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NONLOCAL TIME DELAYS REACTION-DIFFUSION PROBLEMS OF
GRADIENT FLOW TYPE: EXISTENCE, STOCHASTIC HOMOGENIZATION

OMAR ANZA HAFSA, JEAN-PHILIPPE MANDALLENA, AND GERARD MICHAILLE

ABSTRACT. In this paper we continue our study of nonlocal reaction-diffusion problems of
gradient flow type that we developed in a previous paper by using the notion of
CP-structured reaction functionals as introduced in [AHMMTI9]. We consider here problems
with times delays and DCP-structured reaction functionals as introduced in [AHMM?20]. We
present an existence result, investigate stochastic homogenization and provide an application
to spatial population dynamics.
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1. INTRODUCTION

Let (Q, F,P) be a complete probability space, let T > 0 and let O = R? be a bounded open
domain with Lipschitz boundary. In this paper we continue our study of nonlocal reaction-
diffusion problems of gradient flow type that we developed in a previous paper [AHMM?23] by
considering the stochastic homogenization of nonlocal time delays reaction-diffusion problems
of the form:

du?
(P.) dt
u(t) = ¥ (t) for all t €] — o0, 0],

= (t) + VE.(w,ul(t)) = Flw, t,u?(t), Bu(t)) for L-a.a. te[0,T]

where, for each € > 0, ¥* € C.(] — 0, 0]; L*(0)) is the history function and Z¢ : C.(] —
w0, T]; L*(0)) — L*([0,T]; L*(0)) is the delays operator, see Definition[2.3 As in [AHMM23],
the diffusion term is the gradient of a random nonlocal functional &. : Q x L?*(0) — [0, oo

of type:
4gdf f g g x;@) (u(x);uw)>2dxdy+@€(w,u) @)

with J : R x RYx RY — [0, 00[ and D, : 2 x L?(0O) — R a nonlocal functional characterizing
the fact that (2.,) is of Neumann-Cauchy nonhomogenous or Dirichlet-Cauchy type. As
introduced in [AHMM?20], the reaction term is a random DCP-structured reaction functional
F.: Qx[0,T] x L*(O) x L*(0) — L*(0), see Definition Our framework allows us to
consider both single-delays and multi-delays cases, as well as delays distributed by a diffuse
delays kernel in nonlocal reaction-diffusion problems, see §2.1|

The problems of the form (2. ,,) model various situations within the context of the biological
invasion of a single-species population. The reaction functional represents the regulation of
population growth, involving complex maturation or resource regeneration periods. The
nonlocal diffusion accounts for the interaction between individuals at short or long ranges in
a heterogeneous but statistically homogeneous space environment. The parameter € accounts
for the size of heterogeneities. To our knowledge, in this general form, the existence and
convergence of such problems were first studied in [AHMM?20], where the diffusion operator
is local and the reaction term admits a more restrictive structure.

In the present paper we extend the results of [AHMM20] to the nonlocal case. Specifically,
in a nonlocal framework we prove that any problem of the form (2. ) has a unique solution
(see Theorem [2.19) and establish the almost sure homogenization of (%.,) as ¢ — 0 (see
Theorem |3 E and Corollary - ) to the problem

du” —(t) + V&om(w, u”(t)) = G(t,u”(t)) for L'-a.a. te[0,T]

(@hom,w) di (1.2)
u?(t) = ¢~ (t) for all t €] — o0, 0] and ¥*(0) € dom(&yom(w, -)),
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where ¢ — ¢* in C(] — o0, 0]; L*(0)) and

F(Wvuw)<t) if (Ff-:(wfv'?')v‘%g) m—iX\F(wa')
G(t,u”(t)) =
F(w, t,u®(t), Bue(t)) if (Fe(w,-, -, ), B) 22 (F(w, ., ), B).

The limit functional F(w,-) : Ce(] — 00, T[; L*(O)) — L*([0,T]; L*(0O)), F(w,-,-,-) : [0,T] x
L*(0)x L*(O) — L*(O) and the limit operator %% : C.(]—o0, T]; L*(0)) — L*([0,T]; L*(0)),

¢ TIIX 9y

are obtained via the notions mixing and stable convergence, denoted by “ — 7 and * stable »
respectively. These notions are introduced in (see Definitions and . As estab-
lished in [AHMM?23, Theorem 4.8], the functional & : Q x L*(0) — [0, 00] is the almost
sure Mosco-limit of &, and is given in its domain by

Erom (W, u) = fo fhom (w, Vu(x))dx

With from : 2 xR? — [0, o[ a quadratic function defined as the limit of a suitable subadditive
process (see [AHMM23, Propositions 3.14 and 3.17]).

Nonlocal problems of type (2.,,) are well adapted for spatial population dynamics where
the density J in ([1.1)) accounts for the numbers of individuals at time ¢ in O which jump
from y to x. The nonlocal diffusion term can be explained by the fact that spatial movement
is possible without constraints in the sense that individuals can disperse and interact with
other individuals over relatively long distances. In Section |[5| we consider such a population
dynamics model with a reaction term including age structure, of the form:

Fo(w,t,u(t), Rul(t)) = b (w,t, g, %?u?(t)) —d (w,t, g,u‘;(t)> +a (w,t, g) ,

where b : Q x [0,0[xR? x R —]0,00[ and d : © x [0, o[ xR? x R —]0, o[ represent “birth”
and “death” respectively, and a : Q x [0,0[xR¢ — R is the immigration or harvesting
rate. To incorporate the age structure, it is necessary to introduce time delays % : C.(] —

0, T]; L*(0)) — L*([0,T]; L*(O)), specifically in the “birth” component, given by
w, w _ 1 w . )
Riul(t) = T (1) (t o (w, 5>)

with o : Q@ x R¢ — [0, 0], o(w, R?) = {o¥, -+ ,0%} where 0%, ,0% € [0,0[. By applying
our homogenization result, we show (see Corollary that as ¢ — 0, the nonlocal reaction-

diffusion problems (2, ,,) almost surely converge to a local reaction-diffusion problem of type
(1.2) with G¥(t,u*(t)) = F(w,u®)(t) where

Fla)(t) = &7 | [ o (vt (10 aton) )i )-8 | [ dteoian] @)
+87 | [ oot @

The symbol E” denotes the conditional mathematical expectation with respect to o-algebra
JF of invariant sets with respect to the dynamical system (Q, F, P, {T.}.czq) (see for
more details).
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Plan of the paper. Section [2]is devoted to existence and uniqueness of bounded solutions
for nonlocal reaction time delays diffusion problems of gradient flow type when the reaction
term is a DCP-structured reaction functional (see Definition and Theorem [2.19). For
this, in §2.1, we begin by recalling the notion of time delays operator and then, in §2.2|
we develop the nonlocal framework for dealing with Neumann-Cauchy homogeneous (see
§2.2.1)), nonhomogeneous (see and Dirichlet-Cauchy (see [2.2.3]) nonlocal time delays
reaction-diffusion problems. The proof of Theorem [2.19]is given in §2.3

Section |3| is devoted to the stochastic homogenization for nonlocal time delays problems
with DCP-structured reaction functionals. In §3.1} we begin by specifying the probability
setting and recall some tools from ergodic theory (see Definitions . Next, by ap-
plying Theorem [2.19] we obtain existence and uniqueness of bounded solutions for random
Neumann-Cauchy homogeneous and Dirichlet-Cauchy nonlocal time delays reaction-diffusion
problems (see Corollary . We state the stochastic homogenization theorem in (see
Theorem [3.8). To identify the homogenized diffusion term we need a suitable subadditive
theorem that we have already proved in [AHMM23|, Propositions 3.14 and 3.17]). To provide
information about the specific form of the limit reaction term in Theorem [3.8] in we
introduce two notions of convergence for both the reaction functionals and the time delays
operators (see Definitions [3.10) and [3.12)). These notions allows us to refine Theorem
(see Corollary . Note that we do not address the convergence of Neumann-Cauchy non-
homogeneous nonlocal time delays reaction-diffusion problems. Indeed, the mathematical
analysis seems technically more tricky but we hope to cover this case in the future.

Section [4] is devoted to the proof of Theorem [3.8] The proof, presented in §4.2] relies on two
theorems. The first one (see Theorem |4.1]) is an abstract convergence result for passing from
nonlocal to local. This theorem is stated and proved in §4.1] The second theorem establishes
the almost sure Mosco-convergence of the energies associated with the diffusion term. This
theorem has already been proved in [AHMM23| Theorem 4.8].

Section [5| is devoted to the application of the results to a nonlocal spatial population model
with age structure. In we begin by providing a heuristic derivation of the model. Then,
in §5.2] we specify the structure of the reaction term together with the time delays operator.
Finally, in §5.3 we precise the mathematical description of the model, showing that it can
studied within the general framework developed in Sections By applying Corollary
we obtain the homogenized model (see Corollary [5.8).

For convenience of the reader, in the appendix we recall some classical definitions and results
that we use in the paper.

Notation. Throughout the paper we will use the following notation.

e The cardinal of a set is denoted by | - |.

e Given o € R? we denote the open (resp. closed) ball of radius r > 0 centered at xg
by B,(z0) (vesp. B,(x0)).

e The closure (resp. interior) of a set A = R? is denoted by A (resp. int(A)).

e The Lebesgue measure on R? with d € IN* is denoted by £ and for each Borel set
A < RY, the measure of A with respect to #? is denoted by F?(A).
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e The class of bounded Borel subsets of R? is denoted by 9%),(R?).

e The space of continuous piecewise affine functions from O to R is denoted by Aff(O).

e Given (a,b) € R? with a < b, the space of u € L*(O) (resp. u € L*(0O)) such that
a < u < bis denoted by L*(O; [a,b]) (resp. L*(O;]a,b])).

e Given a Banach space X and a closed interval I < R, the space of continuous
functions from I to X is denoted by C'(I; X), and the space of absolutely continuous
functions from I to X by AC(I;X).

e Given {u,}, < C([0,T]; L*(0)), by u, — u in C([0,T];L (O)) we mean that

T supyegory [ua(t) — ()] 20y = 0. By % — @ in [2([0,T]; L(0)) we mean

that for every v e L*([0,T]; L*(O So (B (1), v(t))dt — So t),v(t))dt as n — oo,
where (-, ) denotes the scalar product in LQ(O)

e The space of step functions from R to L*(O) is denoted by S*(R; L*(O)).

e The space of functions from R to L?*(O) which are uniform limit of step functions is
denoted by Si¥(R; L*(0)).

e The space of continuous functions with compact support from | — o0, T] to L*(0) is
denoted by C.(] — o, T]; L*(0)).

e The class of positive vector measures m : B(R) — L*(O) such that [m|(R) < 1 is
denoted by 4 (R; L*(0)).

2. EXISTENCE AND UNIQUENESS OF BOUNDED SOLUTIONS FOR NONLOCAL TIME DELAYS
PROBLEMS WITH DCP-STRUCTURED REACTION FUNCTIONALS

From now on, O < R? is a bounded open domain with Lipschitz boundary.

2.1. Time delays operators associated with vector measures. Throughout the paper
we use the theory of integration with respect to vector measures. This theory is briefly
recalled in Appendix [A] (for more details we refer to [Din67]). We begin with the following
definition.

Definition 2.1. Let m : %(]R) — L*(0) be a vector measure. We say that m is positive if
for every u € SF(R; L*(0)), u = 0 implies § u(t)dm(t) > 0.

From now on, we denote the class of positive vector measures m : %B(R) — L*(0O) such
that [m|/(R) < 1 by ;" (R; L*(0)), where |m/, the variation of m, is defined in Appendix
[A] and the integral with respect to m is associated with the continuous bilinear map B :
L*(0) x L*(0O) — L*(O) defined by B(u,v) = uv.

Remark 2.2. For every m € M (R; L*(0)), m(A) € L*(0;][0,1]).

Let {m,};=0 = ;] (R;L*(0)) be such that for every u € S (R;L*(0)), the map ¢t —
§"u(r)dmy(7) is (B(R), B(L*(0))-measurable.

Definition 2.3. Let 7" > 0. By time delays operator associated with {m,};~o we mean the
linear continuous map % : C.(] — w0, T]; L?(0)) — L*([0,T]; L*(O)) defined by

Fult) — J_OO w(r)dmy (7).
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Remark 2.4. By using Proposition we see that for every u € C.(] — o0, T]; L*(0)),
||<%u(t)|\L2(O) < QHUHCC(]—OO,T];L2(O)) for all t € [0, T]

and so
| R L2 10,17; < 2VT | oo (—011:22(0))-

Remark 2.5. Given a = 0, if u € C. (] ,T]; L*(0)) is such that 0 < u < o then 0 < Ru <
.

In what follows we give three basic examples of time delays operators associated with vector
measures.

Example 2.6 (multi-delays case). Let {m;};~o = A ([0, T]; L(O)) be given by

{ti}rew <]0, 00[
D(0)-
my = Z dy.0,_y, with {difren = L7(0;5 10, o0])
kelN Z HdkHLoo(o) = 1.

kelN
Then, X : C(] — o0, T[; L*(O)) — L*([0,T]; L*(0O)) defined by

t
Ru(t) := f T)dmy(T Z diu(t — ty)

kelN
is the time delays operator associated with {m;}o.
Ezample 2.7 (single delays depending on the space variable). Let o : R? — [0, o[ be such

that |o(R%)| < o0, i.e. o(R?) = {0y, , 04} with k € N*, and let {m;};=0 = ;" (R; L*(O))
be defined by

m; = E(St_g(.).

Then, X : C.(] — o0, T]; L*(O)) — L*([0,T]; L*(0O)) defined by

t
1
Rult) ;ZJ () dma(r) = Sut — o))

o k
is the time delays operator associated with {m;};>¢.
Ezample 2.8 (delays distributed by a diffuse delays kernel). For each t > 0, let X, : R —
L*(0O) be defined by

Ki(T) = K(t = 7),
where X : R — L*(0) is such that:

o {7 Kt ) ooy dt = 1;

. for every t € R and ¥P-a.a. x € O, X(t)(x) = 0;
e for every t €] — 0,0], X(t) =0,

and let {my;}i=0 < ;' (R; L*(O)) be given by
m; = thl.
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Then, X : C.(] — o0, T]; L*(O)) — L*([0,T]; L*(O)) defined by

Ru(t) := J u(T)dmy (1) = f u(T) K (t — 7)dr = JOO u(t — 1)K (T)dr = (u = Ky)(t).

0
is the time delays operator associated with {m;};>.

Remark 2.9. In the three examples above, we have %u € AC([0,T]; L*(O)) for all u €

Ce(] — 0, T]; L*(O)). Indeed, by an easy calculation we see that

(R) there exists a probability measure p on (R, %(R)) with u(] — o0,0[) = 0 such that for
every t1,t9 € [0, T] with ¢ < to,

du

dt

|Ru(t1) — Rults)l|L20) < LQ (’ * u) (t)dt

12(0)
with (’ %“LQ(O) x u) (t) = §g | %t - T)“LQ(O) dp(7). For the previous examples we have:
( Z |di || oo (00, in Example [2.6

kelN

k
= ].
H= p Z; 0o, in Example

L |K(- = 7)|Leydr in Example 2.8

2.2. Nonlocal time delays reaction-diffusion problems of gradient flow type. Given
T>0and & :C.(] —o0,T]; L*(0O)) — L*([0,T]; L*(0O)) a time delays operator associated
with {m;};=0 < A, (R; L*(0)) and ¢ € C.(]—0,0]; L?*(0)) we consider time delays reaction-
diffusion problems of type:

d—u(t) + V&(u(t)) = F(t,u(t), Bu(t)) for L'-a.a. t €[0,T]
(Peah g @
u(t) = (t) for all t €] — o0, 0],

where the diffusion term is the gradient of a nonlocal, convex and Fréchet-differentiable
functional & : L?(0) — [0,0[ (see §2.2.1] for more details) and the reaction term
F:[0,T] x L*(O) x L*(0) — L*(0) is a DCP-structured reaction functional (see Definition
2.14).

2.2.1. Neumann-Cauchy homogeneous nonlocal time delays problems. Let J : R¢xRxR?* —
[0, o[ be a Borel measurable function satisfying the following conditions:

(NL;) J is symmetric, i.e. for every (z,y) € R% x R,
J(x7yax - y) = ‘](y7xa Yy — CL’),
(NLy) there exists a (#B(R%), B(R))-measurable function J : R? — [0, o[ with supp(J) =
Bp, (0) for some R; > 0 and {, J(£)d¢ = 1 such that for every (z,y,€) € R xRxR?,

0<J(x,y,8) < J(€).
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Remark 2.10. The function J is assumed to be compactly supported for simplifying certain
calculations. Without major difficulties, by using a truncation argument, we could take J

gI‘OWng as W with x > 0.

Let O = R? be a bounded open set and let .7 : L2(O) — [0, o[ be defined by
1
F(u) := ZJ J J(x, g,z —y)(u(x) —u(y))?dedy. (2.1)
oJo

It is easy to see that £ is convex and Fréchet-differentiable, and by the Riesz representation
theorem, for each u € L?(0), the gradient of # at u, denoted by V_# (u), is such that

F'(u)(v) =(VF(u),v)= fo V7 (u)(x)v(x)dr for all v e L*(0),
where V #(u) € L?(0) and is given by
VI (@) = = [ T =)l - ul)iy

The problem (@;;T), which corresponds to (@g”g’ip) with & = 7, is a nonlocal time
delays reaction-diffusion problem of gradient flow type that is called “Neumann-Cauchy
homogeneous nonlocal time delays reaction-diffusion problem”. Note that (@;;T) can be
rewritten as follows:

f %(t, ) — L J(@,y, 2 —y)(ult,y) —ult,z))dy

(P54 =F (t,u(t,x), f; u(r, .)dmt(f)) in [0,7] x O

| u(t,-) =9(t,) for all t €] — o0, 0].

Remark 2.11. The term “Neumann-Cauchy homogeneous nonlocal time delays problem”
refers to homogeneous Neumann-Cauchy boundary conditions for local reaction-diffusion
problems. Indeed, by suitably rescaling J and K, it can be established that the solutions of
the rescaled corresponding problems converges to the solution of a “standard” local reaction-
diffusion problem with the homogeneous Neumann boundary condition (see [AVMRTMI0),
Chapter 3, §3.1, pp. 41] for J = J and F = 0).

2.2.2. Neumann-Cauchy nonhomogeneous nonlocal time delays problems. Let h € L*(R1\O),
let K € L*(O x R?) and let }, i : L*(O) — R be defined by

M (u) = f < K(x,x — y)h(y)dy) u(z)dz.
0 \JRH0
Clearly, J}, k is a continuous linear form and for every u € L*(O), VA, k(u) € L*(O), and
is given by

Vo (u)(x) = K(z,x —y)h(y)dy.

RAN\O

The problem (@};f}; «.); Which corresponds to (@;’;T) with & = # — W}, k, is a nonlocal
time delays reaction-diffusion problem of gradient flow type that is called “Neumann-Cauchy
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nonhomogeneous nonlocal time delays reaction-diffusion problem”. Note that (@;ﬁf}; K“@)

can be rewritten as follows:

( Ou

Wit a) - L J(@,9,5 — y) ult,y) — ult, 2))dy

(PUET )] _JRd\OK(m,x—y)h(y)dy:F<t ult, ) qu ey (7 )) in [0,7] x O

[ u(t,-) = ¥(t,-) for all t €] — o0, 0].

Remark 2.12. The term “Neumann-Cauchy nonhomogeneous nonlocal time delays problem”
refers to nonhomogeneous Neumann-Cauchy boundary conditions for local reaction-diffusion
problems. Indeed, by suitably rescaling J and K, it can be established that the solutions of
the rescaled corresponding problems converges to the solution of a “standard” local reaction-
diffusion problem with the nonhomogeneous Neumann boundary condition j—ﬁ = h where n
denotes the unit outward normal to 02 (see [AVMRTMI10, Chapter 3, §3.2, pp. 45] for J = J

and ' = 0).

2.2.3. Dirichlet-Cauchy nonlocal time delays problems. Set O7 := O+supp(J) = O+ Bg,(0),
let g € L2(07\O) and let @, : L*(O) — R be defined by

j f J(@,y,2 — y)(g(y) — u(x))drdy. (2.2)
0\0

It is easy to see that P, is convex and Fréchet-differentiable, and for every u € L*(O),
VP,(u) € L*(O) and is given by

VR0 = | I o) vy

The problem (g’iﬁf; %), which corresponds to (@;?;QT) with & = 7 + 9, is a nonlocal
times delays reaction-diffusion problem of gradient flow type that is called “Dirichlet-Cauchy
nonlocal time delays reaction-diffusion problem”. Note that (g’;ﬁf@i%) can be rewritten as

follows:
Mta) f I, — y)(ult,y) — ult, 2))dy

L J(z,y, 2 — y)(g(y) — ult, 2))dy

e (t ult, ), f (T,-)dmt(T)) in [0,7] x O

(P519,2) 3

u(t,) = (t,-) for all t €] — o0, 0].

\

Remark 2.13. In the spirit of Remarks the term “Dirichlet-Cauchy nonlocal time
delays problem” refers to Dirichlet-Cauchy boundary conditions for local reaction-diffusion
problems (see [AVMRTMI0, Chapter 2, §2.1, pp. 31] for J = J and F' = 0).
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2.3. Existence and uniqueness for nonlocal time delays problems. We begin by
recalling the existence and uniqueness result for nonlocal problem (without time delays) that
we proved in [AHMM?23] (see Theorem [2.15)). For this, we need the class of CP-structured
reaction functionals that we denote by Fdp with 7" > 0. (This class was introduced in
[AHMM19], see also [AHMM?22, §2.2.2, pp. 27].)

Definition 2.14. Let 7> 0. A map @ : [0,T] x L*(0O) — L?*(0O) is called a CP-structured
reaction functional if

O(t,u)(z) = o(t, z,u(z))
for all (t,u,z) € [0,T] x L*(O) x O, where ¢ : [0,T] x R x R — R is a Borel measurable
function satisfying the following three properties:
(CPT) ¢(t,x, () is locally Lipschitz continuous in ¢ uniformly with respect to (¢,z) € [0, T] x
R
(CP3) o(--,0) € L*([0,T]; L*(0));

(CPY) there exist f,f : [0,7] x R — R with f < 0 < f and (p,p) € R? with p < p such
that each of the two following ordinary differential equations

y'(t) = f(t,y(t)) for L'-a.a. te0,T]
(00s)
y(0) =p

y'(t) = f(t,y(t)) for L*-a.a. te[0,T)]

y(0) =

admits at least a solution, y for (OpE) and g for (OpE), satisfying

(ObE)

l

[t y(t) < (t, =, y(t))

F(t.5(t) = o(t. 2, 5(t))
for 1 @ Ll-a.a. (t,z)€[0,T] x R.
For each T > 0 and each (a,b) € R? with a < b, we consider the following problem:
du

(o1 a(f) + VE&(u(t)) = ®(t,u(t)) for L'-a.a. te|0,T]

[a,b]
u(0) = ug € L*(0;[a,b]).

In [AHMM23], Corollary 2.11] we established the existence and uniqueness of bounded solu-
tions for nonlocal reaction-diffusion equations with CP-structured reaction functionals.
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Theorem 2.15. Let T > 0, let ® € Fp with (f,f), (p.p) and (y,7) given by |(CPL)| let
up € L*(O; [p,pl) and let g € L*(O\O) be such that:
_Song @y e —y)g(y)dy
I, := essinf
2€0\O SOJ\5 J(z,y,x —y)dy
S, i— esssup Sorng (@ v, 7 —y)g(y)dy
. 2e0\O SOJ\G J(J}, Y, T — y)dy
p<l,andp=S5,.

Then (e@:f,o[fg]) (resp. (g’;ﬁgj[pﬂ)) admits a unique solution u € AC([0,T]; L*(O)) such
that B

> —0; (2.3)

< oo; (2.4)

y(T) < y(t) <u(t) <y(t) <y(T) for all t € [0,T].

Moreover, if ®(-,u) € AC([0,T]; L*(O)) then u admits a right derivative %(t) at every

t € [0, T[ which satisfies %(t) + V& (u(t)) = O(t,u(t)) with& = 7 (resp. & = F + D).

In order to establish existence and uniqueness of bounded solutions for nonlocal time delays
reaction-diffusion problems, we need to consider the following class of reaction functionals,
called the class of DCP-structured reaction functionals and denoted by Fpcp. (This class
was introduced in [AHMM?20], see also [AHMM?22, §3.2.1, pp. 83].)

Definition 2.16. A map F : [0,00[x L*(O) x L*(O) — L?*(0O) is called a DCP-structured
reaction functional if
F(t,u,v)(x) = f(t,z,u(z),v(r))
for all (¢,u,v, ) € [0,00[x L2(O) x L?(0) x O, where f : [0,0[xR% x R x R — R is a Borel
measurable function satisfying the following three properties:
(DCPy) for every T' > 0, f(t,z,&,() is locally Lipschitz continuous in & (resp. () uniformly
with respect to (t,z,¢) € [0,T] x R x R (resp. (t,z,£) € [0,T] x R? x R);
(DCPy) for every T' > 0, f(-,-,0,0) € L%([0,T]; L*(O)) for all ¢ € R;
(DCP3) there exist f : [0,00[xR — [0,0[ and 5 €]0, o[ such that the ordinary differential
equation (OpE) admits at least a solution 7 such that for every 7' > 0,

f<t7x707c) > O
Ft.3(t) = ft,2.5(),0)
for 1 @ Ll-a.a. (t,z) €[0,T] x R and all ¢ € [0,7(T)].

Remark 2.17. From we see that 7 is increasing so that 0 < p < 7(0) < y(t) < y(7T)
for all t € [0, 7] and all T > 0.

Remark 2.18. Let F € Fpcp with (f,7,7) given by and let 7' > 0. Then for every
v e L*([0,T]; L*(O)) with v(t) € L*(O;[0,5(T)]) for all ¢t € [0,T], we have ®, € Flp
with @, : [0,7] x L*(0O) — L*(O) defined by ®,(t,u) := F(t,u,v(t)). The function ¢, :
[0,T] x R x R — R is given by ¢,(t,z,&) := f(t,z,&, v(t, x)) and satisfies and
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For each T > 0 and each a €]0, o[, we consider the following problem:

du
(@wFT) dt()

&, R,a
u(t) = () € L*(0;[0,a]) for all ¢ €] — o0, 0].

+ V&(u(t)) = F(t,u(t), Bu(t)) for L'-a.a. t €[0,T]

By using Theorem and the Banach fixed point theorem, we can establish the following
existence and uniqueness of bounded solutions for nonlocal time delays reaction-diffusion
equations with DCP-structured reaction functionals.

Theorem 2.19. Let F € Fpcp with (f,p,7) given by let ¢ € Co(] — 0,0]; L*(0))
be such that (t) € L?(0;[0,p]) for all t €] — ,0] and let g € L?*(O7\O) be satisfying

(2.3) (2.4) and such that

0< I, andp=9,.

Let T > 0 and let & : Co(] — 00, T]; L*(0)) — L*([0,T]; L*(O)) be a time delays operator
associated with {m;}i=9 < ﬂl ( R; L*(0)). Then (%ﬁgp) (resp. (@;f@T a5)) admits a
unique solution u € C(] — o0, T]; L*(0)) satisfying u e AC([0,T]; L*(O)) and

0<wu(t) <yt

) <
Moreover, if F(-,u, Ru) € AC([0,T]; L*(0)) then u admits a right derivative “* dt L(t) at every
t € [0, T which satisfies %( )+ V&(u(t)) = F(t,u(t),Ru(t)) with & = F (resp. & =
F+9,).
Proof of Theorem 2.19. Let & € {7, # + 9D,}. The proof is divided into three steps.

Step 1: local existence. Let M > 0 be such that supp(y)) < [—M,0] and, for each
T €]0,T], set

y(T) for allt € [0,T].

XT:{uecq—meL%my0<u<@HﬁMﬂummm=¢}

It is clear X7 is a closed subset of C([—M,T]; L*(0)) endowed with the uniform norm.
Therefore, X is a complete metric space with respect to the uniform distance.

Fix any u € X7. Then, by Remark [2.5 we see that Zu(t) € L*(0;[0,7(T)]) for all t € [0, T].
Hence, by Remark- 2.18, @, € F&p with @, : [0,T] x L*(O) — L*(O) defined by

D, (t,w) ;== F(t,w, Ru(t)) (2.5)
and (f, p,y) = (0,0,0). From Theorem we deduce that there exists Au € C([0,T]; L*(O))
such that
Aue AC([0,T]; L2(0))
Aw is the unique solution of (@gy’%ﬁ’f ) (2.6)

0 < Au(t) <y(t) <y(T) for all t € [0,T]
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and, moreover,

Au has a right derivative dtl%(t) at all t € [0, T

®,(-, Au)e AC([0,T]; L*(0))= (2.7)
Chu () L VE(Au(t)) = By (t, Au(t)) for all t € [0, TT.

dt

Extending Au by 1 on | — o0, 0] we see that Au € X7 and is a solution of the following
problem:

d
)+ VEw(t)) = by (t, w(t)) for Faa. te0,T]
(Py) dt
w(t) = ¥(t) € L*(0;]0,a]) for all t €] — o0, 0].
Let us prove that A : Xp — X7 is a contraction for 7' small enough. Fix any (u,v) € Xpx X7p.
Then Au (resp. Av) is a solution of (£,) (resp. (£,)). Hence, for £1-a.e. t € [0,T],

<% (Au— Av) (8), (Au — Av) (t)>

+(VE(Au(t)) — VE(Ao()), Ault) — Av(t)) = (Du(t, Au(t)) — Byt Av(t)), Ault) — Ao(t)).
Since V& is a monotone operator, it follows that for #'-a.e. t € [0, 77,

Ld

2dt

and consequently

| (A — Av) ()220 < (@ult, Au(t)) — y(t, Av(t)), Au(t) — Av(t)),

(A= A0) (B 0y < 21u(t, Au(t)) — By (t, Au(t)) 120y [Au(t) — Ao 120
< [ @ult, Au(t)) — @u(t, Av(t)) |20y + [Ault) = Av(t)[72(0)- (2:8)
On the other, taking (2.5) and Remark together with the fact that ulj_w 0 = v|j—c0,0

into account, from we can assert that for Z'-a.e. t € [0,T],

4
dt

[ (t, Aut)) — ©u(t, Av()) 720y < L(T) <4T\|U(t) —v(t)[12(0) + [Au(t) - Av(t)||i2(0)) (2.9)
with L(T) € [0, c0[ given by L(T) := 2max(L(T), Ly(T)) where

t — f(t !
Ly(T) := sup sup supsup MGEASLY f/( 2,8, Q)
t€[0,T] aeRe CeR E4€/ €= ¢l

t — f(t /
Ly(T) := sup sup supsup IGESSIS f,( a$7§,C)|'
te[0,T] zeR9 EER (4’ |¢ — (|

Combining (2.8)) with (2.9) we deduce that for #'-a.e. t € [0,T],

(2.10)

% (Au— Av) (1) 720y < ATL(T) Ju(t) = v(t)][Z2(0) + (1 + L(T)) | Au(t) — Av(t) |72 (0)- (2.11)
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Noticing that Au(0) = Av(0) = 1(0), by integrating over [0, s] with s € [0, 7] it follows that
[Au(s) = Av(s)lZa0) < AT*L(T)|u = 0|00 11220y

+J (1+ L(T)) | Au(t) — Av(t)”%g(O)dt for all s € [0,T].
0
From Gronwall’s lemma (see Lemma that we apply with ¢(s) = [Au(s) — Av(s)[72 (o
a =AT?L(T)|u = v[Eq_ 110200y 20d m(t) = 1+ L(T)) and the fact that Au(s) = Av(s)
W(s) for all s €] — o0, 0], we see that

(0)’

| Au— AUHC —0,T];L2(0)) S <AT?L(T)e" Oy — UH%(]—OO,T];LQ(O))'
Thus, for every u,v € Xr,
1Au = Avllcq-wmrz0)) < K(T)llu = vllcq-wr)c20)

with K(T) := 2T+/L(T)ez +LD) From it easily seen that T +— L(T) is decreasing,
hence limy_o K(T) = 0 and so K(T) < 1 for T" > 0 small enough. Then, for a such T,
A : X7 — X7 is a contraction.

By applying Banach’s fixed point theorem, we conclude that A admits a unique fixed point
u € Xp. From ({2.6)) it is clear that u is a solution of (g’ggi) ue AC([0,T]; L*(O)) and 0 <
u(t) < y(t) < gy(T) for all t € [0 T By (2.7), if moreover F'(-,u, Ru) € AC([O T]; L*(0))
then u admits a right derivative ¢ dt CH(t) at every t € [0, T[ which satisfies <% U (1) + VE(u(t)) =

F(t, ult), Zu(t)).

Step 2: global existence. First of all, by [ABM14, Theorem 17.2.5, pp. 701] we can assert
that

(I) for every T > 0, if u € C(] — o0, T]; L*(0)) is a solution of (9’;;’;7,;) then for every ¢ > 0,
T : T U
$s Hd (t )HLQ(O) C(S—T with Cp := §, H\/Zjli—t(t)HLz(o)dt < 0.

Fix § €]0, T*[ where T* > 0 is given by the step 1 and define £ < R by

E = {T > ¢ : Ju € X7 such that u is a solution of (l@g;i)}

Then E 4 ¢J. (Moreover, it is clear that F is an interval of R.) Set Ty,.x := sup F € [4, ©].
We are going to prove that T},., = c0. For this we argue by contradiction by assuming that
Tax < 00.

Step 2-1: proving that Ty.x € E. Let {T,},>1 < E be such that T,, — Ty and let
u e C(] — 0, Thax[; L*(0)) be such that for every n = 1, ulj_o 1, € X1, and is a solution of

(@g;?) Fix any n > 1. Then

<%(t), %(t)> + <V%(u(t)), %(z)> = <F(t,u(t),9?u(t)), %(t)> Place. te0,T,].
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But 4&(u(t)) = (V& (u(t)), d—“(t)}, hence

du

[ dt+)%< u(T,)) ~ & (u(®))

< UT |F(t,u(t),gzu(ltmiz(o)dt)é (JT du() dt >2. (2.12)
0 5 It o)

On the other hand, by using we have

f I ult), Fut) 2ot < 2L3(Tons) f

0 0
+4[ 150,022 o Tmg 220

where Lj(Tmax) € [0,0] and La(Tax) € [0,00[ are given by (2.10) with 7' = Ti,.x and

Hf('7'70’0)HL2 ([0 T ]: 2(0)) < o by [(DCP2)l As ulj—wo,1,)] € X7, we have 0 < u < H(T5,)

and ulj—w.1,] € Co(] — 0, T,]; L*(0)), hence 0 < Ru(t) < y(T,) (see Remark , and

consequently, since g(7, ) < Y(Tmax) (see Remark )

Tn

T
()220t + AL2 (T f |Ru(t)22 0t

L VP u(t), Rut)) 20t < C, (2.13)

with C} €]0, oo given by
C,:= 2Tmaxgd(0)(y(Tmax))Q(L%(TmaX) + QLg(Tmax)) + 4||f(7 50, 0)”%2([0,Tmax];L2(O))‘
Set Cy := &(u(d)) — inf &. (Note that Cy € [0,0[ because inf & > —o0.) From (2.12]) and

(2.14]) we deduce that
1
f dt Cy + C J dt )
5 12(0) 5 12(0)

Moreover, as u|j_q 1,] is a solution of (g’w FT”) we have Sa [ HL2

du

du
- )

dt()

dt < oo by |(I)} Hence

1 1
d ’ d ’
J u( t) dt J u( t) dt —C1| <Cyforalln>1. (2.14)
s 1dt 0 s 1dt 0
Noticing that (§;™ du HLQ(O) dt) = limy, oo (§" H 7 HL2 dt )% by the monotone con-

vergence theorem, from ([2.14)) it follows that

Tmax
L= f
5

Then, for every tq,ts € [§, Trax|,

lu(ts) — u(t2)|r20) < J

du
- )

2
dt < 0.
L2(0)

du

dt()

L|t1 — t2| 2
L2(0)
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which means that u is %—Hélder continuous on [0, Thax[- According to the continuous ex-
tension principle, u has a unique continuous extension U to | — 00, Tinax] With U(Tax) =
limy_7 . u(t) € L>(O). Thus, @ € X7, and is a solution of (g’gé”?‘ax), which shows that
Thax € E.

Step 2-2: contradiction. Let up., € C(] — o0, Thay; L?(0)) be a solution of (@;’g’%‘ax)
and let Yyay 1] — 0,0] — L?*(O) be defined by

77Z)max(t) = umax<t + Tmax)‘
AS Unax (t) = ¥(t) for all t €] — 00,0] and ¢ € C.(] — 0, 0]; L*(0)) n AC(] — o0, 0]; L%(O)) we
have Ymax € Ce(] — o0,0]; L*(0)) n AC(] — o0,0]; L*(0)). Hence, by using the step 1, there
exists T > 0 such that (ﬁgfggF’T) admits a solution @ € C(] — o0, T]; L*(0)). Setting
Umax (1) if t €] — 00, Thax]
Umax (1) :=

a(t - Tmax) if te [Tmaxa Tmax + ]
and noticing that u(0) = Ymax(0) = Umax(Timax) We see that Unax € C(] =0, Thax +T1]; L*(0))
and is a solution of (@g”;”?aﬁT). This contradicts the maximality of T,.. It follows that
Tnax = 0.

Step 3: uniqueness. Let u,v € C(] — o, T]; L*(0)) be two solutions of (,@ggzg) Then,
by letting Au = u and Av = v in (2.11]) we see that for £'-a.e. t € [0,T],

%Hu(t) = v(B)[12(0) < C(D)|u(t) = v(®)[12(0)

with C(T) := 1+ L(T)(4T + 1). Noticing that u(0) = v(0) = ¢(0), by integrating over [0, s]
with s € [0,7T] it follows that

fu(s) = o9 0) < CT) | Jutt) = o(6) ot for all s [0, 7],

From Gronwall’s lemma (see Lemmag that we apply with ¢(s) = |u(s) —U(S)H%Q(O), a=0
and m(t) = C(T)) and the fact that u(s) = v(s) = ¢(s) for all s €] — o0, 0], we deduce that
Hu — UHC(]foo,T];LQ(O)) = 0, lLe. u=wv.

This completes the proof of Theorem [

To be satisfied, the regularity hypothesis on F(-, u, %Zu) in Theorem 2.19] i.e. F(-,u, Ru) €
AC([0,T]; L*(0)), requires some conditions on f, & and 1, as specified in the following

proposition (for a proof we refer to [AHMM20, Theorem 3.1], see also [AHMM?22, Theorem
3.1, pp. 88]).

Proposition 2.20. Let F' € Fpcp be such that

ft2,8.¢) = (r(t,x) ©h(C), 9(§)) + q(t, x),
where {-,-) denotes the scalar product in R™ and r : R x R?* — R™, g,h : R — R™ and
q: R x R? — R, with m € N*, satisfy the following conditions:
e g and h are locally Lipschitz continuous;
o for every T >0, re L*([0,T] x R%:R™) n AC([0, T]; LE . (RE R™));

loc
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o for every T >0, ge AC([0,T]; L2 .(RY)).

Let T > 0, let & € {7, 7 +D,} and let u be the solution of (9’;;%) ]f holds and if
e AC(] — w0,0]; L*(O)) then F(-,u, Ru) € AC([0,T]; L*(O)).

3. STOCHASTIC HOMOGENIZATION FOR NONLOCAL TIME DELAYS PROBLEMS WITH
DCP-STRUCTURED REACTION FUNCTIONALS

3.1. Random nonlocal time delays reaction-diffusion problems of gradient flow
type. From now on we consider a complete probability space (2, ,P) and a family {7} .cza
satisfying the following three properties:

o (mesurability) 7% : Q — Q is F-measurable for all z € Z¢;
e (group property) T, 0o Ty =T, and T_, = T ! for all 2,2’ € Z4;
e (mass invariance) P(T,A) = P(A) for all Ae F and all z € Z%.

Definition 3.1. The family {7},czq is said to be a (discrete) group of P-preserving transfor-
mation on (Q, #,P) and the quadruplet (2, F,P,{T.},czq) is called a (discrete) dynamical
system.

Let J = {Ae F : P(T.AAA) = 0 for all z € Z%} be the o-algebra of invariant sets with
respect to (2, F, P, {T,},czq).

Definition 3.2. When P(A) € {0,1} for all A € .#, the measurable dynamical system
(Q, F P AT, },cza) is said to be ergodic.

Remark 3.3. A sufficient condition to ensure the ergodicity of (2, F,P,{T}},czq¢) is the so-
called mixing condition, i.e. for every (E,F)e F x F,

lim P(T.E n F) = P(E)P(F).

|z|—a0

For each X € LL(Q), E7(X) denotes  the conditional mathematical expectation of X with
respect to 7, i.e. the unique (&, B(R))-measurable function in L(Q) such that for every
Eers,

f B (X)(w)dP(w) — f X (w)dP(w).

E E

Remark 3.4. If (Q, F,P,{T.}.cza) is ergodic then E” (X)) is constant and equal to the math-
ematical expectation E(X) of X, i.e. B/ (X) = E(X) := {, X (w)dP(w).

Let J:Q xRYx R x R? — [0, 0[ be a (F ® B(RY) ® B(RY) @ B(R?), B(R))-measurable
satisfying the following conditions:
(PNL;) J is symmetric, i.e. for every (w,z,vy,§),

J(w7 x’ y? é—) = J(w7 y? x? 5)7

and J is bi-stationary with respect to (T%).cza, i.e. for every z € Z4 and every
(w,z,y,6) € 2 x R4 x RY x RY,

J(w,m+z,y+z,§) = J(Tzw>$ay>5)§
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(PNL,) there exist J, J : R — [0, oo with

J#0
for every (€,¢) € RY x RY, if [¢] < |¢] then J(€) > J(¢) (3.1)
supp(J) = Bg,(0) is compact with Ry > 0,

such that for every (w,z,7,£) € Q x R? x R? x R¢,

J(€) < J(w,z,y.6) < J()-
Fix any € > 0. Let O < R¢ be an open set and define Z : Q x L?(0) — [0, o[ by

e [ (Y

Let F. : Q x [0,0[xL*(0) x L*(O) — L*(0) be such that F.(w,
w e Q. For each w € Q, let (p¥,7¥) be given by |(DCP3) m with F
Y@ e Cu(] — 0,0]; L*(0)). Let T > 0 and %% : C.(] — 0, T]; L*(0)) — L*([0,T1; L2(O) be
a time delays operator associated with {m”}t>0 c M +(IR L*(O ))H Taking Remark [2
into account, we assume that

) € Fpep for all
F( w, -+ ) and let

0 <supy?(T) < o, (3.3)
e>0
and consider the Neumann-Cauchy homogeneous nonlocal problem (@i\f) (9’% FE)(“\’%UJ p) ),
ie.
d w
Ye (1) £ VL (w0, 42 (1)) = Fu(w, t,u (1), BEue (1)) for Llaa. te[0,T]
(@NH) dt

u?(t) = ¢¥(t) € L*(0;[0,p]) for all t €] — o0, 0].
Let g € H(O7\O) with O’ := O + supp(J) = O + Bg,(0) be such that:

cw SOJ\é J(%fa%%)g(y)dy
[ 1= essinf TR > —0;
z€07\O SOJ\* J(W,E,E,T)dy
cw J\5 ‘](wa %7 gv %)g(y)dy
Sg¥ i= esssup TR < w0
00 SongJ (W, 5, L 5 dy
0<I;¥andpf > S;*. (3.4)

for all z € O and and all w € Q. Define @] : Q x L*(O) — [0, %[ by

9w, ) f LJ\O g g x;?}) (g(y) ;u(x))zdxdy (35)

IFor each ¢ and ¢, we assume that m, is measurable with respect to w in the following sense: for all
B e B(R), the map w +— m¢,(B) is (¥, B(L*(0))-measurable.
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and consider the Dirichlet-Cauchy nonlocal problem (£P,) := (@;ﬁifg)(:%(y)@gﬁw), ie.
du?
( g)?,w) dt
u?(t) = ¥ (t) € L*(0;[0,p¢]) for all ¢ €] — o0, 0]
with 9 := 7 + ;. The following result is a straightforward consequence of Theorem [2.19]

(t) + VI (w,ul(t)) = F(w, t,u?(t), Bu?(t)) for Lr-a.a. te|0,T]

Corollary 3.5. For each w € Q and each € > 0, (PL)) (resp. (PL,)) admits a unique
solution u € AC([0,T]; L*(O)) satisfying
0<uZ(t) <we(t) <w(T)
for all t € [0,T]. Moreover, if Fr(w,,u?, &) € AC([0,T]; L*(O) then u® admits
a right derivative 4 (t) at every t € [0,T[| which satisfies dt;? (t) + VI (w,u2(t)) =
(1) + VIS w2 (1)) = Fe(eo, . (0), R2u2 (1)),

dt
Pl tu(t), B2 (1)) (resp,
Our purpose is to look for the almost sure limit of (#)}}) and (2L,) as ¢ — 0. This is the
object of the next section.

3.2. Stochastic homogenization theorem. For cach # € R? each R > 0 and each A €

B (R?), set
L%OC,H,R,A(]R‘d) = {U € L?oc(Rd) U= 69 in aR(A)}7 (36)

where £y : R? — R is the linear map defined by fy(z) = 6z and dr(A) denotes the R-
neighborhood of the boundary dA of A, i.e.

Or(A) = {x e R? : dist(z,0A4) < R}. (3.7)
Let 8 : By(RY) x 2 x RY — [0, 00[ be defined by
SA(wﬂ 9) ;= Inf {j(wa u, Rd? A) tue L%OC,O,RJ,A(]R'C[)} )

where R; > 0 is given by and 7 : Q x L2 _(R?) x %B,(RY) x B,(RY) — [0, 0] is
defined by

1
j(wu u, Au B) = Z J J ‘](wa T, Y, T — y)(u(x) - U(y))2d$dy
AJB
Let from : 2 x R4 — [0, oo be defined by

from(w,0) := inf E7 <—§[°”“[d("9)) ().

kelN* k’d

Remark 3.6. It is easy to see that fiom(w, ) is quadratic, i.e. there exists a symmetric d x d
matrix AY such that for every 6 € R¢,

hom
1
fhom(w7 9) = §<Aﬁom97 9>7 (38)

where (-, -) denotes the scalar product in R? (see [AHMM23, Propositions 3.14 and 3.17] for
more details on the definition of fiom).

2See Proposition m
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Let hom, £2 . : Q x L*(0) — [0, 0] be defined by:

fo Jhom(w, Vu(z))dx if ue H'(O)
o0 if ue L2(O)\H'(0);

Fhom (W, 1) 1= (3.9)
fo Joom(w, Vu(z))dz if ue H;(O)
o0 if L*(O)\H,(O)

with H}(0) := {ue H'(O) : y(u) = v,(g)}, where v (resp. ~,) is the trace operator 7 :
HY(O) — L?*(00) (resp. v;: HY(O\O) — L*(00)).

From (@, 1) 1= (3.10)

Remark 3.7. By Remark B.6] fiom(w, ) (resp. A2 (w,-)) is proper, convex and lower semi-
continuous, and Fréchet-differentiable on dom(0 fom(w,-)) (resp. dom(d 2 (w,-))).

For P-a.e. we Q, let G¥: [0,T] x L*(O) — L*(O) be such that G*(-,v) € L*([0, T]; L*(O))
for all v e L*(0), let ¥~ € C.(] — 0,0]; L?(0)) and consider the following Neumann-Cauchy
homogeneous local problem:

du¥
(g,NH ) dt

u?(t) = ¥ (t) for all t €] — o0, 0] and ¢*(0) € dom( Fom(w, *))

and the following Dirichlet-Cauchy local problem:

di(t) + VZ (w,u?(t) = G(t,u”(t)) for Ll-a.a. te]0,T]
gD ) dt
( hom,w

u?(t) = ¢“(t) for all ¢t €] — o0,0] and ¥*(0) € dom(FY  (w,-)).

Here is the main result of the paper.

— () + V fwom(w, u(t)) = G¥(t,u”(t)) for Lla.a. te[0,T]

Theorem 3.8. For P-a.e. w e Q and every e > 0, let u? be the unique solution of (PN)
(resp. (£2,)), see Corollary and assume that:
i) sup fe(w, y2(0)) < o0 (resp. sup 2 (w, v2(0)) < 0);

(H
e>0

(Hy) ¢ — ¢ in C(] — o0, 0]; LQ(O))

(Hg) sup | Fr(w, -, ug, REu )HL2([O,T];L2(O)) < ©.

y Ty We oy
e>0

Then, there exists Qe F with ]P)(Q) = 1 such that for every w € Q there exists u” €
C([0,T]; L*(0O)) such that up to a subsequence:

u — u” in C([0,T]; L*(0)); (3.11)
du?  du” 9 9
== =~ in L([0,T]: L*(0)). (3.12)

Moreover, we have
0 < u’(t) <supys(T) for allte[0,T].

e>0
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Assume furthermore that:
(HY) for every v e C([0,T]; L*(0)),
ul — v in C([0,T]; L*(0)) = F.(w,,ug, Rug) — G*(-,v) in L*([0,T]; L*(0));

(H) the problem (P ) (resp. (Pho.,)) admits at most one solution.

Then, f hold for the whole sequence ¢ and

u” extended by V* in | — o0,0] is the unique solution of (P, ) (resp. (Prn.))-
Moreover, ¥*(t) € [0,p*] for all t €] — o0, 0] where p* := sup.., 2.
Remark 3.9. In most applications, is automatically checked (see Section .
3.3. Notions of convergence for the reaction functionals and stochastic homoge-
nization. Here, we introduce two notions of convergence for both the reaction functionals

and the time delays operators. The first one is called mixing convergence (see Definition
3.10) and the second one is stable convergence (see Definition [3.12)). These two notions

allow us to establish the assumption (H? )| of Theorem 3.8 and provide information on
the specific form of G¥ (see Lemma [3.15|) with w € Q.

Definition 3.10. Let 7 > 0 and let F=% : C(] — o0, T]; L*(O; [0, sup.., 7*(T)])) —
L*([0,T]; L*(0O)) be defined by

Fo7 () (t) = Fo(w,t,v(t), R20(t)). (3.13)
We say that {(F.(w,-,","), %¥)}.~0 mixing converges to F(w,-) : Cc(] — o0, T]; L*(0)) —
L*([0,T]; L*(0)), and we write

(Folw, -, ), ) =5 Flw, ),
if {F2%¢}._o pointwise weakly converges to F(w, ), i.e.
F2 % (v) — F(w,v) in L*([0,T]; L*(0))

for all v e C.(] — o0, T]; L*(0; [0, sup.~o 7 (T)])).

For the notion of stable convergence, we need to introduce the following subclass of DCP-
structured reaction functionals.

Definition 3.11. By the class of special DCP-structured reaction functionals, that we denote
by F5cp, we mean the subclass of Fpcp for which f : [0,00[xR? x R x R — R given by
Definition 2.16] is of the form

f(t,l‘,f, C) = <T(t,$),g(€,€)>

where 7 € LZ([0,T] x R4 R™) for all T > 0 and g : R x R — R™ is such that g(£,() is
locally Lipschitz continuous in & (resp. () uniformly with respect to ¢ (resp. &), with (-, -)
denoting the scalar product in R™ (m e IN*).

Definition 3.12. Let T > 0, let %% : C.(] — o0, T]; L*(O)) — L*([0,T]; L*(O)) be a time

delays operator associated with {m%},~o = ;" (R; L*(0)), let F(w,-,-,-) : [0,T] x L*(O) x
L*(0) — L*(O) be such that F(w,t, u,v)(z) = {r(w,t,z),g(w,u(x),v(r))) for all u,v €
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L*(0;]0,sup.-,72(T)]), and assume that {F.(w,-, -, )}es0 © Fdep, 1.6, Felw,t,u,v)(z) =
{re(w,t,z), ge(w, u(x),v(zr))), with in addition that every g.(w,-,-) is locally Lipschitz con-
tinuous in & (resp. ¢) uniformly with respect € and to ¢ (resp. &).

We say that {(F.(w,-, "), BY)}e=0 stable converges to (F(w, -, ), ), and we write

(Fs(w7 R )7‘%(:) Sta_bl? (F((.U, BRE) ')7 ‘%w)a
if the following three convergences hold:
. Ta(wv ) ) - T((,d, ) ) n LQ([OvT]v LQ(Oa Rm))v

e for every (£,0) € R x R, g.(w,&,¢) — g(w,&,¢) in R™;
o for every t € [0,T], mZ,|}_wqg— Mm{|)—0,q for the weak convergence of measures in

L*(O) strong, i.e.
t

t
REP|1-o0n(t) = f pdm?, — R0\ |- (t)f wdm? in L*(0)

for all ¢ € C.(R; L*(0)).

Remark 3.13. The stable convergence of {(F.(w, -, ), B)}e=0 to (F(w, -, ), R) does not
imply that F(w,,-,-) satisfies ((DCP3)|
To make precise the expression of the limits problems according to each convergence intro-

duced in Definitions and |3.12, we adopt the following notation: given T" > 0, for every
a €]0,0[ and P-a.e. w € €2, we consider the following problems:

dﬂ(t) + V&(w,u”(t)) = F(w,u*)(t) for L'-a.a. te|0,T]

G
u?(t) =~ (t) € L*(0;[0,p°]) for all t €] — o0,0] and ¥*(0) € dom(& (w, -))

diw(t) + V&(w,u”(t)) = Flw,t,u”(t), Bu”(t)) for L1-a.a. te[0,T]

Py @
u?(t) = ¢~ (t) € L*(O;[0,p*]) for all t €] — o0,0] and *(0) € dom (& (w, -)),

where p¥ := sup..,pY. The interest of Definitions [3.10] and comes from Lemma [3.15

below. In what follows, for each & > 0, u¥ is the unique solution of (%) (resp. (2L,)),

see Corollary [3.5]

Remark 3.14. Since 0 < u® < ¥ for all ¢ > 0, if u¥ — v in C([0,T]; L*(0O)) then 0 < v <
sup,~ ¥ (T) := Y so that, by Remark[2.5] 0 < #“u¥ <y and 0 < v < Yy foralle > 0.

Consequently, if u¥ — v in C([0,T]; L*(0)) then u®(t),v(t), Z“u®(t), Bv(t) € [0,7y] for

all e > 0 and all ¢t € [0,T].

Lemma 3.15. (a) If (F(w,-,-,-), R2) 25 F(w,-) then for every v e C([0,T); L2(0)),
u? — v in C([0,T]; L*(0)) = F.(w,,u?, B“u*) — F(w,v) in L*([0,T]; L*(0)),

and the problem (g’;hF ) (resp. (@;QF )) admits at most one solution.
om hom
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(b) If (F.(w,-,-, "), RY) stable (F(w, ), R°) then for every v e C.(] — o0, T]; L*(0)),
u¥ — v in Co(]—o0, T]; L*(0)) = F.(w, -, u?, Bu®) — F(w,-,v, ®“v) in L*([0,T]; L*(0)),

’787

and the problem (@j}hom gw) (TEsp. (QJWF o)) admits at most one solution.

Proof of Lemma [3.15l (a) Fix any ¢ > 0. It is clear that
F.(w, ul,Ru?) = Fow,,v,R0) + F.(w, -, v, BZu?) — F.(w, -, v, Rv)
+F( ul, Ru?) — Fo(w, -, v, BEuY), (3.14)

5 Ty gy

and, by [(DCPy)| m and Remarks and [2 - we can assert that there exist Lq, Ly €]0, o0[
(Whlch do not depend on ¢) Such that

HFg(w, U, %‘;’u‘g’) — Fg(w, U, %gv)HLQ([O,T];LQ(O)) < 2\/TL1||U2) - U||L2([O,T];L2(O))
(3.15)
|Fe(w, - ue, REue) — Fo(w, -, v, REUL) | L2 (jo,m;22(0)) < La|ud — vl 2(o,r1,2(0))-
By using Cauchy-Schwarz’s inequality, from (3.14)) and (3.15)) it follows that for every ¢ €
Lz([O T, L*(0)),

O<F{_?J’“G’2?(v)(t) F(w,v(t)), ¢(t))dt

+a(T)|[ug =] 2qo.ry220 [0 22(10.17:22(0)
with o(T) := 24/T Ly + Ly and (-, -) denoting the scalar product in L?(O), which shows that
Fo(w,-,u?, Bu®) — F(w,v) in L*([0,T]; L*(0)) because (F.(w,", -, "), ®*) =~ F(w,-) and
w? — v in C([0,T]; L*(0)).

It remains to establish uniqueness: we only give the proof for the problem (‘@;}il)’ while
the proof for the problem (Q;f )
hom
(g’;hfm) First of all, by repeating the proof of (2.9) (in replacing Au and Av by u; and us

respectively) we see that there is C(T') € [0, oo such that for £'-a.a. t € [0,T],

|Few, b, un(t), R2ui (1) = Fe(w, t, us(t), Rua ()| 72(0) < C(T) | (t) — uz(t) 220,
Hence, for any s € [0, 7],

<F (w, £, ug (), R (1)) = F(w, v(t)), o(1))dt|<

is an easy adaptation. Let u; and us be two solutions of

| F& % (uy) — F&7% (ug) 120 51.02(0)) < C(T)fo Jur(t) = ua(t)]72(0)dt. (3.16)

As (F(w,-,-,-), RY) mix, F(w,-) we have
F&% () — F(w,u) in L2([0, s]; L2(O))

F27 (up) — F(w, u5) in L2([0, 5]; L2(0)),

so that, by passing to the limit in (3.16)) and by using the weak lower semicontinuity of the
norm of L?([0, s|; L%(O)),

|F(w,u1) — F(w,uz2)| 20,5200y < A/ C(T)|lur — uz| r2([0,5);22(0y) for all s € [0,T7]. (3.17)
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On the other hand, for Z'-a.e. t € [0, T}, by taking uy (t) —u2(t) as a test function in (24" )
for the solution u; and us respectively, by subtracting and by using the monotonicity of
V Fom(w, -), we easily obtain

%Wl(t) — ug () [72(0y < 21 F (W, u1)(t) = F(w, u2) ()] 220y [ua (t) = ua(t) ] 22(0)

Noticing that u;(0) = uy(0) = ¥(0), by integrating over [0, s] with s € [0,7"] and by using
Cauchy-Schwarz, it follows that

Jur(s) = ua(s)|72(0) < 20 F (W, ur) — F(w, u2)] 20,5120y [ua — w2l z2(o,s1:22(0)):

which combined with - 3.17)) gives
Jur(s) —ua(s)Z20) < 20/ C(T)|ur = w2l 72053020
_ 2«/(](T) J s (8) —u2(t)|\%2(o)dt for all 5 € [0, 7.
0

From Grénwall’s lemma (see Lemma that we apply with ¢(s) = |ui(s) — ug(s)H%Q(O),

a = 0 and m(t) = 24/C(T)) and the fact that u;(s) = ug(s) = 1(s) for all s €] — 0, 0], we

deduce that ||u1 — Uzl e(—co,m:22(0)) = 0, i.e. up = uy.

(b) Since r.(w, -, ) — r(w,-,-) in L2([0,T]; L*(O; R™)), we are reduced to show that

ge(w,u?, R2u?) — g(w,v, B“v) in L*([0,T]; L*(0)). (3.18)

First of all, it is clear that for every ¢ > 0,

9 (w, ue, REug)—g(w, v, Bv) | 20,13 2200)) < 19- (W, v, R uZ)—ge(w, v, BEUL) | 12(10,11:22(0))
+ g (w, v, BEug) =g (w, v, BV)| L2 (0,17:22(0))
+]ge(w, v, Bv)—g(w, v, B2V) | £2(j0,7,12(0))(319)

On the other hand, taking Remark into account, as every g. is locally Lipschitz con-
tinuous in £ (resp. () uniformly with respect € and to ¢ (resp. &), we can assert that there
exists L(T) € [0, 00 such that:

|ge(w, u?, REu?) — ge(w, v, Bus)| L2 o.r1:02(0)) < L(T)ug —v|2qoag;20p;  (3.20)

lge(w, v, #ZuZ) = ge(w, v, B0) | 20,1320y < LT FZud — R0 2(0,1y:02(0)) (3-21)
for all e > 0. Since v¥ — v in C([0,T]; L*(O)), from (3.20) we have

19 (w, ug, REu?) — ge(w, v, REUL) | L2(j0,13;22(0)) — 0. (3.22)
According to Remark [2.4] we have
He%? :.J_e% UHLQ OT L2 2\/7“ ooT] L2 ))+He%g)v_e%wv“LQ([O7T];L2(O)) (323)

For each t € [0,71], takmg ¢|1-w= v as a test function in the definition of the stable
convergence (see Definition [3.12) we see that Z“v(t) — R*v(t) in L*(O) for all ¢ € [0,T],
and according to Remark [3.14] from Lebesgue’s dominated convergence theorem we deduce
that

|20 — R0 20,020 — 0 (3.24)
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Asuw¥ — v in O(] — 0, T]; L*(0)), from (3.23)) and it follows that
|20 = ol 2 oyie20)) — 0,
and consequently, by using ,
19 (w, v, RZuZ) — ge(w, v, B“V)| L2((0,17,L2(0)) — 0. (3.25)

Taking Remark into account and noticing that {g.(w,,)}c=0 pointwise converges to
g(w, -, ) (see Definition [3.12]), from Lebesgue’s dominated convergence theorem we see that

|ge(w, v, B0 )—g(w v %“v)||L2(0T] .22(0)) — 0, (3.26)

and (| - ) folows by combining (3.19)) with - and -

Finally, the uniqueness can be estabhshed by using smnlar arguments as in the step 3 of the
proof of Theorem [2.19, W

The following result is a direct consequence of Theorem and Lemma |3.15]

Corollary 3.16. Assume that for P-a.e. w € Q, the assumptions (HY)] of Theorem[3.§]
hold and suppose furthermore that either

(Fa(wa'a'v')ﬁ%g)) E\ F(wa') (327)
or
(Fe(w, ), RY) 228 (F(w, -, ), B2) (3.28)
holds. Then:

e u¥ — u¥ in C([0,T]; L*(0));
o BT 1[0, 7): £2(0)):

e 0 <u¥(t) < supye( ) for all t € [0,T7;

o u¥ extended by Y in | — 00,0] is the unique solution of

(P50 ) (resp. (25 ) if (B27) holds
(Peae) (resp. (P50 ) if (B28) holds.

4. PROOF OF THE STOCHASTIC HOMOGENIZATION THEOREM

In this section we prove Theorem 3.8

4.1. Convergence of time delays reaction-diffusion problems of gradient flow type.
Let T > 0, let {@.}.~o < [0, 0] and
sup a. < 00,

e>0
let {Z.}c~0 < C(]0,T]; R) be such that 0 < Z. < Z.(T) for all € > 0 and
sup Zg(T) < 0. (4.1)
e>0

For each € > 0, let &. : L?*(O) — [0, o0[ be a convex and Fréchet-differentiable functional, let
F.:[0,00[x L*(0) x L*(0) — L*(0), let R. : C.(] — 0, T]; L*(0)) — L*([0,T]; L*(O)) be a
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time delays operator associated with {m},;~o < ;" (R; L*(0)), let ¢. € C.(]—0,0]; L*(O))
and consider the following time delays reaction-diffusion problem of gradient flow type:

du,
(24
u.(t) = ¥.(t) € L*(0;[0,a.]) for all t €] — o0, 0].

(t) + V& (u(t)) = F.(t,uc(t), Bou(t)) for Lla.a. te|0,T]

Let & : L*(O) — [0,0] be a proper, convex and lower semicontinuous functional, let
G : [0,T] x L*(O) — L*(O) be such that G(-,v) € L*([0,T]; L*(O)) for all v € L*(0), let
¥ € Ce(] — 0,0]; L*(O)) and consider the following problem of gradient flow type:

d
) + 0% (u(t)) 3 G(t,u(t)) for Ll-aa. te[0,T]
dt
(Z0)
u(t) = (t) for all t €] — oo, 0] and ¥(0) € dom(&)).
To establish the following result, which gives sufficient conditions for the convergence of ()
to (%) as € — 0, we do not need the existence but only the uniqueness of the solution of

(Po).

Theorem 4.1. Assume that:

(C1) Sgg%a(wa(O)) < 0

(C2) Yo — ¢ in C(] — 0,0]; L*(0));

(C3) for eache >0, (P.) admits a solution u. € AC([0,T]; L*(0)) with 0 < u. < z. < z.(T)
and SUP.~q HFE(, Ue, ‘%EU/E)HLQ([O,T];LQ(O)) < 00.

(Cy) for every {v.}eso = L*(O), if sup&.(v.) < o then {v.}.~o is relatively compact in
e>0

L*(0).
Then, there exists u € C([0,T]; L*(O)) such that up to a subsequence:
u. — u in C([0,T]; L*(0)); (4.2)
du du
= — — in L*([0,T]; L*(0)). 4,
e D i 10,7 12(0)) (43)

Moreover we have
0 <u(t) <supz(T) for all t € [0,T].

e>0
Assume furthermore that:
(Cs) for every v e C([0,T]; 2(0)),

u. — v in C([0,T]; L*(0)) = F.(-,u., Ru.) — G(-,v) in L*([0,T]; L*(0));
(Co) & 2L &f}

(C7) the problem (Py) admits at most one solution.

3By & M, &o we mean that {&.}.~0 Mosco-converges to &, see Appendix [C| for more details.
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Then, (4.2)—(4.3) hold for the whole sequence £ and
u extended by v in | — 0, 0] is the unique solution of (Py).
Moreover, ¥(t) € [0,a] for all t €] — o0,0] where @ := sup.- ae.

Proof of Theorem [4.3]. In what follows the scalar product in L*(O) is denoted by (-, -).
The proof is divided into three steps.

Step 1: bounds. First of all, from |[(Cs){and (4.1)) we see that

0 <wu. <supz(T) < 0. (4.4)
e>0
Hence
sup |[uel|(o,r1,22(0y) < - (4.5)
e>0

Fix any ¢ > 0. From and (P.) we deduce that for Z-a.e. t € [0,T],

ldue 22(0) <V% us(t)), S > < (1, ue(t), Feue(D)), d;fj<>>

t
and so, by 1ntegrat1ng over [0, 77,

J d“*:t dt+f <V% ue(t d“é >dt—J < (t, u(t), Bouc(t)), d“5()>dt.
o | at LQ(O) dt

But 4&.(u.(t)) = (V& (u.(t)), Le >f0r Flaa. te[0,T] and u.(0) = 1.(0) by (£.),
hence

L<va@w»%%ﬂMh{;%aw¢m&=awaw—awm»

and consequently

du. |* T du.
di = F(t, ue(t), Ruc(l)), di —=(t) ydt +&. (1=(0)) — Ee(ue(T))
L2([0,7];L*(0)) YO
du,
SRt et ooy | |+ Eelue) — Bu(ua(T)) (46)
L2([0,T);L2(0))
du6
< HF€<'7 UE)HB([O,T];L? dt + %z-:(wz-:(o))'
([0,1];L2(0))
Noticing that by [(C)| and |(Cs)| we have:
¢p :=sup &.(¥:(0)) < oo;
e>0
C2 = Slilg HFE('7uE?’%EuE)HLQ([O,T];LQ(O)) < 0, (4.7)

it follows that for every ¢ > 0,

2
du,

<C du,
dt |l L2 (g0.17:2(0))

dt

+1
([0,7;L2(0))
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with C' := max(cy, ¢2), which implies that
du,
dt

sup < 0. (4.8)

e>0

L2([0,7];L2(0))

Step 2: compactness. By (4.5)), {u.}.~0 is bounded in C([0,T]; L*(O)). Moreover, For
every (s1,82) € [0,T] x [0,T] with s; < so,

%2 | du,
O P K01 I
s1 L2(0)
d
< (so—s1)7 sup te ;
>0 | 4t [ rao,ryi2(0))

which, by (4.8), implies the equi-continuity of {u.}.~o. On the other hand, from |(C;)| and

it is clear {u.(0)}.~0 = {¥-(0)}c=¢ is relatively compact in L?*(0). Morever, if s €]0, T
then, by replacing T by s in (4.6)), we have

du du
: | (e, Boue) | om0 .72 ' : +&.(1-(0)).
dt | 2 o,m; LQ(O))< POTREEO) dt || p210,77.22(0))

From [(Cy)] (4.8) and (4.7), it follows that sup.. & (u-(s)) < c. Hence, by [(Co)}, {u-(s)}e=0

is relatively compact in L?(0). Consequently, by Arzela-Ascoli’s compactness theorem there
exists u € C([0,T]; L?(0)) such that, up to a subsequence,

&.(u.(9) <]

u, — u in C([0,T]; L*(0)). (4.9)
From (4.8) we deduce that
du.  du 9 9
o pr in L*([0,7T]; L*(O)) (4.10)

and from |(Cs)[and (4.9)) it follows that 0 < u(t) < sup,.oZz.(7") for all ¢t € [0, T].

Step 3: convergence to the solution of (%,). We are going to prove that u is a solution
of (@0)

Step 3-1: Legendre-Fenchel transform of (9,). Fix any € > 0 and denote the Legendre-
Fenchel conjugates of &. and &, by &* and & respectively. From Fenchel’s extremality
relation (see Proposition [B.4{(b)) we see that (%.) is equivalent to

E-(uc(t)) +&X(Ge(t) — d(zf (1)) —|—<d;;€ (t) — G(1), us(t)> =0 for Lla.a. te|0,T]

u.(t) = .(t) € L*(0;[0,a.]) for all t €] — o0, 0].

with G. = F.(-, us, Rou.). Using Legendre-Fenchel’s inequality (see Theorem [B.2(b)) it
follows that

[[ w0 + 2 60— Sz + (S0~ Gttty )| =0

(Pe) =10

u.(t) = ¥.(t) € L*(0;[0,a.]) for all t €] — o0, 0].
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On the other hand, we have

[ (B0 -ttt yar = [ [ &G0~ Gty ueop)
1 -

Hence, for every € > 0,

[ [getuaton + g6t - e | e+ 5 (= o)
(Pe) =1 —f (G.(t),uc(t)ydt = 0 (4.11)
Lue(t) = ¥c(t) € L*(0;0,a.]) for all ¢ €] — o0,0].

Step 3-2: passing to the limit. First of all, from we have
Y(t) — (t) in L*(0) for all t €] — 0, 0]. (4.12)
But, by (2.), 1¥:(t) € [0,a.] for all £ €] — o0, 0], hence
W(t) € [0,a] for all t €] — 0, 0]
with @ := sup,.,a.. By we have
u=(0) — u(0) in L*(0),
and from (2.) and we see that

4.(0) = u.(0) = ¥(0) in L(O). (4.13)

Hence:
u(0) = (0); (4.14)
lim [15-(0) [22(0) = [4(0) 32(0) (4.15)

Moreover, from |(C;)), (4.13) and |(Cg)| we have
%O(Z/)(O)) < h_m%e(we(())) < sup %E(ws(o)) < OO,

e—0 e>0

and consequently
¥ (0) € dom(&)). (4.16)

Since u.(T) = u(0 +S§ duc (4)dt and u(T) = +S§ du (1) dt, from (4.10)), (4.13)) and (4.14)

we deduce that

lim |[ue(T)|Z20) = |u(T)|Z2(0)- (4.17)

e—0
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Let Ey, E¢ : L*([0,T]; L*(O)) — [0, ] be defined by

Fo(u) = f %o (u(t))dt

0

Ex(u) = f & (u(t))dt

and, for each € > 0, let Let E. : L*([0,T]; L*(O)) — [0, «] be defined by

EX(u) = J & (u(t))dt.

0

From |(Cg)| and Theorem |C.4] we have &* M, &y. Hence E. 2, Ey and E* M, E; by
Theorem |C.5, From (4.9), |(C5)[and (4.10)) it follows that:

h_mEs(us) = E0<u)7 Le.

e—0
T T
tin |8 (w.(0)at > | Efult)ie (4.18)
e—0J0 0
. . du, . du. .
il_)_n(l)Ea (Ge — E) = Ej(Go — %), Le.
T T
lin | 2(G(t) - e = | & (Golt) - G o) (4.19)
e—0J0 dt 0 dt

with Gy := G(-,u). Extending u by ¢ in | — o0, 0] and taking (4.13)), (4.14)), (4.15)), (4.16]),
(4.17), (4.18) and (4.19) into account, by letting ¢ — 0 in (4.11]) we obtain

[ [gatuto) + g5(Gato) - G0 | e+ S0 - Juto

0

< —JT<GO(t),u(t)>dt< 0

L u(t) = () for all t €] — 00,0] and 1(0) € dom(&)),

i.e.

JT [go(u(t)) + &5 (Go(t) — %(t)) + <%(t) — Go(), u(t)>] dt <0

0

u(t) = 9(t) for all t €] — o0, 0] and 1(0) € dom(&).
But, by using again Legendre-Fenchel’s inequality (see Theorem [B.2(b)), we have

Eo(u(t)) + & (Golt) — %(t)) + <%(t> — Golt), u(t)> > 0 for Llaa. te 0,17,
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hence

JT lgo(U(t)) + &5 (Go(t) — %(t)) + <%(t) — Go(t),u(t)>] dt =0

0 (4.20)

u(t) = (t) for all t €] — o0, 0] and ¥ (0) € dom(&)).

Using again Fenchel’s extremality relation (see Proposition [B.4(b)) we see that (4.20) is
equivalent to

%(t) +0&o(u(t)) 3 Go(t) for Z'-aa. tel0,T]

u(t) = (t) for all t €] — oo, 0] and ¥(0) € dom(&)),

which shows that u is a solution of (%), and the proof is complete because of the uniqueness

of the solution of (%) by (C;) B

4.2. Proof of Theorem By [AHMM23, Theorem 4.8] there exists ' € F with
P(Q) = 1 such that for every w € ', { £ (w,")}e=0 (resp. {F9(w,")}e=0) Mosco-convergence

t0 Fhom(w, ) (resp. £ (w,-)). Let Q" € F be such that P(Q") = 1 and (in

Theorem hold. Set O = ' A Q”. Then Q € & and ]P’(Q) = 1. We are going to apply
Theorem [4.1]

Firstly, from [(HY)H(HS )|it is easy to see that [(Cy)H(Cs)|and [(Cs)[ hold with ¢, = ¥, ¢ = ¥,
U = u¥, Z. =y, a. = pv,a=p, F. = F.(w,-,~,"), G = G* and &. = F(w,) (resp.
&. = 79 (w,-)). Note that is verified with &. = % (w,-) (resp. &. = #9(w,-)) by using
[AHMM?23), Lemma 4.2] (resp. [AHMM?23, Lemma 4.3]). Secondly, [(Ce)|is satisfied with &, =
F(w, ) and & = fhom(w, ) (resp. & = FI(w,-) and & = £ (w,)) because { £ (w,)}e=0
(resp. {F9(w,-)}e=0) Mosco-convergence to Fhom(w, ) (resp. Ao (w,-)). Finally, by
we sse that is verified with G = G¥, and the conclusion of Theorem follows by
applying Theorem and noticing that 0 fom(w, ) = {Vfom(w, )} (vesp. 047 (w,-) =
(V70w ))). W

5. APPLICATION TO SPATIAL POPULATION DYNAMICS

Here we apply Corollary to nonlocal spatial population model with age structure.

5.1. Nonlocal spatial population model. In general terms, without considering spatial
interactions between individuals and potential delays caused by age differences among indi-
viduals, the mathematical description of a population dynamics model can be described by
a differential equation of the form:

du
dt

where u(t) represents the population size at time t. Here we assume that spatial movement
is possible without constraints in the sense that individuals can disperse and interact with

(t) = birth - death + (immigration or harvesting)
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other individuals over relatively long distances. This means that the model is nonlocal and
can be described by a partial differential equation of the type:

ou

—(t, z) + nonlocal diffusion term = birth - death + (immigration or harvesting),

dt

where, in order to use our results from Section 3] the nonlocal diffusion term will be a nonlocal
integral functional of type 7 + 9, with # and 9, given by and respectively. The
term “birth - death + (immigration or harvesting)” represents the reaction process. In order
to incorporate the age structure, it will be necessary to introduce time delays specifically
in the “birth” component of the reaction term (see . In this way, in §5.2| we present
a class of reaction functionals within a stochastic framework. From now on, as in Section
, (Q, F P {T.}.czq) is a dynamical system and O = R? (with d = 1,2 or 3) is a bounded
domain with Lipschitz boundary.

5.2. Random reaction functionals. Let f: Q x [0,0[xR? x R x R — R be defined by

f(w,t,x,ﬁ, C) = b(wathaC) - d(w7tax7£) + a(w,t,x), (51)

where b : Qx [0, 0[xRIxR —]0, 0] and d : Q2 x[0,00[xR¥x R —]0, o[ are two (F @B(R)®
B(RY) ® B(R), B(R))-measurable functions representing “birth” and “death” respectively,
and a : Qx[0,0[xR? — Ris a (FQB(R)®B(R?), B(R))-measurable function representing
the immigration or harvesting rate.
We further consider the following assumptions:
(Ay) for P-a.e. we Q and for every T € [0, o[, b(w, -, -,-) € L*([0,T] x R? x R);
(As) for every T € [0, [, b(-) := esssup {b(-,t,2,¢) : (t,2,() € [0,T] x R x R} € Lj(2);
(A3) for P-a.e. w e Q and for every T € [0, [, b(w,t,,() is locally Lipschitz continuous
in ¢ uniformly with respect to (t,z) € [0,T] x R%;
(A,) for P-a.e. we Q, b(w,-,-,0) = 0;
(As) for P-ae. we Q, every x € R? and every z € Z¢, b(T,w, -, ,-) = b(w, -,z + z,);
(Ag) for P-a.e. we Q and for every T € [0, [, d(w, -, -,-) € L®([0,T] x R? x R);
(A7) for every T € [0,0[, d(-) := esssup {d(-,t,z,&) : (t,2,€) € [0,T] x R? x R} € LL(Q);
(As) forP-a.e. we Qandevery T € [0,00[, d(w, ") := essinf {d(w,t,z,-) : (t,2) € [0,T] x R*}
is continuous and increasing on [0, o0[;
(Ag) for P-a.e. w e  and for every T € [0, [, d(w,t,z,£) is locally Lipschitz continuous
in £ uniformly with respect to (t,z) € [0,T] x R
(Ayg) for P-ae. weQ, dw,-,-,0) =0;
(Aqy) for P-ae. we Q, every 2 € R? and every z € Z¢, d(Tow, -, z,-) = d(w, -,z + 2,-);
(Ajp) for P-a.e. we Q and for every T € [0, 0], a(w,-,-) € LZ([0,T] x RY);
(Ay3) for every T € [0, 0], a(-) := esssup {a(-,t,z) : (t,z) € [0,T] x R} € L}();
(A1) for P-ace. we Q, every z € RY and every z € Z%, a(T.w, -, x) = a(w, -, v + 2);
(Ag5) for P-ae. weQ, b(w,, ) +a(w,-)=0.
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Remark 5.1. The assumptions |(A4)|and |(A1o)| are not restrictive. In fact, if we have a triple
(b,d, a) that satisfies [(A1)[{(As)} [(As)H(Ag), and |(A11)[{(A15), we can obtain a new triple that
satisfies [(A1)H(A5)| without modifying the function f defined by . We achieve this by
considering the triple (b — b(-,-,-,0),d —d(-,-,-,0),a + b(-,-,-,0) — d(-,+,-,0)) instead of the
original triple (b,d, a).

For each € > 0, let f. : Q x [0,00[xR? x R x R — R be defined by
x
fa(wat7$a§7C) = f <w7t7 g7£7€>

with f: Qx [0, 0[xR¥x Rx R — R given by (5.1) and let F. : Qx [0,00[xL*(O) x L?(0) —
L?*(0) be defined by

F.(w, t,u,v)(z) = fo(w,t,z,u(x),v(x))
= 1 (w0t ul@), v())
T T x
et Do) d (et D) ra(wn ). 62
w 6U(x) wgu(x)—i-aw . (5.2)
The following lemma shows that under the previous assumptions the family {F.(w, -, -, ")},

is a family of DCP-structured reaction functionals (see Definition [2.16)).

Lemma 5.2. Assume that hold. Then, for every e > 0 and P-a.e. w € (Q,
F.(w, ) € Fpep with (f.(w,-,),7%,7°()) = (0,5*,5°) where 7 = d~ ' (w,b(w) + a@(w))
with d”*(w,-) denoting the inverse function of d(w, )E|

Proof of Lemma [5.2 Fix ¢ > 0 and a suitable w € Q. We only need to establish the
condition [(DCPs)| First of all, bywe have f.(w,t,2,0,() = b(w,t,%,() +a(w,t,2) =0
for all (¢t,z,¢) € [0,00[xR x R. On the other hand, let p* €]0,00[ be such that p* >
d M (w,b(w) + a(w)) and set 7*(-) := p*. Taking into account we see that for every
(t,z) € [0,T] x RY,

X X
d( at7_a_wt):d< at7_a_w)
w,t, = GE (1) w,t, =P

v
=S
€
=

(Y,
=1
£ €
+ &
8l -

According to [(As) and |(A13)| it follows that
a(wt,2520) 2 b (w0, 2,¢) +a(wt,2),
£ 5 £

ie. fo(w,t,x,72(t)) < 0 for all (¢,7,¢) € [0,T] x R? x R, which establishes with
fow,-,)=0. 1

To illustrate our purpose, here are a few examples of well-known models that are compatible
with our framework.

4Such an inverse function exists because of the condition
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FEzample 5.3 (Nicklson’s blowflies model). For this model we have:

d(w,t,z,8) = d(w, t, )¢ (5-3)
with v > 0 and 3,8 : Q x [0,00[xR? —]0, oo[ such that
B(w):= esssup PBlw,t,x) <o
for P-a.e. w € () (t)e(0,00) xR 5.4
ortrac. wessh d(w):= essinf §(w,t,x) > 0. (5.4)

(t,z)€[0,00[ x R4

Here, p* has to verify the following condition:

Example 5.4 (Wazewska-Czyziewska and Lasota model). For this model we have

b(w7 t? gj? C) = ﬁ(w7 t? ':C)e_ﬂyc
and d : Qx [0, 0[xR¢xR —]0, o[ given by (5.3]) with v > 0 and 3,4 : 2x [0, 00[xR? —]0, oo
satisfying ((5.4). Here, p* has to verify the following condition:

L, Bw)

~ow)’
Example 5.5 (Mackey-Glass model). For this model we have

b<w7 t,, C) = B(wv t, x)g(C),
where g : R — R is defined by

C_ if¢>0
9(¢) ::{ 0" <o,

and d : Qx [0, 0[xR¥xR —]0, oo given by (5.3)) with v > 0 and 3,6 : 2x[0, o[ xR? —]0, oo
satisfying (5.4). Here, p* has to verify the following condition:

i ()

Remark 5.6. Several reactions functions are incompatible with our framework, including the
logistic function with emigration. For further details about these reaction functions, we refer
to [AHMM22].

5.3. Nonlocal reaction-diffusion problems with age structure. Let o : QO x R? —

[0,0[ be a (F ® B(RY), B(R))-measurable function satisfying the following properties:

(Ajg) there exists k € IN* such that for P-a.e. w € Q, |o(w,RY)| = k, ie. o(w,R?Y) =
{o¢, -+ ,o¢} with of,--- 0¥ € [0, 0];

(Ay7) for every T € [0,00[ there exists M > 0 such that for P-a.e. w € Q and every
(t,2) € [0,T] x R t — o(w,x) € [-M,T];

(Ag) for P-ae. we Q, every x € R? and every z € Z¢, 0(T.w, 1) = o(w, v + 2).
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Let T > 0. For each w € Q and each ¢ > 0, let 2% : C.(]— o0, T]; L*(0)) — L*([0,T]; L*(0))
be a time delays operator associated with {m¥,},>0 ;" (R; L*(0)) defined by

w 1
mat = Eétfa(w,é) .

Then, % : C.(] — 0, T]; L*(0)) — L*([0,T]; L*(0)) is given by

Ru(t) = %u (t -0 <w, E)) :

For each ¢ > 0, let F. : Q x [0,0[xL?*(0) x L*(O) — L?*(O) be given by (5.2) and let
JF9: Q x L*O) — [0,00] be given by (3.10) and, for each w € €, let p* €]0, 00| be given
by Lemma .2} let ¢ € C.(] — «,0]; L*(O)) and consider the following Dirichlet-Cauchy

nonlocal reaction-diffusion problem with age structure of gradient flow type:
du?

(P2S) dt
u?(t) = ¥ (t) € L*(0;[0,p°]) for all t €] — o0, 0].

(t) + VI (w,us(t)) = Fo(w, t,u?(t), Bus(t)) for L'-a.a. te|0,T]

Note that (223) can be rewritten as follows:

ou¥ 1 Ty r—y w w
ot (t7‘7‘:) - ﬁ OJ<wugvgu c )(us (t7y) — U, (t,%))dy

1 rT Yy r—y w
_F J (wa 27 ga - > (g(y) — U (t,[[’))dy

ul(t,z) = Y¢(t,x) € [0,p¥] in | — 00,0] x O,

where J : 2 x R% x R? x R? — [0, oo| satisfies |(PNL;)H(PNLy)| and g € L?(O7\O) verifies
(3.4) with O7 := O + supp(J) = O + Bpg,(0) (see for more details).

In order to apply Corollary we need to establish the mixing convergence (see Definition

of {(F-(w, "), RY)}e=0 which is the object of the following lemma.

Lemma 5.7. Assume that hold. Gien T > 0 we further assume that:

(Ayg) for P-a.e. w € Q, the functions a(w,-, x), blw,,z,§) and d(w,-,z,() are Lipschitz
continuous uniformly with respect to x, (x,€) and (x, () respectively;

(Agg) for P-a.e. we Q and for each € > 0, supp(¢¥) < [-M,0] where M > 0 is given by
(Ai7)}

Then, for P-a.e. w € (),

(Fa(wa 5 ')’ %?) — F(w> ')a
1.€.

Fo%e (v) — F(w,v) in L*([0,T); L*(0)) for all ve C.([-M,T]; L*(O;[0,5*])),
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where F°% : Cy([—M, T; L*(0;[0,7])) — L*([0,T); L2(0)) is given by and F(w,-) :
Ce([—M, T] 2(0;[0,p°])) — L2( ,T; L*(0)) is defined by

0,
[
Plo® =& | [ o (o (je-oton) ) av| @ 87 | [ attmooan] e

+E7 UY a(~,t,y)dy] (w). (5.5)

Proof of Lemma B.7. Let S&([—M,T]; L*>(0)) denote the subset of C([—M,T]; L*(O))
made up of step functions. As L?(0) is separable it is easy to show that there is a countable
set @ < SP([—M,T]; L*(0)) which is dense in C([—M,T]; L*(0)). Fix any w € 9, i.e.
w = >, Ipw; with card(I) < oo, {w;}ier = L*(0) and {B;}ic; is disjoint covering of
intervals in [—M,T]. Taking |(A4)| and [(A;p)| into account, it easily seen that for P-a.e.
w e, every t € [0,T] and every € > 0,

P = St (1 (1= (. 2)) )b (o 2o) D100 (08 L) va (i,2).

From (((A,))), |(A5)|, [(A7)H(A 1)L [(A1s)H(A14)| and |(A1g)l by using Chabi-Michaille’s theorem
(see |[CM94, Theorem 4.2]) we can assert that for any ¢ € [0,7] there exists Q,; € F

with P(Qu,) = 1 such that F27 (w)(t) — F(w,w)(t) in L2(O) for all w € Qy,,. Setting
= N(wpepxqn[o,r 2w, We have Q' € F with P(Q') = 1 and

F2 % (w)(t) — F(w,w)(t) in L*(O) for allwe @', allwe P and all t e Q n [0,T]. (5.6)
By [(Ais)| and |(Ajg)| it can be in fact established that (5.6)) holds for Ll-a.e. t € [0,T].

Taking [(As)}, [(A7)[and [(A;3)|into account, from Lebesgue’s dominated convergence theorem
it follows that for every w e €,

F % (w) — F(w,w) in L*([0,T]; L*(0)) for all w € 9. (5.7)

Fix w € € and consider v € C.([—M,T]; L*(0;[0,5*])). First of all, by density, there exists
{wp =1 © D with w, € L*(O; [0,5*]) such that

w, — v in C([-M,T]; L*(0)), (5.8)

and it is clear that
Fo% (v) = F% (w,,) + (F;”@? (v) — F% (w,)) foralle >0and alln > 1.  (5.9)
On the other hand, by using (5.8)), |(A3)| and |(Ag)| we see that

,}Eﬂolﬂ% HFWW(U) F2 % (w, HL2 ([0,T];L2(0))

and by (5.7) we deduce that
F% (w,) — F(w,w,) in L*([0,T]; L*(0)) for all n > 1. (5.11)
Moreover, by using (3.17) with u; = v and uy = w,, (5.8) and the conditional Lebesgue’s

dominated convergence theorem it can be established that

lim [F(w, v) = F(w,wn)| 120, 13.02(0y) = 0- (5.12)

~0, (5.10)
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From ((5.10)), (5.11]) and (5.12), letting ¢ — 0 and n — o in (5.9)) we conclude that
F2 % (v) — F(w,v) in L*([0,T]; L*(0)),
and the proof is complete. B

According to Lemmas [5.2] and as a direct consequence of Corollary we obtain the
following homogenization result for (223) as ¢ — 0.

Corollary 5.8. For P-a.e. w e 2 and every € > 0, let u¥ be the unique solution of (95?5),

see Lemma and Corollary[3.5, and assume that the assumptions of Theorem
hold. Suppose furthermore that|(Ay)H(Aso)| are satisfied. Then:
o v — u” in C([0,T]; L*(0));

We D i 10, ) 12(0))

dt
o 0 <u’(t) <supy?(T) forallte[0,T];
e>0
o u¥ extended by v in | — o0, 0] is the unique solution of
d w
%(t) +VFL (w,u?(t) = Fw,u®)(t) for L -a.a. te[0,T]

uv(t) = ¢~ (t) € L*(0;[0,p%]) for all t €] — «0,0] and ¢*(0) € dom(F2 (w,"))
with F : Q x Co([-M, T]; L*(0;[0,7%])) — L*([0,T]; L*(0)) given by (5.5).

APPENDIX A. VECTOR MEASURES

Let E be a finite dimensional normed space, let B(FE) be the o-algebra of Borel subsets of
E and let Y be a Banach space. We begin with the following two definitions.

Definition A.1. We say that m : B(F) — Y is a Y-valued vector measure on E if m is
o-additive.

Let X be another Banach space.
Definition A.2. By a step function from F to X we mean s: E — X given by

s = Z 14,ai,
el
where [ is a finite set, {A4;}ic; € B(F) and {a;}ic; = X. We denote the class of step functions
from M to X by S™(E; X).

Assume further that there exists a continuous bilinear map B : Y x X — X. Then, we
define the integral of s € S*(E; X) with respect to m by

J s(Hdm(t) = 3 Bm(A.),a;) € X. (A1)
E el

The definition of SE s(t)dm(t) only depends on s (and is independent ({A;}icr, {a;}icr), see
[Din67, Chapter 11, §7, Proposition 1, pp. 107]). Given a X-valued vector measure m on F,
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let |m| : B(E) — [0, 0] be defined by

el

|m||(A):=sup {Z [m(A;)|:|I| < o0, {A;}ier € B(E) is pairwise disjoint and A = U A; }

iel

The set function |m| is called the variation of m.
Definition A.3. We say that m has finite variation if |m|/(E) < co.
The following proposition makes clear the interest of Definition [A.3]

Proposition A.4. If m has finite variation then |m| is a positive Borel measure and, for

every s € S (FE; X),
J s(t)dm(?)
E X

where C'g denotes the norm of the continuous bilinear map B.

< Cpsup [ s(t)]x|Im[(E),
teE

Let S (E; X) be the space of functions from E to X which are uniform limit of step functions.
Then, we can extend the integral with respect to m defined in (A.1]) for step functions s €
Stp(E X) to functions u € Si¥ (E; X) by defining {, u(t)dm(t) as the limit in X of the Cauchy

sequence {§, s,(t)dm(t)} _ where {s,}p=1 © S™(E; X) is such that lim supp | sn(t) —
n=z n—aoo
u(t)|x =0, ie.
J w(tydm(t) = Tim [ s, (t)dm(t).
E

n—0o0 E

This extension clearly does not depend on {s,},>1. Moreover, we have

Proposition A.5. If m has finite variation then, for every u e Sy (E; X),

| wimo) < | juo)dimio

Proposition is easy to establish for u € S®(FE; X), see [Din67, Chapter III, Section 7,
§2, pp. 110]. Then7 we argue by density. We refer to [Din67] for a comprehenswe review on
vector measures.

APPENDIX B. ELEMENTS OF LEGENDRE-FENCHEL CALCULUS

Let X be a normed space and let X™* be its topological dual. In what follows, for any u € X
and any u* € X*, we write u*(u) = (u*,u). We begin with the following definition.

Definition B.1. Let & : X —] — o0, o] be a propetﬂ function. The Legendre-Fenchel
conjugate (or the conjugate) of ® is the function ®* : X* —] — 0, 0] defined by

*(u*) := sup {(u*, u) — ®(u) 1 ue X}.

(As @ is proper and & > —oo we have ®* > —o0.) The Legendre-Fenchel biconjugate (or
the biconjugate) of ® is the function ®** : X — [—o0, c0] defined by

&**(u) := sup {(u*, u) — ®*(u*) : u* € X*}.

SWe say that ® : X —] — o0, o0] is proper if (its effective domain) dom(®) := {u € X : ®(u) < 0} + .
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(Since ®* > —o0, u* € dom(®*) if and only if there exists a € R such that ®*(u*) < a, i.e.
®(u) = (u*,u) — o for all u e X. Hence, if ® admits a continuous affine minorant functionf]
then ®* is proper and ®** > —o0.) The following theorem gives the main properties of the
Legendre-Fenchel conjugate and biconjugate (see [ABM14, §9.3, pp. 343] for more details).

Theorem B.2. Let & : X —] — o0, 0] be a proper function.

(a) If ® is convex and lower semicontinuous then ®* is proper, conver and lower semi-
continuous.
(b) (Legendre-Fenchel’s inequality.) For every u € X and every u* € X*,

D (u) + *(u*) — (u*,uy = 0.

(¢c) (Fenchel-Moreau-Rockafellar’s theorem.) If ® is convexr and lower semicontinuous
then

O = O
(d) If ® is convex and admits a continuous affine minorant function then
P** = @
where ® denotes the lower semicontinuous envelope of ®.

Here is the definition of the subdifferential of a function.

Definition B.3. Let ® : X —] — o0, 0] be a proper function. The subdifferential of ® is
the multivalued operator 0® : X—=X* defined by

0P(u) := {u* € X*: ®(v) = ®(u) + (u*,v —w) for all ve X}.
(Note that dom(®) > dom(0®) := {ue X : 0®(u) + &}.)

For the subdifferentials of convex functions we have the following result (see [ABMI14] §9.5,
pp. 355 and Lemma 17.4.1, pp. 737] for more details).

Proposition B.4. Let ® : X —]| — o0, 0] be a proper and convex function.
(a) If ® is Fréchet-differentiable at u e X then

00(u) = {V®(u)}.
(b) (Fenchel’s extremality relation.) If ® is lower semicontinuous then
u* € 0P(u) <= P(u) + ¢*(u*) — (u*,uy = 0.

(¢c) (Bronsted-Rockafellar’s lemma) If @ is lower semicontinuous then

dom(0®) = dom(P).

6This is true if ® : X —] — o0, 0] is a proper, convex and lower semicontinuous function, because P is
then equal to the supremum of all its continuous affine minorant functions.
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APPENDIX C. MOSCO-CONVERGENCE

13

Let X be a Banach space and let X* be its topological dual. In what follows, “—" (resp.
“—7) denotes the strong (resp. the weak) convergence. We begin with the definition of De
Giorgi I'-convergence (see [DMO93, [BD9S8| [Bra06] for more details).

Definition C.1. Let ® : X —] — 0, 00] and, for each € > 0, let &, : X —] — o0, 0]. We say
that {®.}.~o strongly I'-converges (resp. weakly I'-converges) to ®, and we write

¢ =T-lim @, or &. —> & (resp. & = I'-lim &, or &, = @),

if the following two assertions hold:
e for every ue X, I'-lim &, (u) = ®(u)(resp. ['y-lim P (u) = ®(u)) with

e—0 e—0

e—0 e—0

[s-lim @, (u) := inf {li_mCIDE(uS) U — u}

(resp. T'y-lim @, (u) := inf {h_m D (ue) : ue — u})

e—0 e—0
or equivalently, for every u € X and every {u.}.~o < X, if u. — u (resp. u. — u) then
lim @, (u.) = ®(u);

e—0

e for every u e X, FS-@)(IDS(U) < ®(u)(resp. FW—@)(I)a(u) < ®(u)) with
FS—F%QE(U) = inf {@@E(ug) DU — u}
(resp. FW—@@E(U) := inf {@ O (ue) : ue — u})

or equivalently, for every u € X there exists {u.}.~o < X such that u. — wu (resp.
us. — u) and

H&@E(ue) < O(u).

e—

From I'-convergence we can define Mosco-convergence (which was introduced by Mosco, see
[MosT1]).

Definition C.2. Let ® : X —] — o0, 00| and, for each ¢ > 0, let &, : X —] — o0, 0]. We say
that {®.}.~o Mosco-converges to ®, and we write

¢ = M-lim @ or . Mo,
if & =1 lir% b, =T- lir% ®. or equivalently FS—HéCDE <P < Iy-lim &..
e—s e— e— e—0

From Definition |C.2] it is easy to see that under a suitable compactness condition strong
I'-convergence is equivalent to Mosco-convergence.

Proposition C.3. Let ® : X —] — w0, 0] and, for each ¢ > 0, let . : X —] — o0, 0].
Assume that the following compactness condition hold:
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o for every {u:}eso € X, if sup @ (u.) < o then {u.}.~o is strongly relatively compact
e>0
m X.
Then, ®. LN if and only if O, M.
As stated in the following theorem due to Mosco (see [Mos71, Theorem 1]), in the reflex-

ive case and for lower semicontinuous, convex and proper functions, the Legendre-Fenchel
transform is continuous with respect to Mosco-convergence.

Theorem C.4. Let & : X —]|—o0, 0] be a proper, convex and lower semicontinuous function
and, for each ¢ > 0, let . : X —| — 00, 0] be a proper, conver and lower semicontinuous

function. If X is reflexive then ®, Mg if and only iof ®F M, @,

The following result allows to pass from Mosco-convergence in X to Mosco-convergence in
L3([0,T]; X) (see [AHMM22, Lemma 2.6, pp. 50| for a proof).

Theorem C.5. Fiz T > 0 and assume that X is a Hilbert space. Let ® : X — [0,00] be a
proper, convex and lower semicontinuous function, let © : L*([0,T]; X) — [0, 0] be defined

by

and, for each € > 0, let &, : X — [0,0] be a lower semicontinuous, proper and convex

function and let O, : L*([0,T]; X) — [0, 0] be defined by

1o, 2L & then 0. 2L 0.

APPENDIX D. GRONWALL’S LEMMA

In the paper we use the following version of the so-called Gronwall’s lemma (for a proof we
refer to [AHMM?22, Lemma A.1, pp. 277]).

Lemma D.1. Let T > 0, let a € [0,0[, let m € L'([0,T]) be such that m(s) = 0 for £'-a.a.
s € [0,T] and let ¢ € C([0,T];R) be such that ¢(s) < a + §; ¢(t)m(t)dt for all s € [0,T].
Then ¢(s) < aelo™ for all s € [0,T].
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