ ∇H| w v = H(w) -H(v), (13) 
with lim w→v ∇H| w v = ∇H(v). The discrete gradient function satisfying the property ( 13) is generally not uniquely defined. Thus, several efficient computational methods have been proposed to solve [START_REF] Moreschini | Gradient and Hamiltonian dynamics under sampling[END_REF], see e.g. [START_REF] Gonzalez | Time integration and discrete Hamiltonian systems[END_REF], [START_REF] Mclachlan | Geometric integration using discrete gradients[END_REF], [START_REF] Hairer | Geometric numerical integration: structure-preserving algorithms for ordinary differential equations[END_REF]. For instance, one of the possible discrete gradients can be obtained through component-wise integration, that is

∇H w v = ∇H w 1 v 1 • • • ∇H wn vn ⊤ ,
with entries defined by

∇H| w i v i = 1 w i -v i w i v i ∂H(v 1 , ..., v i-1 , s, w i+1 , ..., wn) ∂s ds.
Nevertheless, the results presented in the upcoming sections hold for any discrete gradient that meets the criteria of Definition 2.3.

The following lemma relates the property (13) of the discrete gradient function with the integral property [START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF].

Lemma 2.1: Let λ : R n → R be a smooth function and assume the discrete-time dynamics [START_REF] Courant | Dirac manifolds[END_REF]. Then

u 0 G ⊤ (x + (s), s)∇λ(x + (s))ds = ug ⊤ (x, u) ∇λ| x + (u) x + . ( 14 
)
Proof: The proof is constructive. In particular, from the definition of the discrete gradient function in Definition 2.3 easy algebra shows that

λ(x + (u)) -λ(x + ) = (x + (u) -x + ) ⊤ ∇λ| x + (u) x + = ug ⊤ (x, u) ∇λ| x + (u) x +
, and by property (8) the statement holds.

D. Port-Hamiltonian systems in discrete time

A novel description of discrete-time port-Hamiltonian systems has been proposed in [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF]. It relies on three key ingredients: i) the DDR form (5) of discrete-time dynamics; ii) the notion of average passivity (9); iii) the description of the average passivating output in terms of the discrete gradient function through property [START_REF] Moreschini | Stabilization of discrete port-Hamiltonian dynamics via interconnection and damping assignment[END_REF]. The following definition is restated.

Definition 2.4: Given a real-valued Hamiltonian function H : R n → R ≥0 , a discrete-time input-state-output port-Hamiltonian system is described by the equations 2

x + (u) = x + (J(x) -R(x)) ∇H| x + x + g(x, u)u, (15a) y 
(x, u) = g ⊤ (x, u) ∇H| x + (u) x + , (15b) 
with J = -J ⊤ , R = R ⊤ ⪰ 0, and g(x, u)u given by [START_REF] Maschke | An intrinsic Hamiltonian formulation of network dynamics: Non-standard poisson structures and gyrators[END_REF].

A discrete-time port-Hamiltonian system described by the equations [START_REF] Kotyczka | Symplectic discrete-time energy-based control for nonlinear mechanical systems[END_REF] satisfies the following properties. 1) For u = 0, the time evolution of the Hamiltonian function H is decreasing since

H(x + ) -H(x) = -∇⊤ H| x + x R(x) ∇H| x + x ≤ 0.
Accordingly, for R = 0 the free evolution of the system is conservative, and the Hamiltonian function H is an invariant for the dynamics since

H(x + ) -H(x) = ∇⊤ H| x + x J(x) ∇H| x + x = 0.
2) For any u ̸ = 0, the system is average passive with respect to the output map

Y (x, u) = G ⊤ (x, u)∇H(x), (16) 
2

The coordinates x + (u) and x + are defined by the DDR in (3).

i.e. it is passive with respect to the average output given by

Y av (x, u) = 1 u u 0 G ⊤ (x + (s), s)∇H(x + (s))ds. (17) 
Hence, by virtue of the property (14), y(x, u) = Y av (x, u). Remark 2.2: It is worth mentioning that the output (15b) of the port-Hamiltonian system, by construction, yields a series expansion in u which can be determined iteratively. Hence, from [START_REF] Talasila | Discrete port-Hamiltonian systems[END_REF] we compute the series expansion

y(x, u) = L G 1 H| x + + u 2 L 2 G 1 + L G 2 H| x + + O(u 2 ), (18) 
where O(u 2 ) contains all the remaining terms of higher order in u, and the operator L G H denotes the Lie derivative of H along the vector G. Hence, for completeness, the output (15b) is well-defined for u = 0 as

lim u→0 y(x, u) = G ⊤ 1 (x + )∇H(x + ).

E. Dirac structure

Given a finite-dimensional linear space F (the space of flow variables) and its dual E (the space of effort variables), their product F × E defines the space of variables endowed with the power duality product

P = ⟨e, f ⟩ = e(f ), (f, e) ∈ F × E.
The symmetric bilinear form ⟨⟨(fa, ea), (f b , e b )⟩⟩ = ⟨ea, f b ⟩ + ⟨e b , fa⟩ is defined on the product space.

Definition 2.5 ( [8]): A (constant) Dirac structure on F is a sub- space D ⊂ F × E such that 3 D = D ⊥ .
For a finite-dimensional real linear space F the definition of Dirac structure is equivalent to dim D = dim F and ⟨e, f ⟩ = 0, (f, e) ∈ D.

(
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Any Dirac structure is power-conserving in the sense that the total power entering (or leaving) the Dirac structure is always zero [START_REF] Duindam | Modeling and control of complex physical systems: the port-Hamiltonian approach[END_REF].

A subset R ⊂ Fr × Er = 0 satisfying ⟨er, fr⟩ = e ⊤ r fr ≤ 0 for all (fr, er) ∈ R defines a resistive structure which is expressed by the linear energy dissipation relation

er = -Rfr, (20) 
for some matrix 

R = R ⊤ ⪰
D ⊂ F S × E S × Fr × Er × F i × E i . (21) 
A special case of port-Hamiltonian systems arises when no algebraic constraints occur on the state-space variables. It is described by the matrices J(x) = -J ⊤ (x) and R(x) = R ⊤ (x) ⪰ 0 specifying the interconnection and resistive structures respectively. From the dissipative constraint [START_REF] Moulla | Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws[END_REF], R(x) can be described as R(x) = gr(x)Rg ⊤ r (x) with gr : R n → R n×p representing the input matrix corresponding to the resistive port. Accordingly, the associated Dirac structure [START_REF] Aoues | Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability[END_REF] is given by the graph of the skew-symmetric map

  f S fr f i   =   -J -gr -g g ⊤ r 0 0 g ⊤ 0 0     e S er e i   ,
in which g : R n → R represents the input map corresponding to the external ports. We refer to [35, Sec. 2.2] for additional details.

III. DIRAC AND PORT-HAMILTONIAN STRUCTURES IN DISCRETE TIME

In this section we introduce a discrete Dirac structure associated with discrete-time dynamics. In particular, inspired by the DDR structure of discrete-time dynamics in [START_REF] Moreschini | Gradient and Hamiltonian dynamics under sampling[END_REF], we consider the separation of the port variables (f S , e S ) of the total energy storing elements of the Dirac structure [START_REF] Aoues | Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability[END_REF] into distinct pairs of ports (f S f , e S f ) and (f Sc , e Sc ) such that

-⟨e S , f S ⟩ = H(x + (u)) -H(x) = H(x + ) -H(x) + H(x + (u)) -H(x + ) = -⟨e S f , f S f ⟩ -⟨e Sc , f Sc ⟩.
The separation of the port variable (f S , e S ) of the total energy storing elements into (f S f , e S f ) and (f Sc , e Sc ) yields an alternative definition of port-Hamiltonian system based on a Dirac structure in the sense of Definition 2.5.

Definition 3.1: Let a state-space R n and Hamiltonian function H : R n → R, describing the energy storage. A discrete port-Hamiltonian system is defined by a discrete Dirac structure of the form

D = D f × Dc, (22) 
of dimension dimD = dim D f + dim Dc with subspaces

D f ⊂ F S f × E S f × Fr × Er, (23a) 
Dc ⊂ F Sc × E Sc × F i × E i , (23b) 
port variables

(f S f , e S f ) ∈ F S f × E S f and (f Sc , e Sc ) ∈ F Sc × E Sc
of the energy storing elements, port variables (fr, er) ∈ Fr × Er of the resistive elements, and port variables (f i , e i ) ∈ F i × E i of the external elements. The dynamics of the discrete port-Hamiltonian system is implicitly defined by

(f S f , e S f , fr, er) ∈ D f , (24a) 
(f Sc , e Sc , f i , e i ) ∈ Dc, (24b) 
(fr, er) ∈ R, (24c) 
with and resistive structure R ⊂ Fr × Er.

Definition 3.1 introduces two different subspaces, D f and Dc, in the construction of a Dirac structure [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF]. The major departure of the proposed discrete Dirac structure from the standard discrete characterization as in [START_REF] Aoues | Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability[END_REF] and [START_REF] Talasila | Discrete port-Hamiltonian systems[END_REF] is the splitting of the storing elements. In particular, the subspace D f corresponds to the energy-storing elements in F S f × E S f , which encodes the internal energy stored not affected by any external phenomenon, and energy-dissipation elements in Fr×Er, which encodes the autonomous dissipation of the system. The subspace Dc corresponds to the energy-storing elements in F Sc × E Sc , which encodes the effect of the control action, and external elements in F i × E i , which encodes the interaction of the system with the external environment.

The characterization of the Dirac structure in [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF] leads to the following result.

Theorem 3.1: Consider the system (15) evolving in R n with Hamiltonian function H : R n → R ≥0 . Suppose that g(x, u) = g(x, 0) := g(x), and that R(x) = gr(x)Rg ⊤ r (x) with gr : R n → R n×p and R = R ⊤ ⪰ 0. Then the system ( 15) is characterized by the discrete Dirac structure [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF] with

-(x + -x), ∇H| x + x , fr, er ∈ D f , (25a) 
-(x + (u) -x + ), ∇H| x + (u) x + , y(x, u), u ∈ Dc, (25b) 
(fr, er) ∈ R, (25c) 
and dissipative constraint er = -R fr. Moreover, the discrete Dirac structure [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF] with elements in [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF] satisfies

dim D = 2n + p + 1. (26) 
Proof: A constructive proof of the statement is performed by showing that the elements in (25) associated with the system (15) satisfy [START_REF] Kotyczka | Discrete-time port-Hamiltonian systems: A definition based on symplectic integration[END_REF]. In particular, with Definition 2.3 in mind, easy algebra shows that

H(x + ) -H(x) = x + -x, ∇H| x + x = -∇⊤ H| x + x R(x) ∇H| x + x , (27) 
and that

H(x + (u)) -H(x + ) = x + (u) -x + , ∇H| x + (u) x + = ug ⊤ (x) ∇H| x + (u) x + . ( 28 
)
Constructing the pair (f S f , e S f ) such that f S f := -(x + -x) and e S f := ∇H| x +

x respectively, we have that

(27) =⇒ -⟨e S f , f S f ⟩ = -∇⊤ H| x + x R(x) ∇H| x + x = ⟨er, fr⟩ ≤ 0,
provided er = -R fr holds due to the structure of R(x), i.e. R(x) = gr(x)Rg ⊤ r (x). Moreover, setting f Sc := -(x + (u)-x + ) and e Sc := ∇H| [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF]. Hence, we conclude as [START_REF] Kotyczka | Discrete-time port-Hamiltonian systems: A definition based on symplectic integration[END_REF] that

x + (u) x + we have that (28) =⇒ -⟨e Sc , f Sc ⟩ = ug ⊤ (x) ∇H| x + (u) x + = uy(x, u) = ⟨e i , f i ⟩ with (f i , e i ) as in
⟨e S f , f S f ⟩ + ⟨er, fr⟩ = 0, (f S f , e S f , fr, er) ∈ D f , ⟨e Sc , f Sc ⟩ + ⟨e i , f i ⟩ = 0, (f Sc , e Sc , f i , e i ) ∈ Dc. Finally, since (f S f , e S f ) ∈ F S f × E S f = R n × R n , (fr, er) ∈ Fr ×Er = R p ×R p , (f Sc , e Sc ) ∈ F Sc ×E Sc = R n ×R n , (f i , e i ) ∈ F i × E i = R × R we have from (23) that dim D f = dim F S f + dim F Sr = n + p dim Dc = dim F Sc + dim F S i = n + 1
hence we conclude [START_REF] Monaco | A unified representation for nonlinear discrete-time and sampled dynamics[END_REF].

Theorem 3.1 provides the characterization of the underlying Dirac structure of a discrete dynamical system represented by the equations [START_REF] Kotyczka | Symplectic discrete-time energy-based control for nonlinear mechanical systems[END_REF]. The system expressed in DDR form [START_REF] Kotyczka | Symplectic discrete-time energy-based control for nonlinear mechanical systems[END_REF] suggests to decouple the port variables

(f S , e S ) ∈ F S ×E S into (f S f , e S f ) ∈ F S f ×E S f and (f Sc , e Sc ) ∈ F Sc × E Sc satisfying ⟨e S , f S ⟩ = ⟨e S f , f S f ⟩ + ⟨e Sc , f Sc ⟩. The pair (f S f , e S f
) encodes the effect of the energy variation due to the uncontrolled component and is specified by the discrete gradient from x to x + . The pair (f Sc , e Sc ) encodes the effect of the controlled component and is specified by the discrete gradient from x + to x + (u). Moreover, the obtained Dirac structure is characterized by the graph of the skew-symmetric map

    f S f fr f Sc f i     =     -J -gr 0 0 g ⊤ r 0 0 0 0 0 0 -g 0 0 g ⊤ 0         e S f er e Sc e i     . (29) 
For the sake of completeness, we emphasize that the underlying Dirac structure [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF] in case of zero input, i.e. for u = e i = 0, recovers the underlying Dirac structure of the uncontrolled dynamics proposed in [START_REF] Aoues | Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability[END_REF] and [START_REF] Talasila | Discrete port-Hamiltonian systems[END_REF].

IV. DIRAC STRUCTURES UNDER FEEDBACK AND INTERCONNECTION

This section is devoted to the discussion of the transformation of the discrete Dirac structure [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF] in two different cases: when a negative output feedback is injected in the system [START_REF] Kotyczka | Symplectic discrete-time energy-based control for nonlinear mechanical systems[END_REF]; when two systems of the form (15) are interconnected through a powerpreserving interconnection.

A. Port-Hamiltonian structures under negative output feedback

To begin with, let the function α(x) be the negative output feedback applied to the port-Hamiltonian system [START_REF] Kotyczka | Symplectic discrete-time energy-based control for nonlinear mechanical systems[END_REF] which is obtained as the solution of the implicit equation

α(x) = -κy(x, α(x)), (30) 
with damping factor κ > 0, output map y(•, •) as in (15b), and input mapping g(x, u) which is assumed as in Theorem 3.1, i.e. g(x, u) = g(x, 0) := g(x). Consider the input variable as

u = α(x) + v, (31) 
where v(k) ∈ R describes the external input variable. Hence, the state-space representation of the port-Hamiltonian system (15) under the control action (31) yields the feedback dynamics

x + = x + (J(x) -R(x)) ∇H| x + x , (32a) 
x

+ (α + v) = x + -κg(x)g ⊤ (x) ∇H| x + (α) x + + g(x)v. ( 32b 
)
With the above structure in mind, the following result holds denoting for simplicity the feedback α(x) + v by α + v.

Proposition 4.1: Consider the feedback dynamics [START_REF] Jakubczyk | Automatique théorique. orbites de pseudo-groupes de difféomorphismes et commandabilité des systemes non linéaires en temps discret[END_REF] with Hamiltonian function H : R n → R ≥0 , and output map

ỹ(x, v) = g ⊤ (x) ∇H| x + (α+v) x + (α) . ( 33 
)
Then the dynamics (32) along with [START_REF] Mclachlan | Geometric integration using discrete gradients[END_REF] is characterized by the discrete Dirac structure [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF] with

-(x + -x) -(x + (α)-x + ) , ∇H| x + x ∇H| x + (α) x +
, fr, er ∈ D f , (34a)

-(x + (α+v) -x + (α)), ∇H| x + (α+v) x + (α) , ỹ(x, v), v ∈ Dc, (34b) (fr, er) ∈ R, ( 34c 
)
and an extended linear energy dissipation relation er = -Refr with matrix

Re = R 0 0 κ . ( 35 
)
Moreover, the discrete Dirac structure [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF] with port variables in [START_REF] Hairer | Geometric numerical integration: structure-preserving algorithms for ordinary differential equations[END_REF] yields that

dim D = 3n + p + 2. ( 36 
)
Proof: In a similar vein of ( 27) and ( 28), and with Definition 2.3 in mind, we have that the variation of the Hamiltonian function along the dynamics (32) yields the equation

H(x + (α)) -H(x) = x + -x, ∇H| x + x + x + (α) -x + , ∇H| x + (α) x + = -∇⊤ H| x + x R(x) ∇H| x + x -κg(x)g ⊤ (x) ∇H| x + (α) x + , ( 37 
)
and the equation

H(x + (α + v)) -H(x + (α)) = x + (α + v) -x + (α), ∇H| x + (α+v) x + (α) = vg ⊤ (x) ∇H| x + (α+v) x + (α) . ( 38 
)
Constructing the elements

f S f : = -(x + -x) -(x + (α)-x + ) , e S f : = ∇H| x + x ∇H| x + (α) x + ,
we have from the structure R(x) = gr(x)Rg ⊤ r (x) that the equation (37) implies the inequality

⟨e S f , f S f ⟩ = ∇H| x + x ∇H| x + (α) x + ⊤ grRg ⊤ r 0 0 κgg ⊤ ∇H| x + x ∇H| x + (α) x + = -⟨er, fr⟩ ≥ 0,
which is satisfied providing the dissipative constraint er = -Refr with extended matrix Re in [START_REF] Duindam | Modeling and control of complex physical systems: the port-Hamiltonian approach[END_REF]. In addition, setting f Sc :=

-(x + (α+v) -x + (α)
) and e Sc := ∇H|

x + (α+v)

x + (α)

we have that

(38) =⇒ -⟨e Sc , f Sc ⟩ = vg ⊤ (x) ∇H| x + (α+v) x + (α) = v ỹ(x, v) = ⟨e i , f i ⟩,
with (f i , e i ) as in (34b). Finally, since the flows and efforts subspaces are by cunstruction such that

(f S f , e S f ) ∈ F S f × E S f = R 2n × R 2n , (f Sc , e Sc ) ∈ F Sc × E Sc = R n × R n , (fr, er) ∈ Fr × Er = R p+1 × R p+1 , (f i , e i ) ∈ F i × E i = R × R, then this implies that dim D f = dim F S f + dim F Sr = 2n + p + 1, dim Dc = dim F Sc + dim F S i = n + 1,
hence we conclude (36).

We have shown that the feedback system (32) coupled with the output (33) retains the port-Hamiltonian structure in the sense of Definition 3.1. However, the underlying discrete Dirac structure associated with (34) yields a subspace D which increases in dimension as provided by the condition (36). The increase in dimension of the subspace D is due to the closed-loop dissipation matrix

R(x) 0 0 κg(x)g ⊤ (x) ⪰ 0, with dim F S f = dim R 2n , dim Fr = dim R p+1 .
The Dirac structure is characterized by the graph of the skew-symmetric map

        f S f fr f Sc f i         =          -J 0 -gr 0 0 0 0 0 0 -g 0 0 g ⊤ r 0 0 0 0 0 0 g ⊤ 0 0 0 0 0 0 0 0 0 -g 0 0 0 0 g ⊤ 0                  e S f er e Sc e i         . (39) 
It worth noting that, from the property in [START_REF] Ortega | Control by interconnection and standard passivity-based control of port-Hamiltonian systems[END_REF], the output ỹ(x, v) satisfies by construction the dissipation inequality

H(x + (α(x) + v)) -H(x) ≤ v ỹ(x, v)
along the dynamics [START_REF] Jakubczyk | Automatique théorique. orbites de pseudo-groupes de difféomorphismes et commandabilité des systemes non linéaires en temps discret[END_REF], and thus ỹ(x, v) coincides with the uaverage output from ū in [START_REF] Stramigioli | Sampled data systems passivity and discrete port-Hamiltonian systems[END_REF] with ū = α(x). The u-average output from α(x) is computed with respect to the output map [START_REF] Macchelli | Trajectory tracking for discrete-time port-Hamiltonian systems[END_REF], that is

ỹ(x, v) = 1 v v 0 Y (x + (α(x) + s), α(x) + s)ds. (40) 
This is reminiscent of the interconnection-based modeling in [START_REF] Moreschini | Interconnection through u-average passivity in discrete time[END_REF] which shows that the u-average passivity property during the interconnection process, by means of feedback of the form [START_REF] Monaco | Discrete-time state representations, a new paradigm[END_REF], is transformed into u-average passivity from α(x),

B. Closeness under power-preserving interconnection

This section focuses on the composition of Dirac structures. In particular, we show that the feedback interconnection of two discretetime port-Hamiltonian systems retains the port-Hamiltonian structure in the sense of Definition 3.1. Before proceeding, we recall that one of the key features of the Dirac structures is their compositionality. The composition of Dirac structures is recalled from [8, Sec. 6.1].

Definition 4.1: Given two Dirac structures (D 1 , D 2 ) defined respectively on F 1 × F C and F C × F 2 where F C is the space of shared flow and effort, their composition is defined on

F 1 × F 2 under the constraints f C 1 = -f C 2 , e C 1 = e C 2 implying e ⊤ C 1 f C 1 + e ⊤ C 2 f C 2 = 0 (41) 
on the shared flows and efforts

(f C 1 , e C 1 ) and (f C 2 , e C 2 ).
With the composition of Dirac structures in mind, we consider the power-preserving interconnection which is specified by the equation

u 1 y 1 (x 1 , u 1 ) + u 2 y 2 (x 2 , u 2 ) = 0, (42) 
or equivalently, in a compact form, is described by

Ψ(x, u) = u 1 + y 2 (x 2 , u 2 ) u 2 -y 1 (x 1 , u 1 ) = 0.
As discussed in [START_REF] Moreschini | Interconnection through u-average passivity in discrete time[END_REF], by invoking the Implicit Function Theorem the solution of the equation ( 42) is always well-defined in a neighbourhood of x⋆ = (x⋆ 1 , x⋆ 2 ) where Ψ(x⋆, 0) = 0 and the matrix ∂Ψ ∂u u=0 is non-singular at x⋆. Hence, denoting by (α 1 , α 2 ) the power-preserving feedback solving the equation (42), i.e.

α 1 (x 1 , x 2 ) = -y 2 (x 2 , α 2 (x 1 , x 2 )), α 2 (x 1 , x 2 ) = y 1 (x 1 , α 1 (x 1 , x 2 )),
we define the control laws

u 1 (x 1 , x 2 , v 1 ) = α 1 (x 1 , x 2 ) + v 1 , u 2 (x 1 , x 2 , v 2 ) = α 2 (x 1 , x 2 ) + v 2 , (43) 
with with external input variables v 1 (k) ∈ R and v 2 (k) ∈ R. Then, the feedback interconnection (43) of two port-Hamiltonian systems of the form (15) with

x 1 ∈ R n 1 , x 2 ∈ R n 2 , g R 1 : R n 1 → R n 1 ×p 1 , g R 2 : R n 2 → R n 2 ×p 2 , R 1 = R ⊤ 1 ⪰ 0, R 2 = R ⊤ 2 ⪰ 0, H 1 : R n 1 → R ≥0
, and H 2 : R n 2 → R ≥0 yields the dynamics

x + 1 = x 1 + (J 1 (x 1 ) -R 1 (x 1 )) ∇H 1 | x + 1 x 1 , x + 2 = x 2 + (J 2 (x 2 ) -R 2 (x 2 )) ∇H 2 | x + 2 x 2 , x + 1 (α 1 +v 1 ) = x + 1 -g 1 (x 1 )g ⊤ 2 (x 2 ) ∇H 2 | x + 2 (α 2 ) x + 2 + g 1 (x 1 )v 1 , x + 2 (α 2 +v 2 ) = x + 2 +g 2 (x 2 )g ⊤ 1 (x 1 ) ∇H 1 | x + 1 (α 1 ) x + 1 + g 2 (x 2 )v 2 . (44)
With this in mind, the following result holds.

Theorem 4.1: Consider the interconnected dynamics (44) with Hamiltonian function given by H(x 1 , x 2 ) = H 1 (x 1 ) + H 2 (x 2 ) and output ỹ(x, v) given by

ỹ(x 1 , x 2 , v 1 , v 2 ) =     g ⊤ 1 (x 1 ) ∇H 1 | x + 1 (α 1 +v 1 ) x + 1 (α 1 ) g ⊤ 2 (x 2 ) ∇H 2 | x + 2 (α 2 +v 2 ) x + 2 (α 2 )     . (45) 
Then the dynamics (44) with output ỹ(x 1 , x 2 , v 1 , v 2 ) is characterized by the discrete Dirac structure as in [START_REF] Moreschini | Interconnection through u-average passivity in discrete time[END_REF] with elements

f S f =     -(x + 1 -x 1 ) -(x + 2 -x 2 ) -(x + 1 (α 1 )-x + 1 ) -(x + 2 (α 2 )-x + 2 )     , e S f =           ∇H 1 | x + 1 x 1 ∇H 2 | x + 2 x 2 ∇H 1 | x + 1 (α 1 ) x + 1 ∇H 2 | x + 2 (α 2 ) x + 2           , f Sc = -(x + 1 (α 1 +v 1 )-x + 1 (α 1 )) -(x + 2 (α 2 +v 2 )-x + 2 (α 2 )) , e Sc =     ∇H 1 | x + 1 (α 1 ) x + 1 ∇H 2 | x + 2 (α 2 ) x + 2     , f i = ỹ(x 1 , x 2 , v 1 , v 2 ), e i = v, (46) 
and extended dissipative constraint er = -Refr with

Re = R 1 0 0 R 2 .
Moreover, the discrete Dirac structure [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF] yields that

dim D = 3n 1 + 3n 2 + p 1 + p 2 + 2. (47) 
Proof: To begin with, we note that along (44) the variation of H 1 between x + 1 (α 1 ) and x + 1 yields

H 1 (x + 1 (α 1 )) -H 1 (x + 1 ) = x + 1 (α 1 ) -x + 1 , ∇H 1 | x + 1 (α 1 ) x + 1 = -g 1 (x 1 )g ⊤ 2 (x 2 ) ∇H 2 | x + 2 (α 2 ) x + 2 , ∇H 1 | x + 1 (α 1 ) x + 1 , (49) 
and H 2 between x + 2 (α 2 ) and x + 2 yields

H 2 (x + 2 (α 2 )) -H 2 (x + 2 ) = x + 2 (α 2 ) -x + 2 , ∇H 2 | x + 2 (α 2 ) x + 2 = g 2 (x 2 )g ⊤ 1 (x 1 ) ∇H 1 | x + 1 (α 1 ) x + 1 , ∇H 2 | x + 2 (α 2 ) x + 2 , (50) 
which implies 2 j=1 H j (x + j (α j )) -H j (x + j ) = 0. Then, the flows and efforts given in the equations (46) are by construction such that

(f S f , e S f ) ∈ F S f × E S f = R 2n 1 +2n 2 × R 2n 1 +2n 2 , (f Sc , e Sc ) ∈ F Sc × E Sc = R n 1 +n 2 × R n 1 +n 2 , (fr, er) ∈ Fr × Er = R p 1 +p 2 × R p 1 +p 2 , (f i , e i ) ∈ F i × E i = R 2 × R 2 , which implies that dim D f = dim F S f + dim F Sr = 2n 1 + 2n 2 + p 1 + p 2 , dim Dc = dim F Sc + dim F S i = n 1 + n 2 + 2,
and thus (47). Finally, setting H(x 1 , x 2 ) = H 1 (x 1 ) + H 2 (x 2 ) we have that

H(x + 1 (α 1 + v 1 ), x + 2 (α 2 + v 2 )) -H(x 1 , x 2 ) = -⟨e S f , f S f ⟩ -⟨e Sc , f Sc ⟩ = ⟨er, fr⟩ + ⟨e i , f i ⟩,               f S f fr f Sc f i               =                 -J 1 0 0 0 -g R 1 0 0 0 0 0 0 -J 2 0 0 0 -g R 2 0 0 0 0 0 0 0 g 1 g ⊤ 2 0 0 0 0 0 0 0 0 -g 2 g ⊤ 1 0 0 0 0 0 0 0 g ⊤ R 1 0 0 0 0 0 0 0 0 0 0 g ⊤ R 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -g 1 0 0 0 0 0 0 0 0 0 0 -g 2 0 0 0 0 0 0 g ⊤ 1 0 0 0 0 0 0 0 0 0 0 g ⊤ 2 0 0                               e S f er e Sc e i               (48) 
and thus we conclude that the subspace

D = D f × Dc is a Dirac structure yielding ⟨e S f , f S f ⟩ + ⟨e Sc , f Sc ⟩ + ⟨er, fr⟩ + ⟨e i , f i ⟩ = 0.
It is worth emphasizing that the dimension of the Dirac structure obtained by interconnecting two port-Hamiltonian systems is determined by the number of compositions of Dirac structures. Increasing the dimension of the structure results in a structure that keeps track of the interconnection order. This is emphasized by the graph of the skew-symmetric map in (48).

V. AN ILLUSTRATIVE EXAMPLE

Consider the dynamics of a gravity pendulum consisting of a uniform rod of length ℓ > 0, affected by gravity g, and mass m > 0 pivoted at one end. The Hamiltonian function catching respectively the kinetic and the potential energy of the system is given by

H(q, p) = p 2 2mℓ 2 + mgℓ(1 -cos(q)), (51) 
where q and p are given by q = ϑ and p = mℓ 2 θ respectively, where ϑ is the pendulum angle relative to the vertical axis. Following the discretization procedure in [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF], the discrete-time model, which approximates the smooth behaviour of the gravity pendulum over sampling intervals of unitary length, can be expressed by the equations

q + (u) = q + 1 2mℓ 2 (p + + p), (52a) 
p + (u) = p -mgℓ q + -q (cos(q) -cos(q + )) + u, (52b)

y(q, p, u) = 1 2mℓ 2 (p + (u) + p + ), (52c) 
where u describes the piecewise constant controlled torque. Since the discrete-time system described by the equations ( 52) is a discrete port-Hamiltonian system in the sense of Definition 3.1, applying the result of Theorem 3.1 we can construct the port variables

(f S f , e S f ) ∈ F S f × E S f , such as f S f := fq f = -(q + -q), fp f = -(p + -p),
e S f := eq f = mgℓ q + -q (cos(q) -cos(q + )), ep f = 1 2mℓ 2 (p + + p), the port variables (f Sc , e Sc ) ∈ F Sc × E Sc , such as

f Sc := fq u = -(q + (u) -q + ), fp u = -(p + (u) -p + ),
e Sc := eq u = mgℓ q + (u)-q + (cos(q + ) -cos(q + (u))), ep u = 1 2mℓ 2 (p + (u) + p + ), and port variables (f i , e i ) ∈ F i × E i such as f i := y and e i := u. It is important to note that, in consistency with its continuoustime counterpart, the discrete version of the gravity pendulum (52) is conservative, and thus resistive elements are missing. Nevertheless, the system (52) has an underlying Dirac structure D = D f × Dc characterized by the graph of the skew-symmetric map

      f S f f Sc f i       =       0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0             e S f e Sc e i       .
In addition, to achieve asymptotic stabilization of the gravity pendulum at the minimum of H(q, p) we consider the controller u = α(x) + v with negative output feedback α(q, p) which is defined as in [START_REF] Jakubczyk | Controllability of nonlinear discretetime systems: A Lie-algebraic approach[END_REF] and specified here as α(q, p) = -κ 2mℓ 2 (p + (u) + p + ).

Hence following the result in Proposition 4.1, we have that the system (52) under negative output feedback yields an extended Dirac structure D = D f × Dc which is described by the graph of the extended skew-symmetric map fq f = -(q + -q), fp f = -(p + -p), fq α = -(q + (α) -q + ) = 0, fp α = -(p + (α) -p + ),

            f S f fr f Sc f i             =             0 -
e S f :=           
eq f = mgℓ q + -q (cos(q) -cos(q + )), ep f = 1 2mℓ 2 (p + + p), eq α = mgℓ q + (α)-q + (cos(q + ) -cos(q + (α)) = 0, ep α = 1 2mℓ 2 (p + (α) + p + ), port variables (f Sc , e Sc ) ∈ F Sc × E Sc with f Sc := fq v = q + (α)-q + (α+v) = 0, fp v = p + (α) -p + (α + v), e Sc :=    eq v = mgℓ(cos(q + (α))-cos(q + (α+v))) q + (α+v)-q + (α) = 0,

ep v = (p + (α+v)+p + (α)) 2mℓ 2
, and port variables (f i , e i ) ∈ F i × E i with f i := 1 2mℓ 2 (p + (α + v) + p + (α)), and e i := v.

VI. CONCLUSION

In this article, we have proposed a new definition of discrete port-Hamiltonian systems, defined by a discrete Dirac structure of the form [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF]. The key difference from the standard representation is that the spaces of flows and efforts associated with the storing elements of the system are separated into two distinct subspaces. We have demonstrated that the system introduced in [START_REF]Discrete port-controlled Hamiltonian dynamics and average passivation[END_REF], which is assumed to be input-affine, can be characterized by an underlying discrete Dirac structure of the form [START_REF] Monaco | Nonlinear Hamiltonian systems under sampling[END_REF] and can be modeled by appropriate flows and efforts. The discrete Dirac structure allows us to show that the closure of the dynamics (32) through negative output feedback and the interconnected system (44), obtained via power-preserving interconnection in [START_REF] Moreschini | Interconnection through u-average passivity in discrete time[END_REF], preserves the discrete port-Hamiltonian structure in the sense of Definition 3.1. Finally, for discrete-time modeling purposes, we have illustrated the theory by means of a gravity pendulum system. Specifically, we have constructed the flows and efforts for both the conservative dynamics and the dynamics resulting from the injection of negative output feedback. The proposed approach can be extended to the multi-input multi-output case by using a set of partial differential equations that describe the rate of change for each control component as in [START_REF] Monaco | Nonlinear average passivity and stabilizing controllers in discrete time[END_REF].

These results pave the way for new interconnection-based modeling in discrete time exploiting the DDR structure.

  constraint er = -κfr, port variables (f S f , e S f ) ∈ F S f × E S f with f S f :=

For the sake of presentation we deal with single-input systems. However, the foregoing dynamics can be extended to systems with multiple inputs.

The orthogonal complement with respect to the bilinear form ⟨⟨•, •⟩⟩ is denoted by ⊥ .
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