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Dirac structures for a class of port-Hamiltonian systems in
discrete time

Alessio Moreschini, Member, IEEE , Salvatore Monaco, Fellow, IEEE , and Dorothée Normand-Cyrot, Fellow, IEEE

Abstract— This article discusses the Dirac structure and the
state-space representation of a class of port-Hamiltonian systems
that evolve in discrete time. The characterization of the underlying
Dirac structure depends on separating the stored energy associ-
ated with the system into two distinct components. Moreover, it is
shown that power-preserving interconnection and negative output
feedback maintain the port-Hamiltonian structure while increasing
the dimension of the Dirac structure. Finally, the proposed ap-
proach is illustrated by means of an approximated gravity pendu-
lum model.

Index Terms— Nonlinear systems, modeling, Energy Systems,
Algebraic/geometric methods

I. INTRODUCTION

The idea of modeling a dynamical system as a network composed
of interconnected subsystems is rooted in [1] for the analysis of
electromechanical systems. Interconnected systems, which appear in
energy-conserving systems, were modeled in the context of Poisson
structures in [2] and [3], and later in the general context of Dirac
structures in [4]. A Dirac structure is a geometric object that gener-
alizes Poisson structures, bond graphs, and presymplectic structures
on manifolds [5] and forms the foundation for the port-Hamiltonian
framework. The port-Hamiltonian framework in [6] and [7] emerges
from the need to provide a systematic framework for the analysis
and control of complex, possibly networked, physical systems. In the
case of port-Hamiltonian systems, the key characteristic of a Dirac
structure is its compositional closure, which results in the preservation
of energy under power-conserving interconnections [8]. As a conse-
quence, this interconnection-based modeling among subsystems has
led to the definition of numerous passivity-based controllers, such
as Interconnection and Damping Assignment (IDA-PBC), Energy
Shaping, and Control by Interconnection, [9]–[11].

The majority of the energy-based approaches for modeling
and controlling port-Hamiltonian systems are carried out in the
continuous-time domain. Yet, computer-aided technologies operate
in discrete time and hence continuous-time systems must be approx-
imated with discrete-time models for implementation purposes. Nev-
ertheless, the discretization procedure may thereby cause the loss of
the structural properties of the continuous-time system, see [12]–[16].
In this respect, it is of utmost importance to define faithful discrete-
time representations for numerical integration, simulation, and con-
trol. Various definitions of discrete-time port-Hamiltonian systems

The work of Alessio Moreschini has been supported by the EPSRC
grant “Model Reduction from Data”, Grant No. EP/W005557.

Alessio Moreschini is with the Department of Electrical and Electronic
Engineering, Imperial College London, SW7 2AZ London, U.K. (e-mail:
a.moreschini@imperial.ac.uk).

Salvatore Monaco is with Dipartimento di Ingegneria Informatica,
Automatica e Gestionale A. Ruberti, Sapienza University of Rome,
00185 Rome, Italy. (e-mail: salvatore.monaco@uniroma1.it).

Dorothée Normand-Cyrot is with Laboratoire des Signaux et
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have been developed to ensure energy preservation. These include
dynamics based on discrete manifolds [17], midpoint discretization
[18], spatial-discretization [19], pseudo-spectral discretization [20], or
first-order discrete gradient methods [21]. The disadvantage of these
representations is that, unlike in the continuous-time domain, the
power balance derived from the forward difference of the Hamiltonian
function does not enable the identification of the power supplied by
the stored energy. This limitation hinders the precise characterization
of the power balancing equation, which is essential for discrete-time
energy-based control approaches such as negative output feedback
[22], energy balance [23], and Control by Interconnection [24].

The purpose of this work is to characterize the underlying Dirac
structure of the discrete-time port-Hamiltonian system recently pro-
posed by the authors in [25]. The proposed discrete-time port-
Hamiltonian modeling, which overcomes the aforementioned diffi-
culty in characterizing the power balance, relies upon the notions of
Difference and Differential Representation (DDR) of discrete-time
dynamics [26], discrete gradient function [27]. and average passivity
[28]. The DDR is a well-established model for systems evolving in
discrete time. It consists of a difference equation that represents the
system’s free evolution through jumps, and a differential equation
that captures the influence of control. This representation has inspired
numerous results in the study of the geometric properties of discrete-
time systems, including Lie conditions for accessibility, controllabil-
ity, and invariance [29]–[31].

In this article, we focus our attention on the construction of a
Dirac structure associated with the class of systems proposed in [25].
In detail, we identify the flow and effort elements that characterize
the Dirac structure of the input-affine port-Hamiltonian structure
proposed in [25]. In the same vein, we discuss how the underlying
Dirac structure is transformed and preserved under negative output
feedback and feedback interconnection. Finally, we demonstrate that
the power-preserving interconnection of two average passive systems,
as proposed in [24], recovers the composition of Dirac structures.

The article is structured as follows. In Section II we recall the
notion of discrete-time systems in a Difference and Differential
Representation (DDR), the notion of u-average passivity, and the
general theory of port-Hamiltonian systems. In Section III we first
introduce the definition of discrete port-Hamiltonian system defined
by a discrete Dirac structure, and then we reveal how the discrete-time
system in [25] can be characterized in terms of an underlying Dirac
structure. In Section IV we show how the proposed Dirac structure is
transformed under negative output feedback and negative feedback in-
terconnection. In particular, we emphasize how the port-Hamiltonian
structure is preserved whilst the underlying Dirac structure grows in
dimension. In Section V the proposed framework is illustrated by
means of a discrete-time system which describes the approximated
behaviour of the gravity pendulum. Finally, in Section VI we provide
some concluding remarks.

Notation: Throughout the article all functions and vector fields are
assumed smooth and complete over the respective definition spaces.
For ease of notation, we drop the argument of the functions whenever
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this does not cause confusion. We denote by R and N the set of real
and natural numbers respectively (with 0 ∈ N). For any real-valued
vector v ∈ Rn, v⊤ defines the transpose of v. The inner product is
denoted by ⟨·, ·⟩, that is for any v, w ∈ Rn we let ⟨v, w⟩ = v⊤w.
Let S be a differentiable function S : Rn → R, the gradient of S is
denoted by ∇S, where ∇ is the vector of partial derivatives in Rn.

II. PRELIMINARIES

In this article, a discrete-time dynamical system evolving on Rn is
a system in which the state variable x(k) ∈ Rn evolves in discrete
instants k ∈ N. The evolution of the state is described by a difference
equation of the form

x(k + 1) = F (x(k), u(k)), (1)

where F : Rn × R → Rn is a smooth map and u(k) ∈ R denotes
the input (control) variable1. Throughout the article, we omit the k-
dependency of the variables to simplify the notation. Without loss of
generality, we decompose F (x, u) as follows

F (x, u) = x+ F0(x) + g(x, u)u, (2)

where x + F0(x) := F (x, 0) describes the free evolution of the
dynamics (1) and g(x, u)u describes the effect of the control.

A. Difference and Differential Representation (DDR)
As proposed in [26, Section 2], under mild conditions (e.g. sub-

mersivity of the map F (x, u)), the dynamics (1) can be equivalently
described by a pair of difference and differential equations (DDR) of
the form

x+ = x+ F0(x) (3a)

dx+(u)

du
= G(x+(u), u) with x+(0) = x+ (3b)

where x+(u) := F (x, u) and G : Rn × R → Rn is such that

∂F (x, u)

∂u
= G(F (x, u), u). (4)

In the DDR form of the dynamics, the free evolution is described by
the discrete-time dynamics (3a), while the effect of the control results
from the integration of the differential equation (3b) that models the
rate of change of the dynamics under the action of u. Accordingly,
integrating (3b) over the set [0, u] with initial condition x+(0) =
x+ F0(x), one recovers (1); i.e.

x+(u) = F (x, u) = x+ F0(x) +

∫ u

0
G(x+(s), s)ds. (5)

We recall that, G(x, u) in (3b) takes the form of a vector field that
is dependent on u. This type of vector field has been previously used
in [32] to characterize accessibility properties around equilibria. An
integral relationship in terms of u between the control map g(x, u)
in (2) and the u dependent vector field G(x, u) in (3b) follows by
construction. In particular, for all pair (x, u) ∈ Rn ×R the equation

g(x, u)u :=

∫ u

0
G(x+(s), s)ds (6)

holds, where G(x, u) admits the power series expansion

G(x, u) = G1(x) +
∑
i≥1

ui

i!
Gi+1(x). (7)

The vector fields Gi and their Lie algebra have played a crucial role
in characterizing geometric properties of discrete-time dynamics in

1For the sake of presentation we deal with single-input systems. However,
the foregoing dynamics can be extended to systems with multiple inputs.

[32] and [26]. Furthermore, they have been recently employed to
characterize passivity in [28], as well as to define port-controlled
Hamiltonian structures in [25] and [22]. One of the computational
properties inherited from the DDR structure (3) is that, given a
smooth real-valued map λ : Rn → R, its evolution along the
dynamics (3) can be specified by the equation

λ(x+(u)) = λ(x+) +

∫ u

0
G⊤(x+(s), s)∇λ(x+(s))ds. (8)

This property, which distinguishes the independent free evolution
from the dependent controlled part, is crucial in the following steps
for determining the rate of change of the Hamiltonian function (or
any energy-like function) along the discrete-time dynamics (3).

Remark 2.1: This article focuses on single-input dynamics, but the
same framework can be applied to the multi-input case by using a
set of partial differential equations that describe the rate of change
for each control component, see [28, Sec. 6].

B. Discrete-time average passivity
The concept of average passivity has been introduced in [28] to

weaken the necessity of a throughput term in the given discrete-time
system. The formal definition is here recalled.

Definition 2.1: The discrete-time system defined by the dynamics
(1) with output map h : Rn → R, is said average passive, if there
exists a positive semi-definite function S : Rn → R≥0 (the storage
function) such that, for all (x, u) ∈ Rn × R

S(x+(u))− S(x) ≤
∫ u

0
h(x+(s))ds = uhav(x, u), (9)

with u-average output defined by

hav(x, u) :=
1

u

∫ u

0
h(x+(s))ds. (10)

The average passivity of the input-output behaviour associated with
the output map h(x) is equivalent to the usual notion of passivity
of the input-output behaviour associated with the u-average output
map hav(x, u). The notion of average passivity from some non-zero
control value ū is recalled below to deal with systems under state
feedback [24].

Definition 2.2: The discrete-time system defined by the dynamics
(1) and output map h : Rn → R, is said u-average passive from ū ∈
R, if there exists a positive semi-definite function S : Rn → R≥0

(the storage function) such that for all (x, u) ∈ Rn × R

S(x+(ū+ u))− S(x) ≤ uhavū (x, u) (11)

with u-average output from ū defined as

havū (x, u) =
1

u

∫ u

0
h(x+(ū+ s), ū+ s)ds. (12)

C. Discrete gradient function
The discrete gradient function (or simply discrete gradient) has

been introduced by Gonzalez in [27] to establish a framework for
designing time-integration schemes that conserve energy in Hamilto-
nian systems. The definition of discrete gradient is given below.

Definition 2.3: Given a smooth real-valued function H : Rn → R,
its discrete gradient is a function of two variables ∇̄H|wv : Rn ×
Rn → Rn satisfying

(w − v)⊤∇̄H|wv = H(w)−H(v), (13)

with lim
w→v

∇̄H|wv = ∇H(v).

The discrete gradient function satisfying the property (13) is
generally not uniquely defined. Thus, several efficient computational
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methods have been proposed to solve (13), see e.g. [27], [33], [34].
For instance, one of the possible discrete gradients can be obtained
through component-wise integration, that is

∇̄H
∣∣w
v

=
[
∇̄H

∣∣w1
v1

· · · ∇̄H
∣∣wn

vn

]⊤
,

with entries defined by

∇̄H|wi
vi =

1

wi − vi

∫ wi

vi

∂H(v1, ..., vi−1, s, wi+1, ..., wn)

∂s
ds.

Nevertheless, the results presented in the upcoming sections hold for
any discrete gradient that meets the criteria of Definition 2.3.

The following lemma relates the property (13) of the discrete
gradient function with the integral property (8).

Lemma 2.1: Let λ : Rn → R be a smooth function and assume
the discrete-time dynamics (5). Then∫ u

0
G⊤(x+(s), s)∇λ(x+(s))ds = ug⊤(x, u)∇̄λ|x

+(u)

x+
. (14)

Proof: The proof is constructive. In particular, from the defini-
tion of the discrete gradient function in Definition 2.3 easy algebra
shows that

λ(x+(u))− λ(x+) = (x+(u)− x+)⊤∇̄λ|x
+(u)

x+

= ug⊤(x, u)∇̄λ|x
+(u)

x+
,

and by property (8) the statement holds.

D. Port-Hamiltonian systems in discrete time

A novel description of discrete-time port-Hamiltonian systems has
been proposed in [25]. It relies on three key ingredients: i) the DDR
form (5) of discrete-time dynamics; ii) the notion of average passivity
(9); iii) the description of the average passivating output in terms of
the discrete gradient function through property (14). The following
definition is restated.

Definition 2.4: Given a real-valued Hamiltonian function H :
Rn → R≥0, a discrete-time input-state-output port-Hamiltonian
system is described by the equations2

x+(u) = x+ (J(x)−R(x))∇̄H|x
+

x + g(x, u)u, (15a)

y(x, u) = g⊤(x, u)∇̄H|x
+(u)

x+
, (15b)

with J = −J⊤, R = R⊤ ⪰ 0, and g(x, u)u given by (6).

A discrete-time port-Hamiltonian system described by the equa-
tions (15) satisfies the following properties.

1) For u = 0, the time evolution of the Hamiltonian function H is
decreasing since

H(x+)−H(x) = −∇̄⊤H|x
+

x R(x)∇̄H|x
+

x ≤ 0.

Accordingly, for R = 0 the free evolution of the system is
conservative, and the Hamiltonian function H is an invariant
for the dynamics since

H(x+)−H(x) = ∇̄⊤H|x
+

x J(x)∇̄H|x
+

x = 0.

2) For any u ̸= 0, the system is average passive with respect to
the output map

Y (x, u) = G⊤(x, u)∇H(x), (16)

2The coordinates x+(u) and x+ are defined by the DDR in (3).

i.e. it is passive with respect to the average output given by

Y av(x, u) =
1

u

∫ u

0
G⊤(x+(s), s)∇H(x+(s))ds. (17)

Hence, by virtue of the property (14), y(x, u) = Y av(x, u).
Remark 2.2: It is worth mentioning that the output (15b) of the

port-Hamiltonian system, by construction, yields a series expansion in
u which can be determined iteratively. Hence, from (17) we compute
the series expansion

y(x, u) = LG1
H|x+ +

u

2

(
L2
G1

+ LG2

)
H|x+ +O(u2), (18)

where O(u2) contains all the remaining terms of higher order in u,
and the operator LGH denotes the Lie derivative of H along the
vector G. Hence, for completeness, the output (15b) is well-defined
for u = 0 as

lim
u→0

y(x, u) = G⊤
1 (x+)∇H(x+).

E. Dirac structure
Given a finite-dimensional linear space F (the space of flow

variables) and its dual E (the space of effort variables), their product
F×E defines the space of variables endowed with the power duality
product

P = ⟨e, f⟩ = e(f), (f, e) ∈ F × E .

The symmetric bilinear form ⟨⟨(fa, ea), (fb, eb)⟩⟩ = ⟨ea, fb⟩ +
⟨eb, fa⟩ is defined on the product space.

Definition 2.5 ( [8]): A (constant) Dirac structure on F is a sub-
space D ⊂ F × E such that3 D = D⊥.

For a finite-dimensional real linear space F the definition of Dirac
structure is equivalent to dimD = dimF and

⟨e, f⟩ = 0, (f, e) ∈ D. (19)

Any Dirac structure is power-conserving in the sense that the total
power entering (or leaving) the Dirac structure is always zero [35].
A subset R ⊂ Fr × Er = 0 satisfying ⟨er, fr⟩ = e⊤r fr ≤ 0 for all
(fr, er) ∈ R defines a resistive structure which is expressed by the
linear energy dissipation relation

er = −Rfr, (20)

for some matrix R = R
⊤ ⪰ 0 capturing the dissipative behaviour,

[8, Sec. 2.4]. As usual in the continuous-time domain, port variables
(fS , eS) ∈ FS × ES of energy storing elements, port variables
(fr, er) ∈ Fr×Er of resistive elements, and port variables (fi, ei) ∈
Fi × Ei of external elements, define a Dirac structure of the form

D ⊂ FS × ES ×Fr × Er ×Fi × Ei. (21)

A special case of port-Hamiltonian systems arises when no algebraic
constraints occur on the state-space variables. It is described by the
matrices J(x) = −J⊤(x) and R(x) = R⊤(x) ⪰ 0 specifying the
interconnection and resistive structures respectively. From the dissipa-
tive constraint (20), R(x) can be described as R(x) = gr(x)Rg⊤r (x)
with gr : Rn → Rn×p representing the input matrix corresponding
to the resistive port. Accordingly, the associated Dirac structure (21)
is given by the graph of the skew-symmetric mapfSfr

fi

=
−J −gr −g

g⊤r 0 0

g⊤ 0 0

eSer
ei

 ,

in which g : Rn → R represents the input map corresponding to the
external ports. We refer to [35, Sec. 2.2] for additional details.

3The orthogonal complement with respect to the bilinear form ⟨⟨·, ·⟩⟩ is
denoted by ⊥.
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III. DIRAC AND PORT-HAMILTONIAN STRUCTURES IN
DISCRETE TIME

In this section we introduce a discrete Dirac structure associated
with discrete-time dynamics. In particular, inspired by the DDR struc-
ture of discrete-time dynamics in (13), we consider the separation of
the port variables (fS , eS) of the total energy storing elements of
the Dirac structure (21) into distinct pairs of ports (fSf

, eSf
) and

(fSc , eSc) such that

−⟨eS , fS⟩ = H(x+(u))−H(x)

= H(x+)−H(x) +H(x+(u))−H(x+)

= −⟨eSf
, fSf

⟩ − ⟨eSc , fSc⟩.

The separation of the port variable (fS , eS) of the total energy
storing elements into (fSf

, eSf
) and (fSc , eSc) yields an alternative

definition of port-Hamiltonian system based on a Dirac structure in
the sense of Definition 2.5.

Definition 3.1: Let a state-space Rn and Hamiltonian function H :
Rn → R, describing the energy storage. A discrete port-Hamiltonian
system is defined by a discrete Dirac structure of the form

D = Df ×Dc, (22)

of dimension dimD= dimDf + dimDc with subspaces

Df ⊂ FSf
× ESf

×Fr × Er, (23a)

Dc ⊂ FSc × ESc ×Fi × Ei, (23b)

port variables (fSf
, eSf

) ∈ FSf
×ESf

and (fSc , eSc) ∈ FSc ×ESc

of the energy storing elements, port variables (fr, er) ∈ Fr × Er of
the resistive elements, and port variables (fi, ei) ∈ Fi × Ei of the
external elements. The dynamics of the discrete port-Hamiltonian
system is implicitly defined by

(fSf
, eSf

, fr, er) ∈ Df , (24a)

(fSc , eSc , fi, ei) ∈ Dc, (24b)

(fr, er) ∈ R, (24c)

with and resistive structure R ⊂ Fr × Er.

Definition 3.1 introduces two different subspaces, Df and Dc, in
the construction of a Dirac structure (22). The major departure of the
proposed discrete Dirac structure from the standard discrete charac-
terization as in [21] and [17] is the splitting of the storing elements.
In particular, the subspace Df corresponds to the energy-storing
elements in FSf

× ESf
, which encodes the internal energy stored

not affected by any external phenomenon, and energy-dissipation
elements in Fr×Er , which encodes the autonomous dissipation of the
system. The subspace Dc corresponds to the energy-storing elements
in FSc × ESc , which encodes the effect of the control action, and
external elements in Fi × Ei, which encodes the interaction of the
system with the external environment.

The characterization of the Dirac structure in (22) leads to the
following result.

Theorem 3.1: Consider the system (15) evolving in Rn with
Hamiltonian function H : Rn → R≥0. Suppose that g(x, u) =

g(x, 0) := g(x), and that R(x) = gr(x)Rg⊤r (x) with gr : Rn →
Rn×p and R = R

⊤ ⪰ 0. Then the system (15) is characterized by
the discrete Dirac structure (22) with(

−(x+ − x), ∇̄H|x
+

x , fr, er
)
∈ Df , (25a)(

−(x+(u)− x+), ∇̄H|x
+(u)

x+
, y(x, u), u

)
∈ Dc, (25b)

(fr, er) ∈ R, (25c)

and dissipative constraint er = −Rfr . Moreover, the discrete Dirac
structure (22) with elements in (25) satisfies

dimD = 2n+ p+ 1. (26)

Proof: A constructive proof of the statement is performed by
showing that the elements in (25) associated with the system (15)
satisfy (19). In particular, with Definition 2.3 in mind, easy algebra
shows that

H(x+)−H(x) =
〈
x+ − x, ∇̄H|x

+

x

〉
= −∇̄⊤H|x

+

x R(x)∇̄H|x
+

x ,

(27)

and that

H(x+(u))−H(x+) =

〈
x+(u)− x+, ∇̄H|x

+(u)

x+

〉
= ug⊤(x)∇̄H|x

+(u)

x+
.

(28)

Constructing the pair (fSf
, eSf

) such that fSf
:= −(x+ − x) and

eSf
:= ∇̄H|x

+

x respectively, we have that

(27) =⇒ −⟨eSf
, fSf

⟩= −∇̄⊤H|x
+

x R(x)∇̄H|x
+

x = ⟨er, fr⟩ ≤ 0,

provided er = −Rfr holds due to the structure of R(x), i.e. R(x) =
gr(x)Rg⊤r (x). Moreover, setting fSc := −(x+(u)−x+) and eSc :=

∇̄H|x
+(u)

x+
we have that

(28) =⇒ −⟨eSc , fSc⟩= ug⊤(x)∇̄H|x
+(u)

x+
= uy(x, u) = ⟨ei, fi⟩

with (fi, ei) as in (25). Hence, we conclude as (19) that

⟨eSf
, fSf

⟩+ ⟨er, fr⟩ = 0, (fSf
, eSf

, fr, er) ∈ Df ,

⟨eSc , fSc⟩+ ⟨ei, fi⟩ = 0, (fSc , eSc , fi, ei) ∈ Dc.

Finally, since (fSf
, eSf

) ∈ FSf
× ESf

= Rn × Rn, (fr, er) ∈
Fr×Er = Rp×Rp, (fSc , eSc) ∈ FSc ×ESc = Rn×Rn, (fi, ei) ∈
Fi × Ei = R× R we have from (23) that

dimDf = dimFSf
+ dimFSr = n+ p

dimDc = dimFSc + dimFSi
= n+ 1

hence we conclude (26).

Theorem 3.1 provides the characterization of the underlying Dirac
structure of a discrete dynamical system represented by the equations
(15). The system expressed in DDR form (15) suggests to decouple
the port variables (fS , eS) ∈ FS×ES into (fSf

, eSf
) ∈ FSf

×ESf

and (fSc , eSc) ∈ FSc × ESc satisfying ⟨eS , fS⟩ = ⟨eSf
, fSf

⟩ +
⟨eSc , fSc⟩. The pair (fSf

, eSf
) encodes the effect of the energy

variation due to the uncontrolled component and is specified by the
discrete gradient from x to x+. The pair (fSc , eSc) encodes the
effect of the controlled component and is specified by the discrete
gradient from x+ to x+(u). Moreover, the obtained Dirac structure
is characterized by the graph of the skew-symmetric map

fSf

fr
fSc

fi

 =


−J −gr 0 0

g⊤r 0 0 0

0 0 0 −g

0 0 g⊤ 0



eSf

er
eSc

ei

 . (29)

For the sake of completeness, we emphasize that the underlying
Dirac structure (25) in case of zero input, i.e. for u = ei = 0,
recovers the underlying Dirac structure of the uncontrolled dynamics
proposed in [21] and [17].
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IV. DIRAC STRUCTURES UNDER FEEDBACK AND
INTERCONNECTION

This section is devoted to the discussion of the transformation
of the discrete Dirac structure (22) in two different cases: when
a negative output feedback is injected in the system (15); when
two systems of the form (15) are interconnected through a power-
preserving interconnection.

A. Port-Hamiltonian structures under negative output feedback

To begin with, let the function α(x) be the negative output feed-
back applied to the port-Hamiltonian system (15) which is obtained
as the solution of the implicit equation

α(x) = −κy(x, α(x)), (30)

with damping factor κ > 0, output map y(·, ·) as in (15b), and input
mapping g(x, u) which is assumed as in Theorem 3.1, i.e. g(x, u) =
g(x, 0) := g(x). Consider the input variable as

u = α(x) + v, (31)

where v(k) ∈ R describes the external input variable. Hence, the
state-space representation of the port-Hamiltonian system (15) under
the control action (31) yields the feedback dynamics

x+ = x+ (J(x)−R(x))∇̄H|x
+

x , (32a)

x+(α+ v) = x+ − κg(x)g⊤(x)∇̄H|x
+(α)

x+
+ g(x)v. (32b)

With the above structure in mind, the following result holds
denoting for simplicity the feedback α(x) + v by α+ v.

Proposition 4.1: Consider the feedback dynamics (32) with
Hamiltonian function H : Rn → R≥0, and output map

ỹ(x, v) = g⊤(x)∇̄H|x
+(α+v)

x+(α)
. (33)

Then the dynamics (32) along with (33) is characterized by the
discrete Dirac structure (22) with([

−(x+−x)

−(x+(α)−x+)

]
,

[
∇̄H|x

+

x

∇̄H|x
+(α)

x+

]
, fr, er

)
∈ Df , (34a)(

−(x+(α+v)−x+(α)), ∇̄H|x
+(α+v)

x+(α)
, ỹ(x, v), v

)
∈ Dc, (34b)

(fr, er) ∈ R, (34c)

and an extended linear energy dissipation relation er = −Refr with
matrix

Re =

[
R 0
0 κ

]
. (35)

Moreover, the discrete Dirac structure (22) with port variables in (34)
yields that

dimD = 3n+ p+ 2. (36)

Proof: In a similar vein of (27) and (28), and with Definition
2.3 in mind, we have that the variation of the Hamiltonian function
along the dynamics (32) yields the equation

H(x+(α))−H(x)

=
〈
x+ − x, ∇̄H|x

+

x

〉
+

〈
x+(α)− x+, ∇̄H|x

+(α)

x+

〉
= −∇̄⊤H|x

+

x R(x)∇̄H|x
+

x − κg(x)g⊤(x)∇̄H|x
+(α)

x+
,

(37)

and the equation

H(x+(α+ v))−H(x+(α))

=

〈
x+(α+ v)− x+(α), ∇̄H|x

+(α+v)

x+(α)

〉
= vg⊤(x)∇̄H|x

+(α+v)

x+(α)
.

(38)

Constructing the elements

fSf
: =

[
−(x+−x)

−(x+(α)−x+)

]
, eSf

: =

[
∇̄H|x

+

x

∇̄H|x
+(α)

x+

]
,

we have from the structure R(x) = gr(x)Rg⊤r (x) that the equation
(37) implies the inequality

⟨eSf
, fSf

⟩=

[
∇̄H|x

+

x

∇̄H|x
+(α)

x+

]⊤[
grRg⊤r 0

0 κgg⊤

][
∇̄H|x

+

x

∇̄H|x
+(α)

x+

]
= −⟨er, fr⟩ ≥ 0,

which is satisfied providing the dissipative constraint er = −Refr
with extended matrix Re in (35). In addition, setting fSc :=

−(x+(α+v)−x+(α)) and eSc := ∇̄H|x
+(α+v)

x+(α)
we have that

(38) =⇒ −⟨eSc , fSc⟩= vg⊤(x)∇̄H|x
+(α+v)

x+(α)

= vỹ(x, v) = ⟨ei, fi⟩,

with (fi, ei) as in (34b). Finally, since the flows and efforts subspaces
are by cunstruction such that

(fSf
, eSf

) ∈ FSf
× ESf

= R2n × R2n,

(fSc , eSc) ∈ FSc × ESc = Rn × Rn,

(fr, er) ∈ Fr × Er = Rp+1 × Rp+1,

(fi, ei) ∈ Fi × Ei = R× R,

then this implies that

dimDf = dimFSf
+ dimFSr = 2n+ p+ 1,

dimDc = dimFSc + dimFSi
= n+ 1,

hence we conclude (36).

We have shown that the feedback system (32) coupled with the
output (33) retains the port-Hamiltonian structure in the sense of
Definition 3.1. However, the underlying discrete Dirac structure as-
sociated with (34) yields a subspace D which increases in dimension
as provided by the condition (36). The increase in dimension of the
subspace D is due to the closed-loop dissipation matrix[

R(x) 0

0 κg(x)g⊤(x)

]
⪰ 0,

with dimFSf
= dimR2n, dimFr = dimRp+1. The Dirac

structure is characterized by the graph of the skew-symmetric map
fSf

fr

fSc

fi

 =



−J 0 −gr 0 0 0
0 0 0 −g 0 0

g⊤r 0 0 0 0 0

0 g⊤ 0 0 0 0

0 0 0 0 0 −g

0 0 0 0 g⊤ 0




eSf

er

eSc

ei

 . (39)

It worth noting that, from the property in (11), the output ỹ(x, v)
satisfies by construction the dissipation inequality

H(x+(α(x) + v))−H(x) ≤ vỹ(x, v)
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along the dynamics (32), and thus ỹ(x, v) coincides with the u-
average output from ū in (12) with ū = α(x). The u-average output
from α(x) is computed with respect to the output map (16), that is

ỹ(x, v) =
1

v

∫ v

0
Y (x+(α(x) + s), α(x) + s)ds. (40)

This is reminiscent of the interconnection-based modeling in [24]
which shows that the u-average passivity property during the in-
terconnection process, by means of feedback of the form (31), is
transformed into u-average passivity from α(x),

B. Closeness under power-preserving interconnection

This section focuses on the composition of Dirac structures. In
particular, we show that the feedback interconnection of two discrete-
time port-Hamiltonian systems retains the port-Hamiltonian structure
in the sense of Definition 3.1. Before proceeding, we recall that one
of the key features of the Dirac structures is their compositionality.
The composition of Dirac structures is recalled from [8, Sec. 6.1].

Definition 4.1: Given two Dirac structures (D1,D2) defined re-
spectively on F1 × FC and FC × F2 where FC is the space of
shared flow and effort, their composition is defined on F1 × F2

under the constraints fC1
= −fC2

, eC1
= eC2

implying

e⊤C1
fC1

+ e⊤C2
fC2

= 0 (41)

on the shared flows and efforts (fC1
, eC1

) and (fC2
, eC2

).
With the composition of Dirac structures in mind, we consider the

power-preserving interconnection which is specified by the equation

u1y1(x1, u1) + u2y2(x2, u2) = 0, (42)

or equivalently, in a compact form, is described by

Ψ(x, u) =

(
u1 + y2(x2, u2)
u2 − y1(x1, u1)

)
= 0.

As discussed in [24], by invoking the Implicit Function Theorem
the solution of the equation (42) is always well-defined in a neigh-
bourhood of x⋆ = (x⋆1 , x⋆2) where Ψ(x⋆, 0) = 0 and the matrix
∂Ψ
∂u

∣∣
u=0

is non-singular at x⋆. Hence, denoting by (α1, α2) the
power-preserving feedback solving the equation (42), i.e.

α1(x1, x2) = −y2(x2, α2(x1, x2)),

α2(x1, x2) = y1(x1, α1(x1, x2)),

we define the control laws

u1(x1, x2, v1) = α1(x1, x2) + v1,

u2(x1, x2, v2) = α2(x1, x2) + v2,
(43)

with with external input variables v1(k) ∈ R and v2(k) ∈ R. Then,
the feedback interconnection (43) of two port-Hamiltonian systems
of the form (15) with x1 ∈ Rn1 , x2 ∈ Rn2 , gR1

: Rn1 →
Rn1×p1 , gR2

: Rn2 → Rn2×p2 , R1 = R
⊤
1 ⪰ 0, R2 = R

⊤
2 ⪰ 0,

H1 : Rn1 → R≥0, and H2 : Rn2 → R≥0 yields the dynamics

x+1 = x1 + (J1(x1)−R1(x1))∇̄H1|
x+1
x1 ,

x+2 = x2 + (J2(x2)−R2(x2))∇̄H2|
x+2
x2 ,

x+1 (α1+v1) = x+1 −g1(x1)g
⊤
2 (x2)∇̄H2|

x+2 (α2)

x+2
+ g1(x1)v1,

x+2 (α2+v2) = x+2 +g2(x2)g
⊤
1 (x1)∇̄H1|

x+1 (α1)

x+1
+ g2(x2)v2.

(44)

With this in mind, the following result holds.

Theorem 4.1: Consider the interconnected dynamics (44) with
Hamiltonian function given by H(x1, x2) = H1(x1) +H2(x2) and
output ỹ(x, v) given by

ỹ(x1, x2, v1, v2) =

g
⊤
1 (x1)∇̄H1|

x+1 (α1+v1)

x+1 (α1)

g⊤2 (x2)∇̄H2|
x+2 (α2+v2)

x+2 (α2)

 . (45)

Then the dynamics (44) with output ỹ(x1, x2, v1, v2) is characterized
by the discrete Dirac structure as in (24) with elements

fSf
=


−(x+1 −x1)

−(x+2 −x2)

−(x+1 (α1)−x+1 )

−(x+2 (α2)−x+2 )

, eSf
=



∇̄H1|
x+1
x1

∇̄H2|
x+2
x2

∇̄H1|
x+1 (α1)

x+1

∇̄H2|
x+2 (α2)

x+2


,

fSc =

[
−(x+1 (α1+v1)−x+1 (α1))

−(x+2 (α2+v2)−x+2 (α2))

]
, eSc =

∇̄H1|
x+1 (α1)

x+1

∇̄H2|
x+2 (α2)

x+2

,
fi = ỹ(x1, x2, v1, v2), ei = v, (46)

and extended dissipative constraint er = −Refr with

Re =

[
R1 0

0 R2

]
.

Moreover, the discrete Dirac structure (22) yields that

dimD = 3n1 + 3n2 + p1 + p2 + 2. (47)

Proof: To begin with, we note that along (44) the variation of
H1 between x+1 (α1) and x+1 yields

H1(x
+
1 (α1))−H1(x

+
1 ) =

〈
x+1 (α1)− x+1 , ∇̄H1|

x+1 (α1)

x+1

〉
= −

〈
g1(x1)g

⊤
2 (x2)∇̄H2|

x+2 (α2)

x+2
, ∇̄H1|

x+1 (α1)

x+1

〉
,

(49)

and H2 between x+2 (α2) and x+2 yields

H2(x
+
2 (α2))−H2(x

+
2 ) =

〈
x+2 (α2)− x+2 , ∇̄H2|

x+2 (α2)

x+2

〉
=

〈
g2(x2)g

⊤
1 (x1)∇̄H1|

x+1 (α1)

x+1
, ∇̄H2|

x+2 (α2)

x+2

〉
,

(50)

which implies
∑2

j=1 Hj(x
+
j (αj))−Hj(x

+
j ) = 0. Then, the flows

and efforts given in the equations (46) are by construction such that

(fSf
, eSf

) ∈ FSf
× ESf

= R2n1+2n2 × R2n1+2n2 ,

(fSc , eSc) ∈ FSc × ESc = Rn1+n2 × Rn1+n2 ,

(fr, er) ∈ Fr × Er = Rp1+p2 × Rp1+p2 ,

(fi, ei) ∈ Fi × Ei = R2 × R2,

which implies that

dimDf = dimFSf
+ dimFSr = 2n1 + 2n2 + p1 + p2,

dimDc = dimFSc + dimFSi
= n1 + n2 + 2,

and thus (47). Finally, setting H(x1, x2) = H1(x1) + H2(x2) we
have that

H(x+1 (α1 + v1), x
+
2 (α2 + v2))−H(x1, x2)

= −⟨eSf
, fSf

⟩ − ⟨eSc , fSc⟩ = ⟨er, fr⟩+ ⟨ei, fi⟩,
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

fSf

fr

fSc

fi


=



−J1 0 0 0 −gR1 0 0 0 0 0
0 −J2 0 0 0 −gR2

0 0 0 0
0 0 0 g1g⊤2 0 0 0 0 0 0
0 0 −g2g⊤1 0 0 0 0 0 0 0

g⊤R1
0 0 0 0 0 0 0 0 0

0 g⊤R2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −g1 0
0 0 0 0 0 0 0 0 0 −g2
0 0 0 0 0 0 g⊤1 0 0 0
0 0 0 0 0 0 0 g⊤2 0 0





eSf

er

eSc

ei


(48)

and thus we conclude that the subspace D = Df × Dc is a Dirac
structure yielding ⟨eSf

, fSf
⟩+ ⟨eSc , fSc⟩+ ⟨er, fr⟩+ ⟨ei, fi⟩ = 0.

It is worth emphasizing that the dimension of the Dirac structure
obtained by interconnecting two port-Hamiltonian systems is deter-
mined by the number of compositions of Dirac structures. Increasing
the dimension of the structure results in a structure that keeps track
of the interconnection order. This is emphasized by the graph of the
skew-symmetric map in (48).

V. AN ILLUSTRATIVE EXAMPLE

Consider the dynamics of a gravity pendulum consisting of a
uniform rod of length ℓ > 0, affected by gravity g, and mass m > 0
pivoted at one end. The Hamiltonian function catching respectively
the kinetic and the potential energy of the system is given by

H(q, p) =
p2

2mℓ2
+mgℓ(1− cos(q)), (51)

where q and p are given by q = ϑ and p = mℓ2ϑ̇ respectively,
where ϑ is the pendulum angle relative to the vertical axis. Fol-
lowing the discretization procedure in [22], the discrete-time model,
which approximates the smooth behaviour of the gravity pendulum
over sampling intervals of unitary length, can be expressed by the
equations

q+(u) = q +
1

2mℓ2
(p+ + p), (52a)

p+(u) = p− mgℓ

q+ − q
(cos(q)− cos(q+)) + u, (52b)

y(q, p, u) =
1

2mℓ2
(p+(u) + p+), (52c)

where u describes the piecewise constant controlled torque. Since
the discrete-time system described by the equations (52) is a discrete
port-Hamiltonian system in the sense of Definition 3.1, applying
the result of Theorem 3.1 we can construct the port variables
(fSf

, eSf
) ∈ FSf

× ESf
, such as

fSf
:=

{
fqf = −(q+ − q),

fpf = −(p+ − p),

eSf
:=

{
eqf = mgℓ

q+−q
(cos(q)− cos(q+)),

epf = 1
2mℓ2

(p+ + p),

the port variables (fSc , eSc) ∈ FSc × ESc , such as

fSc :=

{
fqu = −(q+(u)− q+),

fpu = −(p+(u)− p+),

eSc :=

{
equ = mgℓ

q+(u)−q+
(cos(q+)− cos(q+(u))),

epu = 1
2mℓ2

(p+(u) + p+),

and port variables (fi, ei) ∈ Fi × Ei such as fi := y and ei :=
u. It is important to note that, in consistency with its continuous-
time counterpart, the discrete version of the gravity pendulum (52) is
conservative, and thus resistive elements are missing. Nevertheless,

the system (52) has an underlying Dirac structure D = Df × Dc

characterized by the graph of the skew-symmetric map
fSf

fSc

fi

 =


0 −1 0 0 0
1 0 0 0 0

0 0 0 0 0
0 0 0 0 −1

0 0 0 1 0



eSf

eSc

ei

 .

In addition, to achieve asymptotic stabilization of the gravity pen-
dulum at the minimum of H(q, p) we consider the controller u =
α(x) + v with negative output feedback α(q, p) which is defined as
in (30) and specified here as

α(q, p) = − κ

2mℓ2
(p+(u) + p+).

Hence following the result in Proposition 4.1, we have that the
system (52) under negative output feedback yields an extended Dirac
structure D = Df × Dc which is described by the graph of the
extended skew-symmetric map

fSf

fr

fSc

fi


=



0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0





eSf

er

eSc

ei


with additional resistive constraint er = −κfr , port variables
(fSf

, eSf
) ∈ FSf

× ESf
with

fSf
:=


fqf = −(q+ − q),

fpf = −(p+ − p),

fqα = −(q+(α)− q+) = 0,

fpα = −(p+(α)− p+),

eSf
:=


eqf = mgℓ

q+−q
(cos(q)− cos(q+)),

epf = 1
2mℓ2

(p+ + p),

eqα = mgℓ
q+(α)−q+

(cos(q+)− cos(q+(α)) = 0,

epα = 1
2mℓ2

(p+(α) + p+),

port variables (fSc , eSc) ∈ FSc × ESc with

fSc :=

{
fqv = q+(α)−q+(α+v) = 0,

fpv = p+(α)− p+(α+ v),

eSc :=

eqv =
mgℓ(cos(q+(α))−cos(q+(α+v)))

q+(α+v)−q+(α)
= 0,

epv =
(p+(α+v)+p+(α))

2mℓ2
,

and port variables (fi, ei) ∈ Fi ×Ei with fi :=
1

2mℓ2
(p+(α+ v) +

p+(α)), and ei := v.
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VI. CONCLUSION

In this article, we have proposed a new definition of discrete
port-Hamiltonian systems, defined by a discrete Dirac structure of
the form (22). The key difference from the standard representation
is that the spaces of flows and efforts associated with the storing
elements of the system are separated into two distinct subspaces.
We have demonstrated that the system introduced in [25], which is
assumed to be input-affine, can be characterized by an underlying
discrete Dirac structure of the form (22) and can be modeled by
appropriate flows and efforts. The discrete Dirac structure allows
us to show that the closure of the dynamics (32) through negative
output feedback and the interconnected system (44), obtained via
power-preserving interconnection in [24], preserves the discrete port-
Hamiltonian structure in the sense of Definition 3.1. Finally, for
discrete-time modeling purposes, we have illustrated the theory by
means of a gravity pendulum system. Specifically, we have con-
structed the flows and efforts for both the conservative dynamics
and the dynamics resulting from the injection of negative output
feedback. The proposed approach can be extended to the multi-input
multi-output case by using a set of partial differential equations that
describe the rate of change for each control component as in [28].

These results pave the way for new interconnection-based modeling
in discrete time exploiting the DDR structure.
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