
HAL Id: hal-04227892
https://hal.science/hal-04227892v1

Preprint submitted on 4 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Multi-Source Supervised Domain Adaptation with
Class Imbalance

Thomas Ranvier, Haytham Elghazel, Emmanuel Coquery, Khalid
Benabdeslem

To cite this version:
Thomas Ranvier, Haytham Elghazel, Emmanuel Coquery, Khalid Benabdeslem. Deep Multi-Source
Supervised Domain Adaptation with Class Imbalance. 2023. �hal-04227892�

https://hal.science/hal-04227892v1
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

Deep Multi-Source Supervised Domain

Adaptation with Class Imbalance

Thomas Ranvier1*, Haytham Elghazel1, Emmanuel Coquery1

and Khalid Benabdeslem1
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Abstract

Deep multi-source domain adaptation is based on deep neural networks
and exploits knowledge from multiple source domains to improve pre-
dictions on a target domain. In this paper, we are especially interested
in investigating domain adaptation in a supervised context, with lim-
ited data and class imbalance. We propose a new multi-source supervised
domain adaptation approach that is able to transfer both shared knowl-
edge across all source domains and source domain specific knowledge
toward a target domain. Transfer contribution weights are computed dur-
ing training based on domain divergence. They are used to balance each
source domain impact on learning during the model training phase, lim-
iting negative transfer as much as possible. We conduct extensive exper-
iments to show that our approach competes and even outperforms other
state-of-the-art domain adaptation approaches on both image benchmark
datasets and real-world tabular medical data. We perform statistical
analysis to better evaluate our experimental results, and conduct an abla-
tion study to evaluate the usefulness of each component of the method.

Keywords: Deep Learning, Domain Adaptation, Multi-Source, Supervised,
Imbalanced
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1 Introduction

Learning from imbalanced data requires a specific learning approach in order
to pay specific attention to the class distribution during the training phase.
Deep Learning is notoriously hard when dealing with limited data. Indeed, if
the data is too limited, it is impossible to properly train a deep model, and
simpler Machine Learning approaches should be preferred. When independent
limited but similar datasets are available, it becomes adequate and beneficial
to use deep multi-source domain adaptation to improve predictions on the
target domain [1–4]. Exploiting knowledge from several source domains can
help to minimize the negative impact of both limited data and class imbalance.
In this paper, we propose a new interesting multi-source supervised domain
adaptation approach, which we ultimately aim to apply on real-world limited
and imbalanced medical tabular data.

In transfer learning, we aim to exploit knowledge from one or several source
dataset(s) to improve learning performance on another target dataset. For
transfer learning to be beneficial, the dataset(s) used as source(s) should be
similar enough to the target dataset. A source that is not similar enough
to the target will negatively impact learning performance, and should not
be used in this context. We talk about domain adaptation when we aim to
learn a single and common task by transferring knowledge from one or several
source domain(s) to a target domain. A very well-researched area of domain
adaptation is single-source domain adaptation [5? –7], that is, when we use
only one source domain to transfer towards the target domain. A more complex
and less researched area is multi-source domain adaptation [8–11], where we
use several source domains to transfer as much knowledge as possible to the
target. Domain adaptation can help largely improve prediction performance
on the target domain by exploiting more knowledge from source domain(s)
than available on the sole target domain. Domain adaptation is often used
to make prediction possible on an entirely unlabeled target domain, that is,
unsupervised domain adaptation. In our work, we are interested in a case
where the target domain is labeled as any standard dataset, in this case we
talk about supervised domain adaptation, which is a less researched domain
adaptation area, despite being a common real-world occurrence.

In this paper, we propose a new original approach for multi-source domain
adaptation in a supervised context, and demonstrate its performance on
limited and imbalanced data. Namely, Weighted Multi-Source Supervised
Domain Adaptation (WMSSDA). WMSSDA transfers knowledge from s source
domains to a similar target domain. It learns a domain invariant latent space,
regularized using both statistical and adversarial approaches, where shared
knowledge across source domains is transferred to the target domain, and s
source domain specific latent spaces, in which source specific knowledge is
transferred. With such an architecture, our proposed approach WMSSDA is
able to exploit both common knowledge across all domains and source specific
knowledge that is useful for inference on the target domain. We compute source
domain specific transfer contribution weights during training, those are applied
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during training to weight the importance of each source domain on learn-
ing, reducing as much as possible Negative Learning. We conduct extensive
experiments to compare our approach with other baseline and state-of-the-art
domain adaptation approaches in a data-limited and class imbalance context.
We show that WMSSDA outperforms other state-of-the-art domain adapta-
tion approaches on both image benchmark datasets and real-world medical
tabular data. We perform an ablation study to validate the pertinence and
positive impact of each component in our method.

The source code used to conduct our complete experiments is available at
the following GitHub repository1.

In the rest of the paper, we first formally describe our domain adaptation
learning scenario in section 2, we then present related works from transfer
learning and learning on imbalanced data literature in section 3. Section 4
describes our proposed approach, we show our experimental results in section
5 and conclude with a summary of our contributions, results and future
perspectives.

2 Learning Scenario

In this section, we formally describe the considered learning scenario.

2.1 Notations and Preliminaries

Notation Description Notation Description
X Feature space T Target domain
Y Label space P (·) Distribution
X Data sample f(·) Labeling function
Y Labels sample s Number of source domains
D Domain c Number of classes
S Source domain n Number of instances

Table 1: Main notations used in this paper.

Table 1 summarizes the used notations in this section and the rest of the
paper. We introduce definitions and concepts needed for the following sections,
our notations are inspired by the work of [12], we took liberties to adapt them
to our multi-source supervised domain adaptation context.

Let X ∈ Rd denote an input feature space, with d the number of features,
and Y = {1, . . . , c} a multi-class output label space, with c the total number
of classes. We define a domain as a pair formed by a distribution over X and a
labeling function mapping from X to Y. We note D = (P (XD), fD) the domain
D, with P (XD) the marginal distribution of D over X , fD : X → Y is the
labeling function mapping from feature to label space, XD is the data sample

1Temporary private link, to be updated after acceptance: https://drive.google.com/file/d/
1XvgWqkHA4LuK6bPE9ktIlO9SFY1MemnC/view?usp=sharing

https://drive.google.com/file/d/1XvgWqkHA4LuK6bPE9ktIlO9SFY1MemnC/view?usp=sharing
https://drive.google.com/file/d/1XvgWqkHA4LuK6bPE9ktIlO9SFY1MemnC/view?usp=sharing
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defined as XD = {xi ∈ X}nD
i=1, with nD the number of instances in the data

sample of the domain D.
In the scenario of multi-source supervised domain adaptation we consider,

we are given s source domains, noted Si for i ∈ [1, s], that we want to exploit
to improve classification over one target domain, noted T. A unique label space
Y is shared across all domains, feature space of each domain can be different
from other domains, we note XD the feature space of domain D. In our scenario,
we have access to s labeled source domains where Si = {(xSi

j , ySij )}ni
j=1, with

{xSi
1 , . . . , xSi

ni
} ∼ P (XSi), and ySij = fSi(x

Si
j ). We have access to a labeled

target domain, similarly, T = {(xT
j , y

T
j )}nT

j=1, where {xT
1 , . . . , x

T
nT
} ∼ P (XT)

and yTj = fT(x
T
j ).

We want to exploit knowledge from labeled source domains and the labeled
target domain, to improve classification on an unknown and unusable part of
T. As we consider a scenario in which the three types of shifts are present
between domains, we consider that the covariate shift assumption does not
hold, fS1 ̸= . . . ̸= fSs ̸= fT. Solving such a problem is only possible if the
target domain is labeled, as it is necessary to rely on supervision to properly
align domains with concept shifts. Therefore, we want our supervised domain
adaptation model to learn to estimate the labeling function fT, while exploiting
knowledge from the source domains through the learning of the different source
labeling functions {fS1 , . . . , fSs}.

2.2 Domain Shift in Our Adaptation Scenario

In their 2012 paper, to unify the terms and definitions used for the various
domain shifts that appear in domain adaptation literature and provide con-
sistent terminology, Moreno-Torres et al. [13] proposed formalization of three
types of shifts: covariate shift, prior shift, and concept shift. More recently,
Kouw and Loog [4] reviewed those defined shifts and provided more precise
and up-to-date definitions. To present our adaptation scenario in terms of
domain shift we use those same terms and define them mathematically using
our notations in the following. Figure 1 illustrates each of the presented domain
shifts.

Fig. 1: Illustration of the three kinds of domain shifts.
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Formally, covariate shift is when the data marginal distributions of two
domains are different, while their conditional distributions are equal, P (XD1

) ̸=
P (XD2

) and P (YD1
|XD1

) = P (YD2
|XD2

). Intuitively, covariate shift exists
between domains when the feature space of a domain is different from the one
of another domain, that is XD1

̸= XD2
, or when there exists a domain specific

form of sample selection bias [4]. Under covariate shift, a classifier trained on
one domain might struggle when applied on another domain. This is a domain
shift that is present in almost all domain adaptation applications and is a point
of interest of this paper.

There is a prior shift between two domains when the label marginal distri-
butions of both domains are different, while their conditional distributions are
equal, P (YD1

) ̸= P (YD2
) and P (XD1

|YD1
) = P (XD2

|YD2
). This happens when

the class balance is not the same in each domain. This is a common occurrence
that can happen when data from similar domains are gathered differently [14],
leading to different label marginal distributions between the domains. This
type of domain shift appears less often in domain adaptation literature, we are
specifically interested in prior shift, as it occurs in cases where domains are all
differently imbalanced.

Formally, concept shift occurs when the conditional distributions of two
domains are different, P (YD1

|XD1
) ̸= P (YD2

|XD2
). This means that the deci-

sion boundary between classes is not the same from one domain to another,
meaning that the causal relation between features and labels is semantically
different from one domain to another. Concept shift might occur between two
domains if classes are semantically inaccurate, which might lead to slightly dif-
ferently labeled data between them. In an unsupervised context, concept shift
would render transfer from source domains to the target domain impossible.
As we are in a supervised domain adaptation setting, transferring knowledge
is possible in our scenario.

In this paper, we are specifically interested in the case of multi-source
domain adaptation with imbalanced data. We want to use multiple source
domains with different feature spaces to improve classification performance
over a similar target domain, with the particularity that each used domain is
imbalanced in a different way. That is, each domain’s data and label marginal
distributions are different from other domains. This is a standard case of covari-
ate shift between domains, with the addition of a prior shift, due to domain
specific class imbalance. In our learning scenario we assume that the covariate
shift assumption does not hold, as we cannot entirely rule out the hypothesis
of a concept shift across domains.

3 Related Works

3.1 Domain Adaptation

Domain adaptation (DA) can be considered as a special case of transfer learn-
ing [1]. Transfer learning includes all approaches that are able to use knowledge
from a source to improve inference on a target. Domain adaptation includes
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all approaches that aim to learn a single and common task by transferring
knowledge from one or several source domain(s) to a target domain [3? ],
most domain adaptation scenarios do not include target domain labels, that
is, unsupervised DA. Less researched DA scenarios are semi-supervised and
supervised DA where the target domain includes partially or entirely labeled
target data, the goal of transferring knowledge from source(s) to target in those
cases remains identical. As can be understood by the names, single-source DA
is transferring knowledge from one source domain to a target domain, while
multi-source DA transfers knowledge from multiple source domains to the tar-
get. Since about 2015, deep neural networks have been explored for domain
adaptation, obtained results are significantly better compared to prior shal-
low transfer learning approaches, consequently, most recent DA approaches
are based on deep models [1, 15? ].

Most domain adaptation approaches in the literature focus on learning a
shared domain invariant latent space between domains to capture shared infor-
mation between source(s) and target [1]. This leads to a latent space where
instances of a domain are indistinguishable from instances of other domains,
while classification relevant information is conserved, leading to better infer-
ence results on the target domain. There are two main ways of reaching this
goal, relying on statistic distribution matching, or relying on an adversarial
loss that encourages samples from different domains to lose all domain specific
information.

Maximum Mean Discrepancy (MMD) is the most commonly used statistic
to measure domain discrepancy to match source(s) and target learned distribu-
tions in DA literature. MMD has first been used and democratized by DAN [5],
that uses MMD to minimize the distance between the learned representation of
a source domain and the representation of the target domain. As an alternative,
[10] proposed M3SDA, a multi-source approach that uses Moment match-
ing Distance (MD) to match the distributions moments between domains.
They demonstrate that MD is more pertinent than MMD in a multi-source
adaptation context.

Other approaches from the DA literature use an adversarial approach to
learn a domain invariant latent space. DANN [6] is the first DA approach that
made use of a domain classifier trained adversarially on the learned latent
representation of both target and source data. The domain classifier tries to
discriminate the domain in the latent features, while the feature extractor
learns to fool the domain classifier, successfully leading to a common invariant
latent space between domains. MDAN [8] can be considered as a multi-source
version of DANN, with s sources domains, s domain classifiers are trained to
discriminate between the i-th source domain and the target domain, leading to
an invariant latent space between each source domain and the target domain.
Adversarial approaches are notorious for reaching better results than statistic
distribution matching in Domain Adaptation [7].

We believe that learning a shared domain invariant latent space for multi-
source domain adaptation is limited, and that learning pairwise invariant latent
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spaces between the target domain and each source domain allows for the cap-
ture and transfer of more useful information between sources and target. When
learning a domain invariant latent space between two domains, intuitively,
the only information that is captured within the shared representation is the
common information. Therefore, when building a shared representation across
multiple domains, only the common information across all domains is captured,
which becomes a limiting factor as the number of domains and the dissimilari-
ties between them increases. This is why we believe that learning several latent
spaces in a pairwise manner between target and sources is pertinent in order
to capture and transfer as much relevant information as possible. For this rea-
son, in our proposed multi-source domain adaptation approach, we used an
architecture where a shared domain invariant latent space is learned across
all domains in one branch, while s source specific latent spaces are learned
between the target domain and each of the s source domains in another branch.

There exist two multi-source domain adaptation methods in the literature
that also rely on learning both a shared domain invariant latent space while
also learning pairwise latent spaces between sources and target domain: ML-
MSDA [16], and MLAN [17]. Unlike us, their methods have been proposed
and applied in a unsupervised domain adaptation context, which differs from
supervised domain adaptation. Mutual Learning Network for Multiple-Source
Domain Adaptation (ML-MSDA) [16] is composed of two branches. The first
branch learns a shared invariant latent space across all domains, while the sec-
ond learns pairwise latent spaces between the target and each source domain.
By jointly learning those multiple latent representations, they obtain better
experimental results than all previously presented multi-source domain adap-
tation approaches. They rely on adversarial learning to ensure the domain
invariance of the learned latent spaces. Similarly, [17] extended the work of
[16] by proposing a Mutual Learning based Alignment Network (MLAN). The
model architecture is identical to ML-MSDA, but is trained slightly differ-
ently, through the proposed mutual learning module. The module relies on
pseudo-labeling of target instances to maximize target prediction performance.
With MLAN, [17] currently obtains state-of-the-art results compared to other
multi-source and single-source models of the domain adaptation literature.

In our work, we propose a multi-source supervised domain adaptation
method with a two-branch architecture, similarly to ML-MSDA and MLAN.
We exploit the fact that we are working in a supervised domain adaptation
context to train the model on labeled instances from all sources and target
domains.

3.2 Negative Transfer

The goal of domain adaptation is to exploit knowledge from one or several
source domain(s) to improve prediction quality on a target domain. But a
common issue with domain adaptation is negative transfer [2, 3, 18]. Nega-
tive transfer occurs in domain adaptation when transferring knowledge from
a source domain to a target domain harms the learning performance on the
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target. Consequently, instead of improving the inference model performance,
negative transfer leads to a decrease in prediction performance on the target
domain. One of the most common reasons for negative transfer is a too large
dissimilarity between source and target domains [18]. This risk is multiplied in
the multi-source domain adaptation field, as multiple sources can contribute
to negative transfer. Negative transfer is an important issue in the transfer
learning field, limiting negative transfer is an important matter, which should
be addressed when designing new domain adaptation approaches.

In their paper, [11] proposed the ABMSDA method, which avoids nega-
tive transfer by weighting each source domain depending on its contribution
to the adaptation process. Their model architecture is composed of a domain
classifier, a common feature extractor regularized using WMD (a modified
version of Moment Distance), and a shared task-specific classifier. They train
the domain classifier, separately and prior from the rest of the model, to pre-
dict the probability that target images belong to each source domain. They
use the probability output of the domain classifier as a metric that indicates
the statistical similarity between the target domain and each source domains,
with the intuition that source domains that are most similar to the target
domain should be attributed a higher weight. They apply those weights to
source instances when computing WMD. They also apply those weights when
combining the probability outputs of the classifier during training, leading to
a classifier less prone to negative transfer. This is a way of avoiding negative
transfer during multi-source domain adaptation.

In our proposed approach, we compute transfer contribution weights with
a discrepancy measure, directly during training. Those weights are associated
to each source domain, based on supervised target domain results, and applied
to scale the importance of source instances during training. The goal being
to increase the importance of instances from relevant source domains, while
decreasing the importance of instances from less related source domains.

3.3 Dealing With Class Imbalance

Class imbalance occurs when the labels we aim to predict are not uniformly
distributed over the dataset, resulting in certain classes having a much higher,
or lower, number of instances compared to others. When trained on an imbal-
anced dataset, standard Machine Learning approaches will lead to poorer
results than when trained with a similar balanced dataset [19]. When dealing
with class imbalance it is primordial to use approaches that help improve learn-
ing performance. Nowadays, two main ways are used to deal with imbalanced
data in the literature, sampling approaches, and cost-sensitive approaches [20].

Sampling approaches aim to artificially adjust the class distribution, by
either removing instances the majority class(es), and/or adding more instances
from the minority class(es). Under-sampling aims to reduce the number of
majority class instances to achieve a more balanced class distribution. The
simplest under-sampling approach that can be used to artificially re-balance
a dataset is random under-sampling [20–22]. With random under-sampling
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instances from the majority class(es) are randomly removed until the desired
class distribution is achieved. This simple approach can lead to improved infer-
ence results but can also result in the loss of important information from
the majority class(es), and so, reduce the generalization ability of the model
as it misses crucial information. To assess this drawback more researched
and advanced under-sampling approaches have been proposed, such as: Con-
densed Nearest Neighbor [23], or Tomek Links [24]. Overall, under-sampling
leads to improved inference results but might also lead to losing important
information for inference if the amount of instances is too low to afford remov-
ing instance from the majority class(es). On the other hand, over-sampling
involves increasing the representation of minority classes by duplicating or
generating synthetic examples. The simplest over-sampling approach that can
be used to artificially re-balance a dataset is random over-sampling [20–22].
Random over-sampling duplicates randomly selected instances from the minor-
ity class(es) until the desired class distribution is achieved. As with random
under-sampling, over-sampling leads to improved inference results but highly
increases the risk of overfitting, leading to biased inference models that lack
in generalization capacity. The Synthetic Minority Oversampling Technique
(SMOTE) method is the most popular and most widely used advanced over-
sampling method, it has been proposed in [25] and it is known to largely
improve inference results on imbalanced data [20, 21]. SMOTE works by cre-
ating synthetic examples of the minority class(es) by interpolating between
existing instances of the minority class(es). SMOTE is known to largely
improve prediction results on imbalanced data. A known drawback of SMOTE,
and over-sampling in general, is the risk of leading to overfitting, and the risk of
generating synthetic examples that are unrealistic or less informative, leading
to a limited improvement in prediction quality.

Removing and generating synthetic data leads to improved learning results,
but with important drawbacks. Removing data is often non viable in real-world
scenarios with limited data, and generating synthetic data comes with the dis-
advantage of potentially generating implausible instances. Another approach
that can be used in Machine Learning to deal with class imbalance is cost-
sensitive learning, where modifications are made to the algorithm, and/or to
the training process, to take account of imbalance and improve prediction
results. It has been shown in several empirical studies that cost-sensitive learn-
ing leads to superior inference results than sampling approaches on imbalanced
data [19, 26]. Therefore, cost-sensitive techniques are usually a better solution
than sampling methods. In neural network training, the most popular way of
implementing cost-sensitive learning is to adapt the error function to take into
account the class cost of each training instance during the learning phase, as
defined in [26]. The error function is corrected by introducing the cost factor
of the class as a weight that is applied during training. Class weights applied
to the loss function are commonly computed as the inverse of the class distri-
bution of training data, though other weighting techniques can be used. This
approach obtained by far the best results in [26], it is still a very commonly
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used approach as it is very easy to implement and use, and it reaches better
results than most other existing approaches to handle imbalanced data. This
is why, in this paper, we use a cost-sensitive approach to account for the class
imbalance between domains to maximize prediction quality.

4 Proposed Approach

In this section, we describe in details our proposed approach: Weighted Multi-
Source Supervised Domain Adaptation (WMSSDA).

The idea behind WMSSDA is to create a common domain invariant latent
space and s source domain specific latent spaces, perform classification on each
latent space, and draw final weighted prediction results in an ensemble manner.
The common domain invariant latent space is trained on a label classifica-
tion task on both source and target batches. Two regularization techniques
are employed to minimize domain-specific information into the common latent
space. First, by using a Moment Distance (MD) regularization to match the
distributions of source and target batches, and secondly, through the adver-
sarial training of a domain discriminator. For the s source domain specific
latent spaces the ideology is the opposite, we want each latent space to retain
as much source specific information as possible. This is possible as in a super-
vised domain adaptation context, the target domain is labeled, it is therefore
possible to train each classifier on a supervised classification task on both
source and target instances, leading to a pairwise fine-tuning between each
source domain and the target domain. Those specific latent representations are
regularized using a collaboratively trained specific domain classifier, while per-
forming label classification, leading to latent spaces retaining as much domain
specific information as possible. Using multi-source domain adaptation natu-
rally helps dealing with the class imbalance problem, as it increases the total
amount of available data for training. We further deal with the class imbal-
ance in each domain using a cost-sensitive learning approach, by scaling the
loss with a class weight, computed as the inverse of the class distribution of
training data. We use the output of the Moment Distance measure between
the target domain and each source domain to determine transfer contribution
weights, higher weights are attributed to source domains with closer latent dis-
tributions compared to the target domain latent representation, and inversely.
Those transfer contribution weights are then applied to weight the classifica-
tion loss on source instances, giving less importance to less relevant source
domains in training. Ultimately, the final predictions for the target domain are
obtained by passing a target batch through all trained modules. The average
of the outputs from all specific classifiers is computed and combined with the
outputs of the common classifier to obtain the final probabilities for the tar-
get classes. Figure 2 shows a simple representation of the architecture of the
approach.

When training the approach, we iterate through one batch from each source
domain for each target domain batch. Batches are processed as a pair between
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Fig. 2: Architecture of our approach WMSSDA, common modules appear in
purple, i-th source domain specific modules appear in the same color as the
i-th associated source domain. Lines of color symbolize the data flow, each
color corresponding to a batch of the corresponding domain. Dashed red lines
symbolize the computation and application of transfer contribution weights,
computed from the MD measure and applied as scaling in the classification
loss terms.

the b-th target batch and the b-th batch of the i-th source domain, which we
will refer to as a pair of batches in the following. Each pair of batches is fed
through a common feature extractor used to extract low-level features on all
domains alike. The approach architecture is then divided in two main parts:
common modules and source domain specific modules.

• Common modules. They are fed pairs of batches between the target domain
and any source domain. The first component of this part is a common neck,
comparable to the previous feature extractor, which extracts higher-level
features on all domains. We call the output of the previous component the
common domain invariant latent space, which we note ZTcom and ZScom, for
the target and source batch latent representations respectively. To ensure
that this latent space is domain invariant, we use both statistical distribution
matching and adversarial domain discrimination.
We regularize the latent representations by minimizing the standard
Moment Distance, such as defined in [10, 11], between target and source

representation, LMD =
∑k

i=1

∥∥E(Zi
Scom)− E(Zi

Tcom)
∥∥
F .

We use the output of the MD measure between the target domain batch
and batches of all source domains to compute transfer contribution weights.
We note those weights α ∈ Rs, with αi the weight associated to the i-th
source domain. Those transfer contribution weights are used to scale the
classification loss of each source domains, giving more weight to close and
related source domains and less weight to less useful domains. They are
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computed as:

αi =
s+ 1

s
− eDi−max(D)∑

eDi−max(D)

with D = {MD(ZSicom, ZTcom)}si=1 the set of MD measures between the
target domain batch and each source domain batch. The weights are com-
puted such as

∑s
i=1 αi = s, which ensures that source instances are given

as much importance as target instances overall, while a different weight is
given to each source domain.
We associate the MD regularization with the training of an adversarial com-
mon domain classifier applied to the latent space. This common domain
classifier learns to discriminate the domain from which originates each sam-
ple in the pair of batches, while the common feature extractor and neck
try to fool the discriminator, leading to a domain invariant representation
in this latent space. Parameters of the common feature extractor and neck
are tuned to maximize the loss of the domain discriminator, while the dis-
criminator parameters are tuned to minimize their own loss. As it is hard
to optimize minimax problems using gradient descent algorithms, a com-
mon practice in domain adaptation research is to use a gradient reversal
operation, and apply it between the latent representation and the domain
classifier, such as defined in [6]. Which solves the adversarial problem by
minimizing a single loss. We note Ladv d the loss of the common domain dis-
criminator applied on the gradient reversed common latent representation
of the pair of batches.
We found that using both statistical and adversarial strategies simulta-
neously led to better empirical results, which suggests that using both
approaches cooperatively leads to a better domain invariant representation.
Finally, the latent representation is fed through a task-specific classifier that
discriminates samples on their class label.

• Source domain specific modules. They are only fed pairs of batches between
the target domain and their associated source domain, that is, a pair of
batches between the i-th source domain and the target domain is fed to
the i-th specific module. Each specific module is composed of a specific
neck, which extracts higher-level features, a specific task-specific classifier
that discriminates samples on their class label, and a specific domain clas-
sifier that discriminates samples on the domain they originate from. In the
opposite way to the above, this specific domain classifier is trained collabo-
ratively, which pushes each specific latent space to retain as much domain
specific information as possible. The source and target batches are treated
differently:

– The source batch from domain Si is fed through the i-th specific neck,
the resulting latent representation is noted ZSi. The i-th domain classifier
is fed ZSi and is trained to recognize that those samples originate from
domain Si. The i-th task-specific classifier is fed ZSi and is trained to
discriminate the class of each sample.
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– The target batch is fed through all specific necks, and the resulting latent
representations are noted {ZT1, . . . , ZTs}. The i-th domain classifier is
fed ZTi and is trained to recognize that those samples originate from
domain T. Each task-specific classifier is fed ZTi, their outputs are noted
{ŶT1, . . . , ŶTs}. Only the i-th classifier is trained to discriminate the class
of each target sample to avoid overfitting.

We note Lsp d the loss of the i-th specific domain discriminator applied on
the i-th latent representations of the pair of batches.

We note Ly the global task-specific classification loss, which is the average
between common and specific classification probabilities on the pair of batches.
To take account of class imbalance during training we compute class weights,
noted W , that are applied in a cost-sensitive learning manner during task-
specific classification loss computation, they are computed as the inverse of the
class distribution observed in the training data of each domain:WD = 1/P (YD).
Finally, the loss we minimize using gradient descent is computed for each pair
of batches in the following way:

L = Ly + λ1Ladv d + λ2Lsp d + λ3LMD

Where λ1, λ2, λ3 are hyper-parameters that are defined to balance each
component of the final loss.

Final prediction results are obtained by feeding target instances through
all task-specific classifiers, the average of source specific classifiers outputs is
computed and averaged with the output of the common classifier, leading to
final class probabilities.

Pseudo-code 1 describes, in a more formal way, the training steps of the
entire approach. In this pseudo-code, model includes a common feature extrac-
tor model, common and specific necks, and common and specific classifiers,
com clf d is the common domain classifier and sp clf d is the set of i specific
domain classifiers. We note adv(·) the gradient reversal operation, classifi-
cation outputs are noted {ŶDcom, ŶD1, . . . , ŶDs} and correspond to the label
probabilities obtained on the common latent representation and all specific
representations of the domain D respectively. Latent spaces are referred to with
the same notations as above, ZDcom for the common latent representation and
ZDi for the i-th specific latent representation of domain D. Parameter E is the
number of epochs to perform, s is the number of source domains and λ is the
set of hyper-parameters used to balance all loss components together. Finally,
W are class weights specific to each domain computed as 1/P (YD), Wi for the
i-th source domain and WT for the target domain.

Our proposal combines the advantages of a domain invariant latent space
with a set of domain specific representations, with transfer contribution weights
applied to minimize negative transfer during training, leading to a supervised
domain adaptation approach able to transfer knowledge from multiple source
domains to a target domain. Similarly to DANN [6], our proposed WMSSDA
learns a domain invariant latent space on which is performed classification and
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Algorithm 1: WMSSDA Training Pseudo-Code.

input: E, s, model, com clf d, sp clf d, W , λ
for epoch← 1 to E do

XT, YT ← extract batch(T);
for i← 1 to s do

// Feed target batch to model and compute target loss components

{ŶTcom, ŶT1, . . . , ŶTs} ← forward(model, XT);

ŶT ← (ŶTcom + ŶTi)/2;

LTy = cross entropy(YT, ŶT, WT);
// Feed source batch to model and compute source loss components

XS, YS ←extract batch(Si);
{ŶScom, ŶS1, . . . , ŶSs} ← forward(model, XS);

ŶS ← (ŶScom + ŶSi)/2;

LSy = cross entropy(YS, ŶS, Wi);
// Feed adversarially trained common domain classifier

{ŶSadv d, ŶTadv d} ←forward(com clf d, adv({ZScom, ZTcom}));
LSadv d ← cross entropy(ŶSadv d, {i, . . . , i});
LTadv d ← cross entropy(ŶTadv d, {0, . . . , 0});
Ladv d ← (LSadv d + LTadv d)/2;
// Feed i-th collaboratively trained specific domain classifier

{ŶSsp d, ŶTsp d} ← forward(sp clf di, {ZSspi
, ZTspi

});
LSsp d ← cross entropy(ŶSsp d, {1, . . . , 1});
LTsp d ← cross entropy(ŶTsp d, {0, . . . , 0});
Lsp d ← (LSsp d + LTsp d)/2;
// Compute MD regularization

γ ← 2/(1 + exp(−10e/E)))− 1;
Di ←MD(ZScom, ZTcom);
LMD ← γ ×Di;

αi ← ((s+ 1)/s)− (eDi−max(D)/
∑

eDi−max(D));
// Compute global loss and back-propagate

Ly ← (LTy + αi × LSy)/(1 + αi;
L = Ly + λ1Ladv d + λ2Lsp d + λ3LMD;
Train model, com clf d and sp clf d by back-propagating L;

end

end

similarly to MFSAN [9], WMSSDA builds s domain specific latent spaces. The
main difference between the second part of WMSSDA and MFSAN is that
MFSAN aims to match source and target distributions between all specific
latent spaces, which we find counterproductive as it means that all specific
latent spaces are pushed toward an identical latent space. We choose to com-
bine both the adversarial and statistical approaches to regularize the common
latent space, since we found better results in this way, and could use the MD
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results to compute contribution weights. As in the two recent Unsupervised
multi-source domain adaptation approaches, ML-MSDA [16] and MLAN [17],
we chose to organize our architecture in two branches, one to build a common
latent space, and the other to build s domain specific latent spaces. We do
so as we believe that only learning a shared latent space across all domains
in a multi-source domain adaptation context prevents part of useful knowl-
edge to be transferred from source to target domain. We also noted superior
experimental results by using two branches instead of one. We choose to use
the Moment Distance to match both target and source common distributions,
since [10] demonstrated that Moment Distance is better suited as a statistical
distribution matching approach for multi-source domain adaptation than the
most common Maximum Mean Discrepancy. We compute a scale variable γ as
described in [7], to scale the impact of the MD regularization throughout the
training. Its value starts at a 0 and increases logarithmically towards a value
of 1 over the total number of epochs, giving more importance to this regular-
ization at the middle and end of the training phase. We apply the computed
transfer contribution weights from the MD output on the classification loss
of source instances, minimizing as much as possible Negative Learning dur-
ing training. We apply class weights to scale the computed classification loss
to take account of class imbalance during training in a cost-sensitive learning
manner. Using a domain adaptation approach also naturally helps in dealing
with limited data since source domain knowledge helps improving the overall
learning performance. Our proposed WMSSDA approach allows the exploita-
tion of both common knowledge and source domain specific information that
is useful for target domain classification.

As we consider, in our learning scenario, that the covariate shift assump-
tion might not hold, meaning that there might be concept shift between
domains, we implement a second version of our method. In their paper, [? ]
proposed an interesting and easy-to-implement way to allow domain adapta-
tion approaches to handle concept shift by successfully aligning conditional
distribution between two domains P (YD1

|XD1
) = P (YD2

|XD2
). Similarly to [9],

we implement a second version of our method in which we include this mod-
ification, we name this variation WMSSDA-β. We replace each task-specific
classifier in WMSSDA-β with a pair of classifiers and follow the following three
steps in our training:

1. We train our entire model as previously defined, where label probabilities
are defined as the mean of each pair of classifier outputs.

2. We then fix the feature extractor and necks and train the classifier pairs to
maximize their discrepancy. The discrepancy between two classifiers C and
C ′ for an instance x is defined as |C(x)− C ′(x)|.

3. Finally, we train the feature extractor and necks to minimize this same
discrepancy with fixed classifiers.
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We repeat those steps until global convergence to simultaneously align both
marginal and conditional distributions, leading to successful domain adapta-
tion given our scenario. This β version of WMSSDA should be able to better
handle concept shift than the standard version, leading to better inference
results when in presence of concept shift.

5 Experimental Results

This section presents the experiments we led to evaluate and compare our
proposed approach WMSSDA to other state-of-the-art domain adaptation
approaches in a data-limited and class imbalance context.

5.1 Datasets

With our experiments we aim to show that our method performs well compared
to other state-of-the-art approaches, on both popular benchmark domain adap-
tation datasets and a real-world medical domain adaptation dataset composed
of mixed-type tabular data. We are interested in comparing state-of-the-
art domain adaptation approaches in the context of limited data and class
imbalance.

The 5-Digits multi-domain dataset is widely used in domain adaptation
studies [6–8, 10, 11], it is composed of five digits recognition datasets, with
grayscale or color images of various sizes:

1. MNIST2, the widely known handwritten digit recognition dataset.
2. MNIST-M3, a more complex version of MNIST, created by combining

MNIST images with randomly extracted patches of photos of the BSDS500
dataset as their background.

3. Street View House Numbers (SVHN)4, a Real-World image dataset of house
numbers extracted from Google Street View images.

4. Synthetic Digits (SYN)5, synthetically generated images of digits with
random backgrounds.

5. USPS6, a handritten digit recognition dataset similar to MNIST.

The DomainNet dataset is a multi-domain dataset recently released with
paper [10], and accessible at the following webpage7. It aims to provide a
new difficult and more advanced benchmark dataset for domain adaptation
approaches. It is composed of six domains of color images of various sizes, with
a total of 345 common categories across all domains:

1. Clipart, a collection of clipart images.
2. Infograph, infographic images of specific objects.
3. Painting, artistic depictions of objects in the form of paintings.

2http://yann.lecun.com/exdb/mnist
3https://www.kaggle.com/datasets/aquibiqbal/mnistm
4http://ufldl.stanford.edu/housenumbers
5https://www.kaggle.com/datasets/prasunroy/synthetic-digits
6https://www.kaggle.com/datasets/bistaumanga/usps-dataset
7http://ai.bu.edu/M3SDA/#dataset

http://yann.lecun.com/exdb/mnist
https://www.kaggle.com/datasets/aquibiqbal/mnistm
http://ufldl.stanford.edu/housenumbers
https://www.kaggle.com/datasets/prasunroy/synthetic-digits
https://www.kaggle.com/datasets/bistaumanga/usps-dataset
http://ai.bu.edu/M3SDA/#dataset
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4. Quickdraw, drawings of the worldwide players of the game “Quick Draw!”.
5. Real, photos and real-world images.
6. Sketch, sketches of specific objects.

The 5-Digits and DomainNet datasets are domain adaptation benchmark
image datasets that are known for their covariate shift between domains. We
perform experiments on those two datasets to demonstrate the capacity of our
approach to perform well on known experimental domain adaptation datasets.
As we are interested in an experimental scenario with limited data in each
domain and class imbalance, we preprocessed the datasets to follow our setting
of interest. We randomly selected subsets of each dataset domain to create both
a limited amount of data and a class imbalance. After this selection step, the
class representation in the 5-Digits dataset spans from 4.22% (10 samples) for
the least represented class to 21.09% (500 samples) for the most represented
class in each domain. For the DomainNet dataset, the class representation
spans from 1.1% (10 samples) for the least represented class to 13.33% (120
samples) for the most represented class in each domain, out of 17 classes,
leading to a total of 900 instances in each domain.

The Covid dataset was provided by the Mexican government and is com-
posed of health data about patients that suffer from, or have symptoms that
could be related to, Covid19. It is downloadable from the following Kaggle
repository8, it originally contains 1, 048, 576 samples from patients suffering
from Covid19, with 20 tabular mixed-type (continuous and categorical) fea-
tures. The goal of this dataset is to predict the survival outcome of patients.
The dataset is naturally imbalanced, odds of survival to Covid19 being, fortu-
nately, higher than the odds of death. We used the categorical feature “Medical
Unit” to split the original data into 5 domains depending on the type of med-
ical institution that provided the care to the patient. We could not find more
information about those kinds of medical institutions, apart from their ID
in the dataset, we consider in the following that they correspond to differ-
ent hospitals as we observe a covariate shift between the institutions. During
our preprocessing, we selected 800 unique patients per domain to simulate a
limited amount of training data, and we dropped two features containing too
many missing values. With the subtraction of the feature used to split the data
into separate domains, there remain 17 features after preprocessing.

Figure 3 shows the univariate marginal distributions of four features of
the Covid dataset across the five domains. We observe different marginal dis-
tributions between all domains, with domain 4 the most different one, with
drastically different Sex and Obesity distributions. This simple visualization
of the distributions across the Covid dataset pairs of domains is enough to
conclude that there is indeed a covariate shift between the five domains.

Table 2 shows the class representation in each domain of the Covid dataset,
revealing a prior shift between the domains of the dataset. Indeed, we observe
that the label distribution is imbalanced in each domain and the representation

8https://www.kaggle.com/datasets/meirnizri/covid19-dataset

https://www.kaggle.com/datasets/meirnizri/covid19-dataset
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Fig. 3: We observe a covariate shift between the five domains, as univari-
ate marginal distributions are different across pairs of features, P (XD1

) ̸=
P (XD2

) ̸= . . . ̸= P (XD5
).

is different from one domain to the other, thus, P (YD1
) ̸= P (YD2

) ̸= . . . ̸=
P (YD5

).

Class Representation Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Overall

Negative
Percentage 7.37% 12.37% 13.75% 10.5% 4.87% 9.78%
Samples Count 59 99 110 84 39 391

Positive
Percentage 92.63% 87.63% 86.25% 89.5% 95.13% 90.22%
Samples Count 741 701 690 716 761 3, 609

Table 2: Covid label distribution per domain, showing that there is a prior
shift across domains, P (YD1

) ̸= P (YD2
) ̸= . . . ̸= P (YD5

).

With the preprocessing described above for each dataset, we observe both
covariate and prior shifts in all datasets, with limited and imbalanced data in
each domain. All datasets might suffer from concept shift, in precaution, the
β version of our approach is designed to better handle concept shift.

5.2 Compared Approaches

We compared our proposed WMSSDA to four single-source and four
multi-source domain adaptation state-of-the-art approaches. Most of those
approaches are initially unsupervised domain adaptation approaches, that is,
approaches that do not use labels from the target domain. We modified those
approaches to allow them to use target domain labels in their training phase
for a fair comparison. The modification for each method is usually as simple
as adding the supervised classification task on the target domain into the loss
term of each approach. This phase of adapting unsupervised domain adapta-
tion approaches for the supervised domain adaptation context is crucial as it
would not be fair to compare our approach, that is able to use target domain
labels in its supervised learning, with unsupervised domain adaptation meth-
ods that are able to use them. This would lead to far better inference results for
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our approach compared to unsupervised ones and would not be representative
of the real capacity of unsupervised approaches.

In our experiments, single-source approaches are evaluated using two set-
tings, such as in [10]. In the single best setting, we evaluate the approach on
all possible pairs of domains as source and target and select the best-obtained
results for each target domain. In the source combine setting, we combine
all source domains as one unique domain to obtain only one source domain.
We used the following single-source domain adaptation approaches from the
literature:

• DAN, Deep Adaptation Network [5] is among the first deep learning unsu-
pervised domain adaptation approaches to have been proposed. DAN uses
multi-kernel MMD to minimize the distribution divergence between features
extracted on the source and target data, fed through common layers fol-
lowed by domain specific classifiers. We based our implementation on the
following PyTorch implementation9.

• DANN, Domain-Adversarial Neural Network [6], a model that builds a
domain invariant latent space, using an adversarial domain classifier, on
which classification is performed. We based our implementation on this
PyTorch implementation10.

• MCD, Maximum Classifier Discrepancy [? ], an approach that trains a
generator and a pair of classifiers by alternating between training the
classifiers to maximize their discrepancy, and training the generator to min-
imize their discrepancy. We based our implementation on this PyTorch
implementation11.

• DSAN, Deep Subdomain Adaptation Network [7], a similar approach to
DAN that replaces the MK-MMD with a Local MMD that aligns the distri-
butions of the relevant subdomains. We based our implementation on this
PyTorch implementation12.

We used the following multi-source domain adaptation approaches from
the literature:

• MDAN, Multi-source Domain Adversarial Network [8], a similar approach to
DANN that uses as many adversarial domain classifiers as source domains.
We based our implementation on this PyTorch implementation13.

• MFSAN, Multiple Feature Spaces Adaptation Network [9], the architec-
ture of this model is composed of a common feature extractor followed by
source domain specific parallel layers blocks. Those layers are regularized
using MMD and domain specific classifier outputs are aligned with an L1
operation. Classifiers outputs are combined in an ensemble way to obtain

9https://github.com/CuthbertCai/pytorch DAN
10https://github.com/fungtion/DANN
11https://github.com/mil-tokyo/MCD DA
12https://github.com/easezyc/deep-transfer-learning/tree/master/UDA/pytorch1.0/DSAN
13https://github.com/hanzhaoml/MDAN

https://github.com/CuthbertCai/pytorch_DAN
https://github.com/fungtion/DANN
https://github.com/mil-tokyo/MCD_DA
https://github.com/easezyc/deep-transfer-learning/tree/master/UDA/pytorch1.0/DSAN
https://github.com/hanzhaoml/MDAN
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the final target prediction. We based our implementation on this PyTorch
implementation14.

• M3SDA, Moment Matching for multi-source domain adaptation [10], the
architecture is composed of a common feature extractor followed by source
domain specific parallel classifiers. The output of the common feature extrac-
tor is regularized using a moment-matching distribution distance between
source and target data. We based our implementation on this PyTorch
implementation15.

• ABMSDA, Attention-Based Multi-Source Domain Adaptation [11], the
architecture of the model is comparable to that of M3SDA, the main differ-
ence is that ABMSDA uses a common classifier instead of domain specific
ones. ABMSDA computes attention weights with a domain classifier that is
fed raw data, the domain classifier outputs are used to derive weights that
are applied to the moment matching regularization and to the training loss
in an attempt to weight each source domain and avoid negative transfer.

We also used two simple baseline approaches to get reference results:

• NN, a simple neural network, in the first evaluation setting, the model is
trained only on the target domain, in the second setting, the model is trained
on all combined domains, sources, and target domains alike.

• FT, a simple fine-tuning approach in which a neural network is pre-trained
on source data and is then fine-tuned on target data.

5.3 Experimental Protocol

We performed three main experiments, one to evaluate our approach compared
to other domain adaptation methods on popular benchmark datasets, a sec-
ond one to evaluate WMSSDA on a real-world medical multi-source domain
adaptation dataset, and finally, an ablation study to evaluate the impact and
usefulness of each component of our method. We evaluate all approaches on a
supervised domain adaptation classification task with limited data and class
imbalance, all unsupervised domain adaptation methods have been slightly
modified to handle a labeled target domain as described in the previous section.
All our experimental results are compared using the three following classifi-
cation metrics: the balanced Accuracy (bACC), the Area Under the Receiver
Operating Characteristic Curve (AUC), and the F1-score.

All datasets are split between a training set and a test set, all approaches
are trained on the same training data and evaluated on the same test data. To
obtain significant results we conduct each experiment 5 times and report the
mean and standard deviation of each evaluation metric. To be as fair as possible
in our comparisons, in each experiment, we define the model architecture for
each approach as similarly as possible across them, while taking account of
their architectural differences. For image datasets, our feature extractor is a
convolutional network, and all other modules are fully connected networks, for

14https://github.com/easezyc/deep-transfer-learning/blob/master/MUDA/MFSAN
15https://github.com/VisionLearningGroup/VisionLearningGroup.github.io

https://github.com/easezyc/deep-transfer-learning/blob/master/MUDA/MFSAN
https://github.com/VisionLearningGroup/VisionLearningGroup.github.io
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the Covid tabular dataset all modules are fully-connected. In the same line
of thought, identical hyper-parameters, tuned on the NN approach, are used
across all compared approaches for each experiment. All approaches are given
the same class weights, those are applied in a cost-sensitive learning manner
during loss computation to better handle class imbalance. Those class weights
are computed, for each domain, as the inverse of the class distribution observed
in the training data: WD = 1/P (YD).

To better asses the obtained experimental results, we statistically compare
WMSSDA results to each of the compared state-of-the-art approaches using t-
tests. The results of those statistical tests are used to determine if our approach
performs significantly better, even, or worse than each other, based on a p-
values set to 0.05. The results of the t-tests are symbolized in result tables as
either a bullet •, a circle ◦, or an equivalent symbol ≡. The bullet is used to
signify that our method is significantly better than the method we compared
it to, the circle signifies the opposite, and the equivalent means that there is
no significant difference between WMSSDA and the compared method. In the
following sections, we will refer as “significantly better” all results that have
been evaluated using a t-test and that were classified as significantly better in
regard to a p-value of 0.05, and “significantly worse” the opposite.

5.4 Comparative Study on Benchmark Datasets

This first experiment is a comparative study of several baseline and state-of-
the-art domain adaptation approaches to evaluate WMSSDA performance on
benchmark domain adaptation datasets. We aim to show that our approach is
able to compete against, and even outperform, other state-of-the-art domain
adaptation approaches on well-known image benchmark multi-domain datasets
in a context of limited data and class imbalance.

Table 3 reports our entire experimental results on the 5-Digits dataset,
with visual indications of the results of the t-tests between our best-performing
models and each compared approach in all settings. As can be seen in the
table, our two models, WMSSDA and WMSSDA-β, perform largely better
than other approaches in the vast majority of cases, obtaining the best or
second-best result for almost all metrics and target domains. We note that
apart from our approach, other state-of-the-art multi-source approaches do not
reach particularly better results than single-source approaches, we hypothesize
that this is a manifestation of negative transfer that multi-source approaches
are not yet able to fully avoid. The statistical comparison of the results on
5-Digits shows that our best-performing approach, WMSSDA-β, obtains sig-
nificantly better results in the vast majority of cases, with only a few settings
in which our approach leads to equivalent results to those of other methods.
If we consider average performance across all target domains, we can conclude
that WMSSDA-β obtains the best prediction results overall, with significantly
better results than any other compared approach.

Table 4 reports our entire experimental results on the DomainNet dataset.
Prediction results are overall quite low, as this dataset is notoriously hard.
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Setting Method Metric MNIST MNIST-M SVHN SYN USPS Avg

Single
Best

NN
bACC 84.74± 0.29 • 63.08± 1.07 • 46.36± 1.07 • 61.72± 0.70 • 89.49± 0.53 • 69.08 •
AUC .9915± .0004 • .9353± .0046 • .8578± .0081 • .9333± .0028 • .9934± .0007 • .9423 •
F1 83.85± 0.35 • 58.98± 1.25 • 31.47± 0.81 • 56.77± 1.36 • 88.91± 0.40 • 64.00 •

DAN
bACC 77.56± 1.54 • 53.95± 2.10 • 41.12± 0.14 • 56.46± 2.01 • 78.70± 1.13 • 61.56 •
AUC .9832± .0005 • .8963± .0077 • .8196± .0036 • .9073± .0082 • .9900± .0010 • .9193 •
F1 75.10± 2.15 • 48.61± 2.61 • 24.88± 0.39 • 49.47± 2.79 • 76.74± 1.58 • 54.96 •

DANN
bACC 90.12± 0.51 • 69.62± 0.85 • 69.37± 0.53 • 78.40± 0.52 • 96.02± 0.24 • 80.71 •
AUC .9967± .0002 • .9622± .0030 • .9479± .0013 • .9734± .0008 • .9989± .0002 • .9758 •
F1 89.43± 0.71 • 68.38± 1.14 • 68.26± 0.63 ≡ 78.06± 0.53 • 96.21± 0.28 • 80.07 •

DSAN
bACC 91.00± 0.25 • 70.42± 1.78 • 67.57± 1.03 • 77.30± 0.79 • 96.30± 0.31 • 80.52 •
AUC .9971± .0001 • .9549± .0052 • .9394± .0022 • .9669± .0022 • .9988± .0002 • .9714 •
F1 90.73± 0.29 • 69.44± 2.05 • 67.52± 1.04 ≡ 77.27± 0.80 • 96.35± 0.39 • 80.26 •

FT
bACC 88.95± 0.56 • 68.11± 0.98 • 59.32± 1.97 • 67.50± 1.13 • 93.91± 0.34 • 75.56 •
AUC .9958± .0002 • .9568± .0029 • .9274± .0049 • .9562± .0029 • .9980± .0002 • .9669 •
F1 88.54± 0.67 • 65.58± 0.97 • 51.94± 2.35 • 65.03± 1.57 • 94.10± 0.26 • 73.04 •

MCD
bACC 92.47± 1.00 • 74.09± 2.43 • 59.94± 4.38 • 76.84± 3.16 • 94.95± 0.28 • 79.66 •
AUC .9968± .0005 • .9666± .0084 • .8972± .0178 • .9665± .0081 • .9982± .0005 • .9651 •
F1 92.25± 1.10 • 73.32± 2.27 ≡ 58.00± 4.22 • 76.38± 3.41 • 94.81± 0.29 • 78.95 •

Source
Combine

NN
bACC 91.92± 1.00 • 68.66± 1.78 • 62.21± 1.05 • 78.36± 0.76 • 95.77± 0.29 • 79.39 •
AUC .9971± .0005 • .9572± .0029 • .9354± .0030 • .9737± .0013 • .9983± .0002 • .9724 •
F1 91.57± 1.19 • 67.77± 1.52 • 61.04± 1.99 • 78.23± 0.74 • 95.93± 0.34 • 78.91 •

DANN
bACC 90.12± 1.62 • 66.76± 1.68 • 54.77± 8.47 • 73.98± 3.86 • 93.65± 1.38 • 75.86 •
AUC .9945± .0008 • .9471± .0038 • .9078± .0291 • .9617± .0090 • .9971± .0009 • .9616 •
F1 89.94± 1.62 • 66.22± 1.39 • 54.63± 7.70 • 73.97± 3.77 • 94.06± 1.13 • 75.76 •

DAN
bACC 75.91± 1.34 • 53.67± 1.02 • 42.48± 1.48 • 56.00± 0.69 • 81.27± 1.65 • 61.87 •
AUC .9847± .0017 • .9018± .0056 • .8449± .0100 • .9138± .0059 • .9910± .0013 • .9272 •
F1 72.56± 1.96 • 47.78± 1.02 • 24.84± 1.13 • 48.14± 0.98 • 79.88± 2.36 • 54.64 •

DSAN
bACC 94.11± 0.54 • 72.40± 0.48 • 65.76± 1.01 • 80.41± 0.29 • 96.35± 0.16 • 81.80 •
AUC .9978± .0003 • .9608± .0017 • .9348± .0018 • .9730± .0005 • .9986± .0004 • .9730 •
F1 94.02± 0.57 • 71.88± 0.24 • 63.40± 1.08 • 80.39± 0.31 • 96.38± 0.25 • 81.21 •

FT
bACC 92.76± 0.47 • 70.71± 0.55 • 59.97± 1.08 • 73.49± 0.22 • 95.85± 0.26 • 78.56 •
AUC .9977± .0001 • .9627± .0013 • .9296± .0032 • .9671± .0009 • .9985± .0002 • .9711 •
F1 92.62± 0.50 • 69.38± 0.70 • 52.48± 1.26 • 72.69± 0.30 • 95.93± 0.24 • 76.62 •

MCD
bACC 93.33± 0.91 • 64.97± 3.06 • 51.95± 3.47 • 70.68± 0.99 • 93.71± 0.91 • 74.93 •
AUC .9950± .0016 • .9067± .0193 • .8475± .0236 • .9315± .0040 • .9880± .0035 • .9337 •
F1 93.33± 0.91 • 66.18± 2.56 • 50.63± 4.02 • 70.52± 0.99 • 94.22± 0.78 • 74.98 •

Multi
Source

MDAN
bACC 87.63± 0.98 • 53.44± 1.66 • 43.47± 2.08 • 60.64± 1.27 • 87.58± 2.12 • 66.55 •
AUC .9946± .0005 • .9194± .0036 • .8925± .0113 • .9469± .0042 • .9946± .0016 • .9496 •
F1 87.29± 1.11 • 49.77± 1.59 • 26.62± 1.26 • 57.22± 1.39 • 87.85± 2.02 • 61.75 •

MFSAN
bACC 90.97± 0.46 • 70.75± 1.19 • 62.76± 2.64 • 75.06± 0.97 • 95.87± 0.34 • 79.08 •
AUC .9970± .0003 • .9607± .0055 • .9378± .0050 • .9734± .0011 • .9986± .0002 • .9735 •
F1 90.67± 0.55 • 69.45± 1.30 • 57.28± 3.75 • 74.07± 1.14 • 96.10± 0.30 • 77.51 •

M3SDA
bACC 92.38± 1.41 • 65.45± 1.19 • 57.56± 2.61 • 75.85± 0.43 • 94.69± 0.46 • 77.19 •
AUC .9963± .0009 • .9421± .0039 • .9178± .0078 • .9660± .0012 • .9976± .0004 • .9639 •
F1 92.20± 1.57 • 64.67± 1.46 • 56.41± 2.87 • 75.56± 0.39 • 94.84± 0.52 • 76.74 •

ABMSDA
bACC 93.53± 0.50 • 67.01± 1.84 • 53.47± 4.63 • 77.45± 0.56 • 95.23± 0.77 • 77.34 •
AUC .9977± .0003 • .9471± .0041 • .9079± .0112 • .9677± .0014 • .9983± .0004 • .9637 •
F1 93.37± 0.58 • 66.78± 2.09 • 52.12± 5.24 • 77.22± 0.62 • 95.57± 0.75 • 77.01 •

WMSSDA
bACC 95.30± 0.21 75.05± 1.06 70.50± 1.21 82.85± 0.49 96.77± 0.30 84.10
AUC .9988± .0001 .9737± .0017 .9519± .0014 .9838± .0005 .9992± .0001 .9815
F1 95.25± 0.21 74.62± 1.17 68.17± 2.01 82.70± 0.49 96.90± 0.29 83.53

WMSSDA-β
bACC 95.21± 0.53 77.58± 1.75 71.83± 1.57 84.74± 0.59 96.91± 0.24 85.26
AUC .9989± .0001 .9790± .0025 .9596± .0027 .9876± .0006 .9993± .0002 .9849
F1 95.14± 0.56 76.68± 2.05 67.80± 1.95 84.60± 0.62 97.00± 0.22 84.24

WMSSDA is: • significantly better, ≡ equivalent, ◦ significantly worse, p-value: 0.05

Table 3: Comparative Study on the 5-Digits domain adaptation Benchmark
Dataset, with Limited and Imbalanced Data. The best and second-best results
for each metric and each target domain appear in bold and underlined respec-
tively. Results are evaluated on a multi-class classification task using metrics:
balanced Accuracy, AUC, and the F1-Score.

The fact that we drastically reduced the amount of available training data
worsens classification results, but this does not affect the comparison poten-
tial of the results. We can see that our proposed WMSSDA-β obtains the best
or second-best results in the majority of cases, while WMSSDA obtains over-
all good results but not better than other approaches. It is important to note
that the overall best prediction results for the Quickdraw domain are reached
by a simple neural network trained on the target domain only. This means
that no domain adaptation method is currently able to avoid negative trans-
fer enough to match those results, nor are they able to surpass them. This
shows that negative transfer in domain adaptation is still an open-problem,
and that it is crucial to find better ways of solving this issue. The second best
results on the Quickdraw domain are reached by the Fine-Tuning approach,



Springer Nature 2021 LATEX template

Deep Multi-Source Supervised Domain Adaptation with Class Imbalance 23

Setting Method Metric CLIP INFO PAINT REAL SKETCH QUICK Avg

Single
Best

NN
bACC 27.43± 0.90 ≡ 16.16± 0.81 ≡ 23.14± 0.19 • 35.51± 1.36 • 17.04± 1.75 • 44.76± 0.77 ◦ 27.34 •
AUC .7466± .0044 • .6283± .0043 • .7171± .0062 • .8372± .0063 • .6489± .0086 • .8707± .0052 ◦ .7415 •
F1 22.85± 0.94 • 13.21± 0.82 • 21.22± 0.48 • 32.26± 1.47 • 14.76± 1.60 • 39.89± 0.97 ◦ 24.03 •

DAN
bACC 23.08± 1.90 • 13.78± 1.02 • 17.78± 2.99 • 28.84± 1.42 • 15.29± 0.63 • 36.08± 1.23 • 22.48 •
AUC .7072± .0101 • .6070± .0152 • .6504± .0100 • .7722± .0163 • .6367± .0060 • .8129± .0029 • .6977 •
F1 19.22± 2.11 • 11.20± 1.25 • 14.01± 4.13 • 24.50± 0.91 • 13.30± 0.84 • 29.57± 1.20 • 18.63 •

DANN
bACC 28.37± 0.33 ≡ 17.24± 0.77 ≡ 23.75± 1.17 ≡ 37.22± 1.09 • 19.02± 1.42 • 34.12± 1.65 • 26.62 •
AUC .7593± .0040 • .6514± .0058 • .7354± .0068 • .8499± .0054 • .6849± .0082 • .8188± .0077 • .7499 •
F1 25.85± 0.70 • 16.39± 0.64 ≡ 22.42± 0.97 • 36.51± 1.07 • 17.41± 1.26 • 29.53± 1.67 • 24.69 •

DSAN
bACC 5.90± 0.40 • 5.88± 0.00 • 14.82± 1.65 • 25.51± 5.35 • 5.88± 0.00 • 18.57± 2.51 • 12.76 •
AUC .5741± .0105 • .5465± .0061 • .6466± .0113 • .7632± .0443 • .5444± .0027 • .7574± .0109 • .6387 •
F1 0.95± 0.53 • 0.65± 0.00 • 11.14± 2.14 • 21.23± 7.06 • 0.65± 0.00 • 13.32± 2.35 • 7.99 •

FT
bACC 29.41± 1.16 ≡ 16.29± 1.16 ≡ 23.51± 1.07 • 37.37± 0.92 • 19.61± 0.74 ≡ 44.51± 1.10 ◦ 28.45 ◦
AUC .7664± .0077 • .6446± .0038 • .7386± .0069 • .8513± .0027 • .6858± .0055 • .8663± .0023 ≡ .7588 •
F1 25.61± 1.21 • 13.97± 1.20 ≡ 21.95± 0.83 • 34.63± 1.21 • 17.87± 0.44 • 39.81± 1.18 ◦ 25.64 •

MCD
bACC 26.47± 1.43 ≡ 16.90± 0.74 ≡ 21.90± 0.66 • 34.94± 0.83 • 19.96± 1.03 ≡ 37.98± 0.86 • 26.36 •
AUC .7328± .0142 • .6389± .0056 • .6952± .0055 • .8216± .0039 • .6667± .0046 • .8253± .0055 • .7301 •
F1 25.48± 1.07 • 15.86± 0.20 ≡ 20.85± 0.67 • 34.27± 0.57 • 18.84± 1.15 ≡ 33.68± 1.00 ≡ 24.83 •

Source
Combine

NN
bACC 26.51± 1.60 ≡ 14.65± 1.22 ≡ 22.88± 1.48 • 34.67± 1.45 • 19.73± 1.25 ≡ 26.92± 0.98 • 24.23 •
AUC .7451± .0122 • .6357± .0075 • .7103± .0072 • .8223± .0098 • .6903± .0085 • .7518± .0083 • .7259 •
F1 25.78± 1.35 ≡ 14.52± 1.09 ≡ 22.08± 1.32 • 34.78± 1.74 • 18.25± 0.72 • 21.65± 1.54 • 22.84 •

DANN
bACC 25.41± 0.99 • 14.82± 1.18 ≡ 22.10± 1.44 • 32.53± 2.46 • 20.51± 1.63 ≡ 27.98± 1.07 • 23.89 •
AUC .7344± .0031 • .6324± .0069 • .7104± .0126 • .8073± .0179 • .6920± .0061 • .7465± .0161 • .7205 •
F1 24.79± 1.16 • 14.85± 1.06 ≡ 21.15± 1.35 • 32.86± 2.76 • 19.42± 1.77 ≡ 22.21± 1.84 • 22.55 •

DAN
bACC 21.67± 1.02 • 11.41± 1.41 • 16.78± 1.20 • 28.75± 0.77 • 15.71± 0.75 • 33.31± 0.94 • 21.27 •
AUC .6988± .0065 • .5923± .0160 • .6602± .0167 • .7782± .0103 • .6264± .0049 • .7946± .0079 • .6918 •
F1 17.33± 1.23 • 7.76± 2.36 • 14.49± 0.79 • 25.02± 1.06 • 12.56± 0.97 • 26.22± 0.65 • 17.23 •

DSAN
bACC 5.88± 0.06 • 5.76± 0.11 • 5.84± 0.05 • 5.92± 0.08 • 5.84± 0.08 • 5.88± 0.00 • 5.86 •
AUC .5056± .0137 • .5107± .0115 • .5153± .0232 • .4794± .0377 • .5054± .0096 • .5037± .0234 • .5034 •
F1 0.82± 0.11 • 0.68± 0.06 • 0.85± 0.31 • 0.73± 0.15 • 0.68± 0.06 • 0.65± 0.00 • 0.74 •

FT
bACC 29.76± 1.00 ◦ 17.00± 0.58 ≡ 24.22± 0.55 • 38.69± 1.04 ≡ 20.71± 0.72 ≡ 41.37± 0.67 ≡ 28.62 ◦
AUC .7762± .0061 • .6463± .0050 • .7362± .0053 • .8567± .0044 • .6978± .0092 • .8431± .0028 • .7594 •
F1 26.83± 0.68 ≡ 15.49± 0.28 ≡ 22.80± 0.31 • 36.67± 0.93 • 19.08± 0.72 ≡ 36.52± 0.75 ≡ 26.23 •

MCD
bACC 25.63± 0.64 • 13.04± 0.78 • 21.88± 1.36 • 33.47± 1.74 • 18.18± 1.50 • 27.80± 2.22 • 23.33 •
AUC .7315± .0076 • .6166± .0066 • .6899± .0116 • .8050± .0161 • .6542± .0111 • .7579± .0111 • .7092 •
F1 25.14± 0.77 • 12.52± 0.67 • 20.32± 1.24 • 32.12± 2.07 • 16.82± 1.18 • 23.50± 2.48 • 21.74 •

Multi
Source

MDAN
bACC 27.88± 0.89 ≡ 15.82± 0.90 ≡ 22.43± 0.32 • 35.69± 1.41 • 18.73± 0.85 • 30.00± 2.42 • 25.09 •
AUC .7789± .0074 • .6515± .0035 • .7310± .0111 • .8560± .0018 • .6887± .0083 • .8269± .0094 • .7555 •
F1 24.60± 1.31 • 13.45± 1.06 • 20.40± 0.72 • 32.99± 1.46 • 16.36± 1.08 • 23.14± 2.85 • 21.82 •

MFSAN
bACC 30.29± 0.72 ◦ 17.39± 0.50 ◦ 26.16± 0.41 ≡ 38.51± 0.83 ≡ 21.96± 0.75 ≡ 36.41± 1.01 • 28.45 ◦
AUC .7708± .0035 • .6548± .0058 • .7437± .0057 • .8379± .0042 • .7066± .0072 ≡ .8104± .0125 • .7540 •
F1 26.43± 0.45 ≡ 15.69± 0.78 ≡ 24.23± 0.51 ≡ 35.77± 1.15 • 19.98± 0.93 ≡ 29.52± 1.13 • 25.27 •

M3SDA
bACC 26.14± 1.19 • 15.55± 0.90 ≡ 22.12± 0.42 • 34.24± 1.82 • 19.88± 0.89 ≡ 23.10± 1.70 • 23.50 •
AUC .7386± .0070 • .6342± .0056 • .7102± .0048 • .8120± .0057 • .6804± .0087 • .7107± .0058 • .7143 •
F1 25.47± 1.49 ≡ 15.42± 1.20 ≡ 21.22± 0.45 • 34.11± 1.63 • 18.84± 1.08 ≡ 16.84± 2.03 • 21.98 •

ABMSDA
bACC 25.43± 1.50 • 14.84± 0.82 ≡ 21.73± 0.71 • 32.20± 1.32 • 19.80± 0.67 ≡ 24.94± 2.02 • 23.16 •
AUC .7269± .0063 • .6201± .0024 • .6991± .0046 • .7966± .0122 • .6755± .0065 • .7245± .0129 • .7071 •
F1 24.75± 1.55 • 14.87± 1.11 ≡ 20.80± 0.48 • 32.03± 1.34 • 18.59± 0.76 ≡ 19.24± 2.14 • 21.71 •

WMSSDA
bACC 29.84± 1.38 16.25± 1.19 24.96± 0.89 39.04± 0.70 22.02± 0.69 32.88± 2.08 27.50
AUC .7737± .0103 .6504± .0078 .7447± .0048 .8500± .0059 .7044± .0094 .8007± .0088 .7540
F1 28.31± 1.28 16.06± 1.09 24.08± 0.87 38.87± 0.64 20.74± 0.74 28.08± 3.06 26.02

WMSSDA-β
bACC 28.18± 0.58 15.96± 1.04 25.27± 0.70 39.29± 1.26 21.14± 1.15 40.04± 0.99 28.31
AUC .7971± .0033 .6791± .0055 .7663± .0059 .8821± .0036 .7162± .0063 .8620± .0045 .7838
F1 27.28± 0.64 15.50± 1.11 24.45± 0.83 38.72± 1.45 20.17± 1.25 34.85± 1.48 26.83

WMSSDA is: • significantly better, ≡ equivalent, ◦ significantly worse, p-value: 0.05

Table 4: Comparative Study on the DomainNet domain adaptation Bench-
mark Dataset, with Limited and Imbalanced Data. The best and second-best
results for each metric and each target domain appear in bold and underlined
respectively. Results are evaluated on a multi-class classification task using
metrics: balanced Accuracy, AUC, and the F1-Score.

followed by our WMSSDA-β approach, showing that our method is currently
the best-performing multi-source domain adaptation approach to avoid neg-
ative transfer. The simple Fine-Tuning approach leads to significantly better
average balanced Accuracy results than ours and almost all other methods
on both single best and source combine settings. This probably shows that
adding a short phase of pre-training to other state-of-the-art approaches would
drastically improve the overall results of all methods. Another well-performing
approach in this setting is MFSAN, which leads to significantly better bal-
anced Accuracy than ours on average. Overall, our two versions of WMSSDA
lead to competitive experimental results on this dataset, with WMSSDA-β
leading to significantly better results than other approaches in the vast major-
ity of cases. When considering the average over all target domains, WMSSDA
obtains significantly better results than all other approaches on the three eval-
uation metrics except for Fine-Tuning and MFSAN on the balanced accuracy
metric.
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We can conclude from this experiment on benchmark datasets that our
proposed approach is able to compete, and even surpass, other baseline and
state-of-the-art domain adaptation approaches in our supervised multi-domain
with limited and imbalanced data context.

5.5 Comparative Study on Real-World Tabular Medical
Dataset

The second experiment is a comparative study between all tested domain adap-
tation approaches and our proposed WMSSDA, on the real-world mixed-type
tabular medical Covid dataset. We aim to show that our approach can reach
good results on mixed-type tabular data in addition to image data. We also
aim to show that WMSSDA competes and outperforms other domain adap-
tation approaches in a real-world medical context with limited data and class
imbalance.

Table 5 reports our entire experimental results on the Covid dataset.
Results show that both WMSSDA variations lead to the best or second-best
results in most cases, and in all cases on average. Those experimental results
show that our approach can perform very well on tabular data. In this particu-
lar setting, we note that it is our standard version of WMSSDA that performs
the best, which is probably an indication that there is almost no concept shift
in this dataset, unlike with the two benchmark image datasets, rendering the β
version of the approach no better than the standard one. The results between
the two versions of WMSSDA are close, with slightly better results for our
standard version, thus, we performed the statistical tests evaluation based on
the standard version of WMSSDA. The statistical comparison of the results
shows that our approach WMSSDA leads to significantly better results than
most other approaches, in the majority of cases. Our approach leads to signifi-
cantly better results than any other state-of-the-art approach when considering
the average performance over all target domains.

5.6 Ablation Study

Our method WMSSDA is composed of several important elements, in this
section we perform an ablation study in order to evaluate the pertinence and
usefulness of each component of WMSSDA. An ablation study is a type of
experiment that is conducted to investigate the impact of removing, or dis-
abling, specific components or features of an approach. To do so, we eliminate
parts of our model and evaluate the results to understand their individual
contributions to the overall performance and validate the pertinence of each
component.

In this ablation study we compare five ablated versions of our WMSSDA
approach with our complete method. Table 6 shows all WMSSDA versions
compared in this study. In the column “Branches” it is indicated if the method
contains both the common modules branch and the source domain specific
modules branch, or only one of the two. Column “Regus” indicates if both
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Setting Method Metric 1 2 3 4 5 Avg

Single
Best

NN
bACC 86.15± 1.15 • 85.57± 0.46 • 85.41± 0.37 • 83.47± 0.30 • 85.91± 2.92 • 85.30 •
AUC .9257± .0083 • .9145± .0042 • .8983± .0042 • .8878± .0066 • .9621± .0048 • .9177 •
F1 81.52± 1.14 • 82.06± 0.83 • 80.79± 1.00 • 78.80± 0.68 • 81.79± 3.55 • 80.99 •

DAN
bACC 87.09± 1.01 • 80.96± 7.17 ≡ 79.50± 4.82 • 82.36± 1.14 • 92.90± 1.20 • 84.56 •
AUC .9261± .0074 • .9052± .0079 • .8910± .0069 • .8928± .0055 • .9646± .0090 • .9159 •
F1 85.64± 2.25 ≡ 75.02± 13.25 ≡ 71.73± 9.18 • 78.83± 2.88 ≡ 92.00± 1.36 • 80.64 •

DANN
bACC 85.10± 0.82 • 85.82± 0.58 • 84.44± 0.97 • 83.31± 1.54 • 92.63± 1.05 • 86.26 •
AUC .9331± .0021 • .9210± .0011 • .9047± .0043 • .9071± .0043 ≡ .9701± .0025 • .9272 •
F1 80.01± 1.14 • 81.68± 1.31 • 78.74± 2.01 • 77.18± 2.39 • 90.60± 1.35 • 81.64 •

DSAN
bACC 84.62± 3.17 • 84.82± 1.52 • 82.99± 1.32 • 83.30± 0.62 • 91.20± 2.03 • 85.39 •
AUC .9146± .0089 • .9112± .0088 • .8941± .0073 • .8944± .0067 • .9575± .0088 • .9143 •
F1 81.45± 4.51 • 84.56± 1.14 ≡ 77.88± 2.07 • 79.67± 1.03 • 90.94± 2.63 • 82.90 •

FT
bACC 84.47± 0.97 • 85.12± 0.63 • 84.43± 0.61 • 83.31± 1.42 • 90.17± 2.39 • 85.50 •
AUC .9311± .0040 • .9179± .0022 • .9061± .0018 • .9049± .0018 ≡ .9689± .0014 • .9258 •
F1 79.23± 1.03 • 81.33± 1.98 • 78.70± 1.02 • 77.48± 2.00 • 86.71± 3.09 • 80.69 •

MCD
bACC 86.67± 1.35 • 85.49± 0.34 • 85.23± 0.40 • 84.35± 0.85 ≡ 91.82± 2.42 • 86.71 •
AUC .9350± .0016 • .9207± .0029 ≡ .9089± .0014 • .9114± .0026 ◦ .9718± .0010 • .9296 •
F1 82.38± 1.70 • 82.51± 1.18 • 79.79± 0.64 • 78.94± 1.69 • 89.26± 2.97 • 82.58 •

Source
Combine

NN
bACC 87.93± 0.44 • 86.53± 0.22 • 85.26± 0.18 • 83.90± 0.34 • 94.45± 0.23 • 87.61 •
AUC .9389± .0019 • .9168± .0033 • .9111± .0037 ≡ .9036± .0031 ≡ .9751± .0009 • .9291 •
F1 83.86± 0.77 • 83.95± 0.52 • 79.07± 0.48 • 78.66± 0.44 • 93.94± 0.28 • 83.90 •

DANN
bACC 88.12± 0.27 • 86.79± 0.40 ≡ 85.41± 0.15 • 83.98± 0.32 • 94.78± 0.13 ≡ 87.82 •
AUC .9391± .0023 ≡ .9188± .0038 • .9118± .0007 • .9074± .0016 ≡ .9747± .0002 • .9304 •
F1 84.34± 0.42 • 84.27± 0.51 • 79.15± 0.28 • 78.66± 0.28 • 94.05± 0.16 • 84.09 •

DAN
bACC 87.40± 1.23 • 86.22± 0.22 • 84.78± 0.75 • 83.99± 0.38 • 94.25± 0.24 • 87.33 •
AUC .9306± .0077 • .9238± .0023 ≡ .9078± .0034 • .9026± .0029 • .9726± .0012 • .9275 •
F1 84.57± 1.18 • 83.13± 1.24 • 80.11± 1.31 • 79.18± 0.73 • 93.38± 0.83 ≡ 84.07 •

DSAN
bACC 87.53± 1.02 • 85.85± 0.23 • 85.67± 1.02 • 84.21± 0.77 • 92.27± 1.70 • 87.11 •
AUC .9307± .0027 • .9197± .0052 ≡ .9069± .0046 • .9053± .0051 ≡ .9585± .0082 • .9242 •
F1 84.15± 1.52 • 84.15± 0.89 • 80.44± 1.71 • 78.76± 0.83 • 92.11± 1.57 • 83.92 •

FT
bACC 85.88± 0.52 • 86.08± 0.50 • 85.39± 0.42 • 84.43± 1.12 ≡ 92.43± 1.53 • 86.84 •
AUC .9358± .0031 • .9210± .0022 • .9083± .0030 • .9055± .0039 ≡ .9706± .0019 • .9282 •
F1 81.00± 0.68 • 82.40± 0.72 • 79.76± 0.78 • 79.51± 1.02 • 89.73± 2.06 • 82.48 •

MCD
bACC 84.74± 1.75 • 84.25± 1.73 • 83.81± 0.87 • 83.59± 0.60 • 90.98± 1.33 • 85.47 •
AUC .9288± .0028 • .9103± .0094 • .9060± .0028 • .9091± .0027 ≡ .9674± .0033 • .9243 •
F1 79.64± 2.83 • 80.80± 1.98 • 77.31± 1.40 • 77.65± 1.33 • 88.38± 1.78 • 80.76 •

Multi
Source

MDAN
bACC 66.96± 7.40 • 73.42± 8.83 • 77.47± 2.40 • 72.11± 4.53 • 71.34± 8.91 • 72.26 •
AUC .8415± .0451 • .8474± .0244 • .8460± .0285 • .8215± .0259 • .8669± .0363 • .8447 •
F1 52.83± 17.89 • 65.41± 19.93 ≡ 72.76± 3.70 • 63.68± 11.61 • 63.02± 20.23 • 63.54 •

MFSAN
bACC 86.42± 0.35 • 85.22± 0.39 • 83.07± 0.43 • 83.75± 0.77 • 92.20± 0.85 • 86.13 •
AUC .9300± .0035 • .9196± .0018 • .9059± .0027 • .9108± .0024 ≡ .9643± .0050 • .9261 •
F1 82.82± 0.40 • 81.87± 1.11 • 76.25± 0.84 • 77.36± 1.10 • 90.07± 1.06 • 81.67 •

M3SDA
bACC 86.45± 0.73 • 85.00± 0.47 • 84.51± 0.27 • 82.92± 0.77 • 93.70± 0.86 • 86.52 •
AUC .9351± .0022 • .9174± .0057 ≡ .9067± .0015 • .9010± .0024 • .9695± .0022 • .9259 •
F1 82.24± 1.04 • 81.22± 0.76 • 78.10± 0.57 • 76.76± 1.20 • 92.85± 1.60 ≡ 82.23 •

ABMSDA
bACC 86.78± 1.09 • 85.88± 0.97 ≡ 83.66± 1.16 • 81.00± 0.93 • 93.45± 1.91 ≡ 86.15 •
AUC .9281± .0043 • .9190± .0033 • .9068± .0034 • .9049± .0021 ≡ .9695± .0022 • .9256 •
F1 83.52± 1.48 • 82.60± 2.07 • 77.00± 2.01 • 73.44± 1.48 • 92.08± 2.63 ≡ 81.73 •

WMSSDA
bACC 89.24± 0.30 86.97± 0.28 87.03± 0.14 85.33± 0.24 94.88± 0.20 88.69
AUC .9413± .0006 .9240± .0014 .9147± .0003 .9074± .0016 .9764± .0006 .9328
F1 86.87± 0.37 85.65± 0.21 83.05± 0.33 81.32± 0.26 94.34± 0.13 86.25

WMSSDA-β
bACC 88.85± 0.61 86.61± 0.17 86.29± 0.24 84.60± 0.62 94.21± 0.27 88.11
AUC .9378± .0027 .9242± .0017 .9112± .0017 .9065± .0064 .9735± .0010 .9306
F1 85.31± 1.39 84.50± 0.74 82.05± 0.89 80.36± 0.53 92.86± 0.50 85.02

WMSSDA is: • significantly better, ≡ equivalent, ◦ significantly worse, p-value: 0.05

Table 5: Comparative Study on the Real-World Medical Covid Dataset
Dataset, with Limited and Imbalanced Data. The best and second-best results
for each metric and each target domain appear in bold and underlined respec-
tively. Results are evaluated on a binary classification task using metrics:
balanced Accuracy, AUC, and the F1-Score.

Approach Branches Regus Weights
WMSSDA-A Common MD+ADV No
WMSSDA-B Specific - No
WMSSDA-C Common+Specific ADV No
WMSSDA-D Common+Specific MD No
WMSSDA-E Common+Specific MD+ADV No
WMSSDA Common+Specific MD+ADV Yes

Table 6: Ablation study compared approaches.

the statistical and adversarial regularizations of the common branch are used,
or only one of the two, or none in the case where only the specific branch is
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used. Finally, column “Weights” indicates if transfer contribution weights are
computed and used during training to minimize negative transfer or not.

Method Metric MNIST MNIST-M SVHN SYN USPS Avg

WMSSDA-A
bACC 94.95± 0.58 72.02± 1.24 67.69± 2.28 80.94± 0.49 96.57± 0.22 82.43
AUC .9985± .0001 .9620± .0024 .9429± .0054 .9783± .0012 .9989± .0002 .9761
F1 94.89± 0.61 71.20± 1.35 65.64± 2.70 80.63± 0.53 96.83± 0.19 81.84

WMSSDA-B
bACC 93.77± 0.90 74.62± 1.50 66.34± 2.24 79.72± 1.20 95.89± 0.35 82.07
AUC .9980± .0003 .9721± .0021 .9414± .0048 .9805± .0013 .9982± .0005 .9781
F1 93.71± 0.92 73.79± 1.72 62.83± 2.40 79.48± 1.18 96.06± 0.47 81.17

WMSSDA-C
bACC 93.95± 0.61 73.52± 1.32 69.61± 1.60 81.58± 0.95 96.60± 0.16 83.05
AUC .9982± .0002 .9709± .0017 .9482± .0049 .9813± .0014 .9984± .0004 .9794
F1 93.79± 0.71 72.98± 1.58 67.29± 2.87 81.41± 0.99 96.73± 0.11 82.44

WMSSDA-D
bACC 95.01± 0.46 74.60± 1.33 69.27± 2.05 81.87± 1.42 96.28± 0.21 83.41
AUC .9988± .0002 .9736± .0025 .9505± .0035 .9828± .0019 .9987± .0003 .9809
F1 94.93± 0.50 74.19± 1.40 67.16± 2.34 81.70± 1.43 96.38± 0.14 82.87

WMSSDA-E
bACC 95.16± 0.25 74.94± 0.76 69.20± 1.17 82.60± 0.46 96.60± 0.28 83.70
AUC .9989± .0002 .9737± .0024 .9501± .0016 .9833± .0008 .9987± .0003 .9809
F1 95.11± 0.26 74.50± 0.88 67.11± 1.56 82.45± 0.43 96.65± 0.30 83.17

WMSSDA
bACC 95.30± 0.21 75.05± 1.06 70.50± 1.21 82.85± 0.49 96.77± 0.30 84.10
AUC .9988± .0001 .9737± .0017 .9519± .0014 .9838± .0005 .9992± .0001 .9815
F1 95.25± 0.21 74.62± 1.17 68.17± 2.01 82.70± 0.49 96.90± 0.29 83.53

Table 7: Ablation study results.

Table 7 shows our experimental results on the Covid dataset for this abla-
tion study. We compare our method with only the common modules branch
with method WMSSDA-A and only the source domain specific modules branch
with method WMSSDA-B. In both cases, average results are similar, with
slightly better results for WMSSDA-A, showing the importance of a shared
latent space. Method WMSSDA-E contains both branches and obtains largely
better results than WMSSDA-A and WMSSDA-B, showing the pertinence of
an architecture combining both the common and specific branches to obtain
the best possible results. We believe that the two branches architecture natu-
rally decreases negative transfer as classifiers with higher confidence are given
more importance in the ensemble pooling of results, which highly contributes
to improving prediction quality. We also evaluate the pertinence of using both
statistical and adversarial regularizations to learn a shared domain invariant
latent space, with method WMSSDA-C using only the adversarial regulariza-
tion, and method WMSSDA-D using only the statistical MD regularization.
The results of WMSSDA-C and WMSSDA-D show that using a statistical
only regularization leads to slightly better results than the adversarial one
alone. This is contradictory with the actual consensus in the literature, that
states that adversarial regularization is superior to statistical regularization
for learning a common domain-invariant latent space. This can probably be
explained by the fact that MD has been shown to be more pertinent and lead
to better learning performance than MMD in a multi-source domain adapta-
tion context in [10], making it slightly superior to adversarial alignment in this
case. Method WMSSDA-E, which uses both MD and adversarial regularization
for its shared latent space obtains better results than both WMSSDA-C and
WMSSDA-D, showing that using both kind of regularizations allows to further
align the latent space and lead to even better adaptation results. Finally, we
observe that our complete WMSSDA approach leads to the best results over-
all, which seems to indicate that our transfer contribution weights are useful



Springer Nature 2021 LATEX template

Deep Multi-Source Supervised Domain Adaptation with Class Imbalance 27

to limit negative transfer during training and have a positive effect on learning
performance.

6 Discussion and Conclusion

In this paper, we proposed an innovative multi-source supervised domain
adaptation approach, Weighted Multi-Source Supervised Domain Adaptation
(WMSSDA). We evaluated and compared WMSSDA and compared our results
to those obtained by other state-of-the-art approaches, on limited and imbal-
anced data, on both benchmark and real-world medical datasets. Our proposed
approach is composed of a two branch architecture, learning both a shared
domain invariant latent space and source domain specific latent spaces. The
shared latent representation is learned and regularized both statistically and
adversarially, the statistical regularization relies on a MD measure between
source and target domains. The output of the MD regularization is used to
compute transfer contribution weights that are applied to weight the impact
of each source domain during training, limiting negative transfer. We show
that our proposed WMSSDA outperforms most state-of-the-art approaches on
both image benchmarks datasets and a real-world tabular medical dataset.
We further analyze the relevance and importance of each component of our
method by performing an ablation study, validating the overall architecture of
our approach.

Overall, our experimental results seem to show that most multi-source
domain adaptation approaches do not obtain significantly better results than
single-source approaches in our experimental scenario. This seems to show that
despite researchers efforts, negative transfer in multi-source domain adapta-
tion is still an open critical problem that seems to limit the overall potential
performance of state-of-the-art multi-source domain adaptation approaches.
Best performing domain adaptation approaches are still not able to fully avoid
negative transfer. In our proposal of a new multi-source domain adaptation
approach, we tried to limit negative transfer through the computation of trans-
fer contribution weights that are applied as a scaling of the impact of each
source domain in the training of the entire model. Our experimental results
and ablation study show that this element of our approach is relevant and
improves overall results. But even with this component, our proposed approach
is yet not able to fully avoid negative transfer. Future works in the domain
adaptation field should focus on finding better ways to handle this important
matter.
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