
HAL Id: hal-04227767
https://hal.science/hal-04227767

Submitted on 4 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPOT+: secure and privacy-preserving
proximity-tracing protocol with efficient verification over

multiple contact information
Souha Masmoudi, Maryline Laurent, Nesrine Kaaniche

To cite this version:
Souha Masmoudi, Maryline Laurent, Nesrine Kaaniche. SPOT+: secure and privacy-preserving
proximity-tracing protocol with efficient verification over multiple contact information. Communi-
cations in Computer and Information Science, 2023, Communications in Computer and Information
Science, 1849, pp.1-19. �10.1007/978-3-031-45137-9_1�. �hal-04227767�

https://hal.science/hal-04227767
https://hal.archives-ouvertes.fr

SPOT+: Secure and Privacy-preserving
Proximity-tracing Protocol with Efficient

Verification over Multiple Contact Information

Souha Masmoudi1,2[0000−0002−7194−8240], Maryline
Laurent1,2[0000−0002−7256−3721], and Nesrine Kaaniche1,2[0000−0002−1045−6445]

1 Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau,
France

2 Member of the Chair Values and Policies of Personal Information, Institut
Mines-Telecom, Paris, France

Abstract. At SECRYPT 2022, Masmoudi et al. introduced a group
signature scheme that offers an aggregated and batch verification over
massive proofs of knowledge, named Sevil. The performance analysis of
the proposed scheme demonstrates its efficiency and its applicability to
real world applications. In this paper, we introduce Spot+, an exten-
sion of Sevil to a concrete use-case referred to as a proximity-tracing
protocol. Spot+ is a secure and privacy-preserving proximity-tracing
protocol that ensures data consistency and integrity and preserves the
privacy of users who share their contact information with people in prox-
imity. Spot+ relies on Sevil to significantly improve the performances
of the Spot framework [IEEE Access Journal, 10, 3208697, (2022)] while
supporting aggregated and batch verifications over contact information
belonging to multiple users. In comparison with Spot, Spot+ construc-
tion allows to reduce computation complexity by 50% and 99% for ver-
ifying data integrity and consistency, respectively, when considering an
asymmetric pairing type and a 128-bit security level.

Keywords: Group Signatures · Proof of Knowledge · Batch Verification
· Proximity-tracing · Privacy.

1 Introduction

With the world-wide adoption of various contact-tracing protocols, several con-
cerns have been raised regarding their practical effectiveness, namely with the
increasing number of reported cases. Spot [14] is one promising solution that
permit to detect false injections while preserving users’ privacy thanks to the us-
age of group signatures and non interactive proof of knowledge (PoK). Indeed,
group signatures enable any group member, referred to as a signer, to sign a
message on behalf of the group, while remaining anonymous. As such, verifiers
authenticate the signer as a member of the group, but are not able to identify
him. For security reasons, verifiers need to ensure that signers are trustworthy
while verifying their signing keys, which compromises signers’ privacy. To solve

2 Masmoudi et al.

this dilemma and find the trade-off between security and privacy, group signa-
tures might be built upon proof of knowledge (PoK) schemes. That is, the signer
proves to verifiers the ownership of the signing key without revealing it, in an
interactive or non-interactive session.

Group signatures have been used in several applications namely electronic
voting systems [13], privacy-preserving identity management systems [2, 10, 21],
etc. Recently, they have been used to design privacy-preserving proximity-tracing
protocols [11, 14]. Indeed, in [11] Liu et al. design a proximity-tracing protocol
that relies on zero-knowledge proofs and group signatures in order to preserve
users’ privacy. Users first generate zero-knowledge proofs over their contact in-
formation and send them to the doctor in case of infection. Then, after verifying
the proofs, the doctor, being a member of a group, generates a group signa-
ture over each valid contact information and publishes it in a bulletin board. As
such, other users rely on their secret keys to determine their risk score. Later,
in the proposal Spot [14], authors suggested that contact messages generated
by users, in a decentralized manner, are first, subject to a real time verification
by a centralized computing server and a generation of a partial signature. Then,
their integrity is guaranteed thanks to PoK -based group signatures generated
by proxies distributed in different geographical areas (i.e., members of the same
group). In case of infection, a health authority is responsible for verifying the
validity of partial and group signatures. In both solutions, a separate verifica-
tion (i.e., including the verification of a group signature) should be performed
on every contact information.

Giving consideration to the huge number of contact messages and thus, PoK -
based group signatures, there is a crucial need to optimize the verification process
by verifying multiple contact messages belonging to the same or different users
in a single transaction. To this question, Masmoudi et al. proposed, in [15], the
first group signature scheme, named Sevil, that offers an efficient, aggregated
and batch verification over multiple proofs of knowledge, in particular Groth-
Sahai Non-Interactive Witness-Indistinguishable (NIWI) proof scheme [7]. The
proposed group signature scheme enables the signer (i.e., member of the group)
to preserve his privacy, through the non-disclosure of signing keys, while the
verifier still trusts it. The verifier is also able to perform verification over multiple
group signatures at once, resulting in performance improvements of up to 50%
compared to the naive verification.

In this paper, we present Spot+, a secure and privacy-preserving proximity-
tracing protocol that offers an efficient, aggregated and batch verification over
multiple contact information belonging to the same or different users. Spot+
supports a decentralized certification and a centralized aggregated and batch
verification of contact information. Indeed, as in [14], Spot+ relies on a hybrid
architecture that involves:

1. users who share their Ephemeral Bluetooth IDentifiers (EBID) when being
in close proximity and who generate a common contact message,

2. a distributed group of proxies that ensure users’ anonymity and contact
information integrity in a decentralized manner,

SPOT+: Proximity-tracing Protocol with Efficient Verification 3

3. a centralized server that ensures the correctness of contact information through
a real time verification,

4. a centralized health authority that verifies both the integrity and the cor-
rectness of multiple contact information provided by one or several infected
users.

Spot+ is designed to support the verification of multiple users’ contact in-
formation, through the integration and implementation of Sevil [15]. Indeed,
Spot+ relies on the Sevil group signature scheme to improve the performances
of the verification of contact information integrity and consistency by the health
authority. Thus, the contributions of this paper are summarized as follows:

– we design a proximity-tracing protocol that supports efficient batch verifi-
cation of the correctness and the integrity of contact information without
compromising security and users’ privacy.

– we evaluate the performances of Spot+ batch verification and we compare it
to the naive verification of each contact information. The comparison demon-
strates a gain of up to 50% for contact information integrity verification and
99% of their correctness verification.

The remainder of this paper is organized as follows. Section 2 describes the
preliminaries for this work. Section 3 gives an overview of Spot+ and Section
4 details its phases and algorithms. A security discussion is provided in Section
5 before evaluating Spot+ performances in Section 6. Section 7 concludes the
paper.

2 Preliminaries

In this section, we first, present the batch verification and describe the Sevil
scheme (cf. Section 2.1). Second, we give a brief state of the art of proximity
tracing protocols in Section 2.2. Finally, we summarize the properties and the
phases of the Spot protocol in Section 2.3. More details on Sevil and Spot
can be found in [15] and [14], respectively.

2.1 Batch Verification Over Massive Proofs of Knowledge

Regarding the increasing need to verify the integrity of data, on one hand, and
resource constraints’ problems, on the other hand, batch verification over multi-
ple signatures was introduced by Naccache et. al [16] for DSA-type signatures. It
allows to perform the verification of multiple signatures in a single transaction,
thus to reduce the computation overhead. Batch verification has been applied to
many types of digital signatures, namely group signatures. For instance, group
signature schemes that offer batch verification have been proposed to solve re-
source constraints’ problems for vehicular ad hoc networks [20] and IoT systems
[1, 22]. Batch verification schemes [12, 15] have been extended to support identi-
fication of invalid signatures following the divide-and-conquer approach [17].

4 Masmoudi et al.

Recently, a new group signature offering batch verification over multiple
NIWI proofs, called Sevil has been proposed by Masmoudi et. al [15]. Sevil al-
lows efficient, aggregated and batch verification over Groth-Sahai NIWI proofs,
while maintaining a high level of security and privacy. Indeed, verifiers check that
signers are trustful without being able to identify them or link several messages
signed by the same signer. Sevil also supports bad signatures identification
through the divide-and-conquer approach. In the following, we give a high level
description of the original Sevil scheme through five main algorithms, referred
to as Setup, Join, Sign, Batch Verify and Agg Verify defined as follows.

– Setup()→ (skg, vkg) – run by a group manager to set up the group signature
parameters. It returns the secret key skg of the group manager, and the group
verification key vkg that involves the public key of the group manager pkg
and a common reference string ΣNIWI of a NIWI proof associated with the
public key.

– Join(skg) → (sks, pks, σk) – performed through an interactive session be-
tween a group member (i.e., signer) and the group manager. It takes as
input the secret key skg of the group manager. The signer generates his pair
of private and public keys (sks, pks), and the group manager certifies the
signer’s public key pks while computing a signature σk.

– Sign(vkg, sks, pks, σk,m) → (σm, Π) – run by the signer. It takes as input
the group public parameters vkg, the signer’s pair of keys (sks, pks), the
signature σk over the public key pks and a message m. This algorithm out-
puts a signature σm over the message m and a NIWI proof Π over the two
signatures σk and σm.

– Batch Verify(vkg, {mi, Πi}Ni=1) → b – performed by any verifier. It takes as
input the public parameters vkg, a list of N messages mi and the associated
proofs Πi sent by the same or multiple signers. This algorithm returns a bit
b ∈ {0, 1} stating whether the list of proofs is valid or not.

– Agg Verify(vkG ,m,Π) → b – run by any verifier to identify the invalid sig-
nature(s), when the Batch Verify algorithm returns 0 over a list or a sub-list
of messages. Given the public parameters vkg, a message m and the asso-
ciated proof Π, from an invalid sub-list, the Agg Verify algorithm returns a
bit b ∈ {0, 1} stating whether the proof is valid or not.

2.2 Privacy-preserving Proximity-tracing Protocols

During the COVID-19 pandemic, several proximity-tracing protocols have been
proposed to support centralized [9], decentralized [3, 4, 19, 11, 18] or hybrid [5,
8, 14] architectures. Relying on the Bluetooth technology, they enable users to
broadcast contact information when they are in proximity with other people and
to receive alerts when they are at risk of infection.
Centralized solutions ensure that users receive only correct alerts. Indeed, a cen-
tralized server is responsible for generating contact tokens to users and to verify
the ones of infected users. These roles allow it to track users and identify their
contact lists, which undermines their privacy.

SPOT+: Proximity-tracing Protocol with Efficient Verification 5

Decentralized solutions have been developed to solve privacy issues. They en-
able users to generate their own contact tokens and share them with users in
proximity, such that they remain anonymous. However, users are exposed to
false positive alerts as decentralized solutions do not provide means to verify the
correctness of contact information. Additionally, most of the proposed solutions
[3, 4, 19] are vulnerable to replay attacks which impacts the reliability of the
proximity-tracing application.
Hybrid architecture based solutions have been proposed to leverage the best of
both centralized and decentralized architectures, i.e., ensure both security and
users’ privacy. They rely on a decentralized generation of contact tokens and
a centralized verification of infected users’ contact information. Indeed, Castel-
luccia et al. proposed Desire [5], a proximity tracing protocol where two users
in proximity relies on the Diffie-Hellman key exchange protocol [6] to generate
common contact tokens based on their Ephemeral Bluetooth IDentifiers (EBID).
As no control and verification are applied on the generated tokens, users are able
to collude and merge their contact lists leading to false positive alerts injection.
Furthermore, the server responsible for evaluating users’ risk scores, is able to
de-anonymize users and link their exposure status and risk requests. In [8], con-
tact tokens are also generated in a decentralized way through an interactive
session between two users in proximity. However, during the centralized verifica-
tion, identities of users being in contact with an infected person are revealed to a
central server which enables it to track users. In [14], Masmoudi et al. proposed a
solution, named Spot, that offers a decentralized generation and certification of
users’ contact information in order to ensure their integrity and consistency. As
a result, malicious users are prevented from injecting false positive alerts. The
centralized verification allows to verify the integrity and consistency of infected
users’ contact information without being able to identify with whom they were
contact.

2.3 Secure and Privacy-preserving ProximiTy Protocol (SPOT)

Spot is set upon an hybrid architecture that involves four actors, namely a user
(U), a server (S), a proxy (P) belonging to a group of proxies, and a health
authority (HA). Spot architecture relies on (i) a decentralized proxy-based so-
lution to preserve users’ privacy (i.e., anonymity) and ensure the integrity of
contact information, and (ii) a centralized computing server-based solution to
ensure contact information integrity and consistency through real-time verifica-
tion. In the following, we give a high level description of Spot three phases.

The first phase, called Sys Init, refers to the initialization of the whole
system. It includes the generation of the system global parameters and the keys
of S and HA, the setting up of the group of proxies, the joining of proxies to
the group and the registration of users at HA. During users’ registration, HA
generates, for each user, a unique identifier which is used to generate U ’s pair of
keys. The user’s unique identifier and public key are stored by HA.

The second phase, called Generation, refers to the generation of contact
information when two users are in close proximity. They exchange their EBIDs

6 Masmoudi et al.

in order to compute a common contact message. Each user relays the generated
message to the server through the group of the proxies. Indeed, the two users
should select two different proxies w.r.t. to a comparison of their EBIDs. The
two proxies relay the common contact message to the server. S performs a real-
time verification by checking if he receives the same message from two different
proxies. If the verification holds, S partially signs the message and returns the
partial signatures to the two proxies. Each proxy extends the given message
with the corresponding user’s identifier and signs it on behalf of the group. The
resulting message and group signature are sent to the user. They are associated
to the common contact message to constitute the contact information stored in
the user’s contact list for for ∆ days.

The last phase, calledVerification, refers to the verification of the integrity
and consistency of contact information provided by an infected user. For each
contact message, HA performs two verifications. The first one allows to check
the validity of the group signature, while the second one allows to verify that
the real-time verification over the message has been performed by S. If both
verifications hold, the message is added to a set of verified contact messages of
infected persons and shared with other users. Otherwise, the message is rejected.
As such, Spot guarantees that users receive only true positive alerts.

3 SPOT+ Protocol

Spot+ architecture involves the same entities as Spot, namely the user U , the
server S, the group of proxies P and the health authorityHA, as depicted in Fig-
ure 1. It involves three main phases, referred to as Sys Init, Generation and
Batch Verification. For ease of presentation, we only illustrate Generation
and Batch Verification phases in Figure 1 (i.e., we assume that the group
of proxies is set up and that users have been already registered at the health au-
thority). Spot+ includes thirteen PPT algorithms whose chronological sequence
is depicted in Figure 2. Note that, for the sake of clarity, we consider (i) only
one proxy in the sequence diagram, (ii) only one user UA for the Generation
phase , and (iii) two infected users UA and UB for the Batch Verification
phase.

3.1 Sys Init Phase

The Sys Init phase consists of setting up and initializing the whole system,
relying on the following seven algorithms.

– Set params(λ)→ pp – run by a trusted authority to set up the system public
parameters pp relying on the security parameter λ. Without loss of generality,
we assume the system public parameters pp are an implicit input to the rest
of the algorithms.

– j keygen()→ (skj , pkj) – run by a trusted authority to generate the pair of
keys of both HA and S denoted by the couple (skj , pkj) where j = {HA,S}.

SPOT+: Proximity-tracing Protocol with Efficient Verification 7

Fig. 1: Overview of the Spot+ Protocol

– Setup ProxyGrGM() → (skg, vkg) – performed by the group manager to de-
fine the group of proxies and set up the group signature parameters. These
parameters include (i) public parameters referred to as the proxies’ group
verification key vkg represented by the couple (pkg, ΣNIWI) (i.e., pkg is the
group manager public key and ΣNIWI is the Common Reference String CRS
of a Groth-Sahai NIWI proof [7]), and (ii) secret parameters namely the
secret key skg only known by GM.

– Join ProxyGrP/GM(skg)→ (skp, pkp, σp) – run through an interactive session
between P and GM to enable a proxy to join the group. For this purpose,
P first generates his pair of keys (skp, pkp) and shares the public key pkp
with GM. GM generates a signature σp over pkp relying on the secret key
skg. The signature σp is given back to P. The Join ProxyGr algorithm is
performed every time a new proxy joins the group.

– Set UserIDHA()→ (tU , IDU) – performed byHA when U installs the proximity-
tracing application and asks to be registered. HA generates a specific secret
value tU and the associated identifier IDU for U . Note that tU is kept secret
by HA and only IDU is given back to U .

– UserkeygenU(IDU) → (skU , pkU) – run by U to generate his pair of keys
(skU , pkU) relying on his identifier IDU . Note that the user’s public key pkU
is sent to HA to be stored in a database DBUSER.

Note that the Set UserID and UserkeygenU algorithms are performed every
time a new user installs the proximity-tracing application.

8 Masmoudi et al.

Fig. 2: Workflow of SPOT and SPOT+ Protocols

3.2 Generation Phase

The Generation phase occurs when two users UA and UB are in proximity and
they exchange random EBIDs denoted by DeA for UA and DeB for UB . Note that e
denotes an epoch in which an EBID remains unchanged. These EBIDs are used
to generate a contact message relying on the following algorithms.

– Set CCMU (D
e
A, D

e
B) → CCMeAB – performed by each of two users UA and UB

being in proximity. Each user generates separately a common contact mes-
sage CCMeAB based on EBIDs DeA and DeB . Note that CCMeAB is relayed to S
via the group of proxies.

– S PSignS(CCM
e
AB , skS) → (PSeAB , PS

′e
AB) – run by S when receiving two

copies of the same contact message from two different proxies P1 and P2.
S generates a partial signature represented by the couple (PSeAB , PS

′e
AB) in

order to be stored with the corresponding common contact message CCMeAB

for ∆ days. S only returns PSeAB to P1 and P2.
– P SignP1

(vkg, skp1
, pkp1

, σp1
, IDUA

, PSeAB) → (MeAB , σm, π) – performed by
each of the two proxies P1 and P2 for the corresponding users UA and UB ,
respectively. For ease of presentation, we consider only the user UA and the

SPOT+: Proximity-tracing Protocol with Efficient Verification 9

proxy P1. Relying on the proxies’ group public parameters vkg, his pair
of keys (skp1

, pkp1
), the signature σp1

, the identifier IDUA
of UA and the

message PSeAB , P1 generates a new message MeAB , signs it by computing
σm, and computes a NIWI proof π over the two signatures σp and σm. P1

returns the couple (MeAB , π) to UA that stores it along with the common
contact message CCMeAB in his contact list CLUA

for ∆ days.

3.3 Batch Verification Phase

The Batch Verification phase occurs each period of time t after collecting a
list N contact messages from infected users. During this phase, HA verifies the
correctness of the N contact messages, in a single transaction. For this purpose,
it performs two verifications relying on the following algorithms.

– Batch Sig VerifyHA(vkg, {MeAiBi
, Πi}Ni=1) → b – performed by HA to check,

at once, the validity of multiple group signatures (i.e., NIWI proofs) {Πi}Ni=1

over messages {MeAiBi
}Ni=1 belonging to different users. Thus, relying on the

group public parameters vkg, the Batch VerifyHA algorithm returns b ∈ {0, 1}
stating whether the given list of proofs is valid or not.

– Agg Sig VerifyHA(vkg, M
e
AB , Π)→ b – run byHA once the Batch Sig VerifHA

algorithm returns 0 over a list or a sub-list of contact messages MeAB and the
corresponding proof Π. Then, relying on the group public parameters vkg,
the Agg Sig Verify algorithm is performed over a single message MeAB and the
corresponding proof Π, from an invalid sub-list. It returns b ∈ {0, 1} stating
whether the proof is valid or not.

– Batch CCM VerifyHA({MeABi
, PS′

e
ABi
}Ni=1, pkS , tUA

) → b – performed by HA
for a user UA to verify, in a single transaction, that all the contact messages
contained in his contact list, have successfully reached S and been verified
in real time. To this end, HA retrieves from S, the list {PS′eABi

}Ni=1 w.r.t.
UA’s list of common contact messages {CCMeABi

}Ni=1. Then, relying on the
public key pkS of S and the secret value tUA

specific to UA, it returns b ∈
{0, 1} stating whether the list of messages {CCMeABi

}Ni=1 has been correctly
generated or not.

4 SPOT+ Algorithms

This section gives a concrete construction of the different phases and algorithms
of Spot+, w.r.t. to the group signature scheme introduced in Section 2.1.

4.1 Sys Init Phase

– Set params – this algorithm takes as input the security parameter λ and
outputs an asymmetric bilinear group (q, G1, G2, G3, g1, g2, e) and a cryp-
tographic hash function H : {0, 1}∗ → Zq. The system public parameters pp
are then represented by the tuple (q,G1,G2,G3, g1, g2, e,H).

10 Masmoudi et al.

– HA keygen – this algorithm takes as input the system public parameters pp,
selects a random x ∈ Z∗

q and outputs the pair of secret and public keys
(skHA, pkHA) of HA as

skHA = x ; pkHA = gx2

– S keygen – this algorithm takes as input the system public parameters pp,
selects two randoms y1, y2 ∈ Z∗

q and generates the pair of secret and public
keys (skS , pkS) of S as

skS = (y1, y2) ; pkS = (Y1, Y2) = (gy1

2 , gy2

2)

– Setup ProxyGrGM – this algorithm takes as input the system public parame-
ters pp and outputs the proxies’ group parameters. It is formally defined as
follows:

Setup ProxyGrGM(pp):
(skg, vkg)← Setup(pp), where vkg = (pkg, ΣNIWI)
output (skg, vkg)

– Join ProxyGrP/GM – this algorithm takes as input the system public param-
eters pp and the secret key of the group manager skg. It outputs the pair
of keys of a proxy group member (skp, pkp) and the signature σp over the
public key pkp. The Join ProxyGr is formally defined as follows:

Join ProxyGrP/GM(pp, skg):

(skp, pkp, σp)← Join(pp, skg)
output (skp, pkp, σp)

– Set UserIDHA – this algorithm takes as input the system public parameters
pp and selects a secret tU ∈ Z∗

q for a user U . The Set UserID algorithm
outputs the couple (tU , IDU), where IDU is U ’s identifier which is computed
as follows:

IDU = hU = gtU2

– UserkeygenU – this algorithm takes as input the user’s identifier IDU , selects
a random qU ∈ Z∗

q and outputs the key pair (skU , pkU) of U as:

skU = qU ; pkU = hU
qU

4.2 Generation Phase

– Set CCMU – this algorithm takes as input two EBIDs DeUA
and DeUB

belonging
to user UA and user UB , respectively, during an epoch e. It returns the
corresponding common contact message CCMeAB computed as follows:

CCMeAB = H(me
AB) = H(DeUA

∗ DeUB
)

.

SPOT+: Proximity-tracing Protocol with Efficient Verification 11

– S PSignS – this algorithm takes as input a common contact message CCMeAB

and the secret key skS of S, selects a random rs ← Z∗
q and computes the

partial signature (PSeAB , PS
′e
AB) such that:

PSeAB = CCMeABy1rs + y2 ; PS′
e
AB = CCMeABrs

– P SignP – this algorithm takes as input the proxies’ group public parameters
vkg, the secret key skp of P, the signature σp over P’s public key, the iden-
tifier IDUA

of UA and the message PSeAB . It first, computes a new message
MeAB w.r.t. IDUA

and message PSeAB . It then, generates a signature σm over
MeAB w.r.t. skp. Finally, it generates a NIWI proof π over signatures σp and
σm. The P Sign algorithm is formally defined as follows:

P SignP(vkg, skp, pkp, σp, IDUA
, PSeAB):

(MeAB , σm, π)← Sign(vkg, skp, pkp, σp, IDUA
, PSeAB)

output (MeAB , σm, π)

4.3 Batch Verification Phase

– Batch Sig VerifyHA – this algorithm takes as input a list of N messages mi

and the corresponding proofsΠi. Each proofΠi is composed of six sub-proofs
(i.e., two sub-proofs generated over the signature σmi w.r.t. the message mi,
and four sub-proofs generated over the signature σp w.r.t. the proxy’s key
pkp). The list of proofs can be presented as follows:

{(⃗Aijm, ⃗Bijm, Γijm, tijm)}i=N,j=2
i,j=1 ,

{(⃗Cijm, ⃗Dijm, πijm, θijm)}i=N,j=2
i,j=1 ,

{(A⃗ilp, B⃗ilp, Γilp, tilp)}i=N,l=4
i,l=1 ,

{(C⃗ilp, D⃗ilp, πilp, θilp)}i=N,l=4
i,l=1 .

According to the generation of the NIWI proofs over the signatures σmi

and σp , the tuples {(A⃗jm, ⃗Bjm, Γjm, tjm)}2j=1 and {(A⃗lp, B⃗lp, Γlp, tlp)}4l=1

are unchanged for all N proofs and all proxies. Thus, for a the list of N
messages, Batch Sig Verify returns b ∈ {0, 1} stating whether the given list
of proofs is valid or not, by checking if equations 1 and 2 hold. Note that
the Batch Sig VerifyHA algorithm is the same as the Batch Verify algorithm.∏

i

∏
j

(
e(⃗Cijm, Γm

⃗Dijm)
)
= e(U,

∑
i

∑
j

πijm)e(
∑
i

∑
j

θijm, V) (1)

∏
l

e(ι1(A⃗lp),
∑
i

D⃗ilp)e(
∑
i

C⃗ilp, ι2(B⃗lp))
∏
i

∏
l

(
e(⃗Cilk, ΓlkD⃗ilk)

)
=(∏

l

ι3(tlp)
N

)
e(U,

∑
i

∑
l

πilp)e(
∑
i

∑
l

θilp, V) (2)

12 Masmoudi et al.

– Agg Sig VerifyHA – this algorithm takes as input a message m belonging
to an invalid proof-list and its corresponding proof Π. Using the tuples
{(A⃗jm, ⃗Bjm,Γjm,tjm)}2j=1 and {(A⃗lp, B⃗lp, Γlp, tlp)}4l=1 along with the tuples

{(⃗Cjm, D⃗jm, πjm, θjm)}j=2
j=1 and {(C⃗lp, D⃗lp, πlp, θlp)}l=4

l=1 derived from Π, the
Agg Sig Verify outputs b ∈ {0, 1} stating whether the proof Π is valid or
not, by checking if equations 3 and 4 hold. Note that the Agg Sig VerifyHA
algorithm is equivalent to the Agg Verify algorithm.∏

j

(
e(⃗Cjm, ΓmD⃗jm)

)
= e(U,

∑
j
πjm)e(

∑
j
θjm, V) (3)

∏
l
e(ι1(A⃗lp), D⃗lp)e(C⃗lp, ι2(B⃗lp))

∏
l

(
e(C⃗lp, ΓlkD⃗lp)

)
=(∏

l
ι3(tlp)

)
e(U,

∑
l
πlp)e(

∑
l
θlp, V) (4)

– Batch CCM VerifyHA – this algorithm takes as input the list {Mi}Ni=1 and the
list {PS′i}Ni=1 corresponding to the contact messages {CCMi}Ni=1 contained in
the contact list of user UA, the server’s public key pkS and the secret value
tUA

specific to user UA. The Batch CCM Verify algorithm outputs b ∈ {0, 1}
stating whether the common contact messages have been correctly verified
in real time by S or not, by checking if equation 5 holds:∏

i

Mi = Y1
tUA

∑
i PS

′
iY2

NtUA (5)

5 Security Discussion

This section discusses the security of Spot+.

Theorem 1. Spot+ satisfies unforgeability, unlinkability, anonymity and anti-
replay.

We refer to [14] for formal definitions of the security and privacy properties
stated in the theorem. Indeed, unforgeability states that a malicious adversary
cannot generate valid contact information without having access to the appro-
priate keys (i.e., the server and the proxies secret keys). Unlinkability ensures
that a curious adversary is not able to link (i) two or several common con-
tact messages to the same user during the Generation phase and (ii) two or
several group signatures to the same proxy during the Batch Verification
phase. Anonymity means that a curious adversary is not able to identify users
involved in a contact list with an infected person. Anti-replay guarantees that a
malicious adversary is not able to replay the same contact message in different
sessions as a valid contact information. Thus, anti-replay prevents the injection
of false positive alerts.

Proof. First, the unforgeability property refers to the unforgeability of both the
partial signature generated by the server and the unforgeability of the group

SPOT+: Proximity-tracing Protocol with Efficient Verification 13

signature generated by a proxy. The unforgeability of the partial signature can
be inherited from the unforgeability of Spot. The unforgeability of the prox-
ies’ group signature follows from the unforgeability of the new group signature
scheme proposed in [15] proven to be negligible according to the soundness of
the Groth-Sahai NIWI proof. Thus, Spot+ is unforgeable.
Second, for unlinkability, the impossibility to link contact messages issued by the
same user follows from the CCM-unlinkability property of Spot. The unlinkabil-
ity of proxies’ group signatures derives from the unlinkability of Sevil which is
proven to be satisfied w.r.t. the computational witness-indistinguishability prop-
erty of Groth-Sahai NIWI proofs. Thus, Spot+ is unlinkable.
Third, anonymity follows directly from the anonymity property of Spot which
relies on the impossibility to link common contact messages belonging to the
same user.
Finally, for anti-replay, if we suppose that the adversary replays a common con-
tact message CCM issued in an epoch e, in another epoch e′ ̸= e, he should be
able to produce a new valid partial signature and a corresponding valid group
signature over CCM, which contradicts the unforgeability property. Thus, Spot+
ensures the anti-replay.

6 Performance Evaluation

This section discusses the experimental results, presented in Table 1, and demon-
strates the performances’ improvements introduced by Spot+. We, first, de-
scribe Spot test-bed in Section 6.1. Then, we analyze, in Section 6.2, the com-
putation performances of Spot+ w.r.t. the batch verification.

6.1 Test-bed and Methodology

The three phases of Spot+ including the thirteen algorithms 3 have been im-
plemented and lead to several performance measurements relying on an Ubuntu
18.04.3 machine - with an Intel Core i7@1.30GHz processor and 8GB memory.
This machine runs JAVA version 11, and the associated cryptographic library
JPBC4.
The Spot+ prototype is built with six java classes, namely TrustedAuthor-
ity.java, GroupManager.java, Proxy.java, HealthAuthority.java, User.java and
Server.java. The HealthAuthority.java class encompasses the verification algo-
rithms of both Spot and Spot+ (i.e., Sig Verify, CCM Verify, Batch Sig Verify,
Agg Sig Verify and Batch CCM Verify algorithms).
For the sake of performances’ improvement, a multithreading is applied on al-
gorithms P Sign, Sig Verify, Batch Sig Verify and Agg Sig Verify to allow a si-
multaneous execution of multiple threads. A preprocessing is also applied on
algorithms Sig Verify, Batch Sig Verify and Agg Sig Verify to prepare in advance

3 The source code is available at https://github.com/soumasmoudi/SPOTv2
4 http://gas.dia.unisa.it/projects/jpbc/

14 Masmoudi et al.

variables used several times when running the algorithm.
The implementation tests rely on two types of bilinear pairings, i.e., a symmetric
pairing type called type A and an asymmetric pairing called type F. For each
type of pairing, we consider two levels of security, namely 112-bit and 128-bit
security levels.
For accurate measurements of the computation time, each algorithm is run 100
times, while considering a standard deviation of an order 10−2. Thus, each ex-
perimental result reflects the mean time of 100 tests.

6.2 Computation Overhead

In this section, we focus on theVerification and Batch Verification phases
of Spot and Spot+, respectively. We first, discuss the experimental results of
both batch and naive verifications, as depicted in Table 1. Then, we give a
comparative analysis of the two verifications. Finally, we evaluate the impact of
the messages’ number on the computation time for a batch verification.

Table 1: Computation Time in milliseconds of Spot and Spot+ Verifications

Protocol Verification Algorithm
Computation time (ms)

A/112-bits A/128-bits F/112-bits F/128-bits

Spot
Sig Verify a 6541 15406 31637 36892
CCM Verify a 174 360 148 190

Spot+
Batch Sig Verify b 222989 485233 1018375 1312879
Agg Sig Verify a 3096 6916 16065 18834

Batch CCM Verify b 139 281 133 175

NOTE: a indicates that the algorithm is performed on a single contact message that is generated by
the Set CCM algorithm; b indicates that the algorithm is performed on N messages where N = 100
for computation times.

Verification Computation Performances As shown in Table 1, the veri-
fication of the correctness of a single contact message, through the Sig Verify
and CCM Verify algorithms together, requires approximately 7 seconds (resp. 16
seconds) for pairing type A and 32 seconds (resp. 37 seconds) for pairing type F.
Thus, to verify the correctness of 100 contact messages, the Spot naive verifi-
cation requires approximately 12 minutes (resp. 27 minutes) pairing type A and
53 minutes (resp. more than an hour) for pairing type F.
Meanwhile, the Batch Sig Verify algorithm that is run to verify 100 messages si-
multaneously, requires approximately 4 and 8 minutes for pairing type A and 17
and 22 minutes for pairing type F. However, when it is needed to verify a single
message, the Agg Sig Verify algorithm requires 3 and 7 seconds for pairing type A
and 16 and 19 seconds for pairing type F. It is worth noticing that, for a number

SPOT+: Proximity-tracing Protocol with Efficient Verification 15

of messages N = 100, the execution of the Batch Sig Verify algorithm gives im-
proved computational costs compared to the Agg Sig Verify algorithm performed
100 times, separately. Also the Batch CCM Verify algorithm gives promising re-
sults when verifying 100 messages at once.

Benefit of SPOT+ Batch Verification over SPOT Naive Verification
We consider 100 contact messages partially and fully signed with the S PSign and
P Sign algorithms, respectively. The resulting proofs (resp. partial signatures)
are given as input to both Sig Verify and Batch Sig Verify algorithms (resp. both
CCM Verify and Batch CCM Verify algorithms). The Sig Verify and CCM Verify
algorithms are executed 100 times as they allow to perform verification over a
single contact message, while the Batch Sig Verify and Batch CCM Verify algo-
rithms perform the verification of all the 100 contact messages at once. Thus,
we compare the computation time required by the naive and batch verification
when being executed over 100 messages.

(a) Sig Verify vs Batch Sig Verify (b) CCM Verify vs Batch CCM Verify

Fig. 3: Computation Time of Batch Verification vs Naive Verification over 100
Messages

Figure 3 confirms that the batch verification is more efficient than the naive
one. On the one hand, as depicted in Sub-Figure 3a, the batch verification of
proofs reduces the computation time, for verifying 100 messages, by approxi-
mately 37%, for pairing type A for the two security levels. Indeed, the processing
time moves from 356 seconds (resp. 777 seconds) with Spot naive group signa-
ture verification to 223 seconds (resp. 485 seconds) with Spot+ batch group
signature verification. For pairing type F and the two security levels, the gain
of batch verification reaches 50%, since the processing time is moving from 2048
seconds (resp. 2642 seconds) to 1018 seconds (resp. 1313 seconds).
These results are substantiated by the decrease in the number of pairing func-
tions performed during verification. Indeed, to perform verification over N mes-
sages, the Sig Verify algorithm of Spot requires 30N pairing functions, while
the Batch Sig Verify algorithm of Spot+ only requires 6N+9 pairing functions.
These theoretical results expect that the gain reaches approximately 80%, which

16 Masmoudi et al.

is higher than the gain obtained through experimentation. This difference can be
explained by the number of group elements addition operations introduced while
aggregating the verification equations (i.e., 14N addition operations). With con-
sideration to the JPBC library benchmark5, it is worth noticing that elementary
addition operations are more consuming for pairing type A than for pairing type
F. As a result, the gain is more important for pairing type F.

On the other hand, Sub-Figure 3b shows that the batch verification over
100 partial signatures, reduces the computation time by 99% for the two types
of pairings with the two different levels of security. Indeed, to verify N partial
signatures, the CCM Verify algorithm requires 2N exponentiations, while the
Batch CCM Verify algorithm requires only two exponentiations and N multipli-
cations.

Impact of Contact list Size on the Verification Referring to equations 1, 2
and 5, it is worth mentioning that the computation time of both Batch Sig Verify
and Batch CCM Verify algorithms varies according to the number N of con-
tact messages verified. Indeed, as the number of messages grows, the number
of pairing functions, exponentiations and multiplications becomes more impor-
tant. For this purpose, we evaluate the computation time of the Batch Sig Verify
and Batch CCM Verify algorithms when varying the number of messages from 5
to 1000. Note that all contact messages are partially and fully signed with the
S PSign and P Sign algorithms, respectively.

(a) Batch Sig Verify Algorithm (b) Batch CCM Verify Algorithm

Fig. 4: Influence of Contact List Size on Batch Verification Computation Time

Both Figures 4a and 4b show that the computation time of both Batch Sig Verify
and Batch CCM Verify algorithms increases w.r.t the number of messages, for the
two types of pairings and the two security levels.

On the one hand, for the Batch Sig Verify algorithm, when varying the size
of the contact list from 5 to 1000, the computation time varies from 15 to 2602
seconds (resp. from 26 to 4817) for the pairing type A 112-bit (resp. pairing
type A 128-bit). For pairing type F, the computation time varies from 59 to

5 http://gas.dia.unisa.it/projects/jpbc/benchmark.html

SPOT+: Proximity-tracing Protocol with Efficient Verification 17

10677 seconds (resp. 72 to 12978) for the 112-bit security level (resp. the 128-bit
security level).

On the other hand, for the Batch CCM Verify algorithm, when the size of the
contact list varies from 5 to 1000, the computation time, for the pairing type A,
varies from 174 to 426 milliseconds, for the 112-bit security level (resp. from 287
to 728, for the 128-bit security level). For the pairing type F, the computation
time is almost constant. The curve slopes are very low compared to those for
pairing type A. This can be justified by the fact that (i) we have a constant
number of exponentiations and (ii) the elementary multiplication operations are
more consuming for the pairing type A compared to the pairing type F.

7 Conclusion

In this paper, we introduce a concrete construction of an efficient, secure and
privacy-preserving proximity-tracing protocol, referred to as Spot+. The pro-
posed protocol offers a batch verification over multiple contact messages, in an
effort to improve verification performances of the Spot protocol [14] w.r.t. the
group signature scheme proposed in [15]. Our contribution is proven to sat-
isfy security and privacy requirements of proximity-tracing protocols, namely
unforgeability of contact information, non-injection of false positive alerts, un-
linkability of users’ contact information and anonymity of users being in contact
with infected people. Thanks to the implementation of Spot and Spot+ al-
gorithms and the comparison of their verification performances, we show that
Spot+ batch verification achieves a gain of up to 50% for verifying the validity
of proxies’ group signatures. This gain reaches 99% for the verification of the
correctness of contact information belonging to the same user.

References

1. Alamer, A.: An efficient group signcryption scheme supporting batch verification
for securing transmitted data in the internet of things. Journal of Ambient Intelli-
gence and Humanized Computing (06 2020). https://doi.org/10.1007/s12652-020-
02076-x

2. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: CCS 2002. p. 21–30. Association for Computing
Machinery, New York, NY, USA (2002)

3. Carmela, T., Mathias, P., Jean-Pierre, H., Marcel, S., James, L., Edouard,
B., Wouter, L., Theresa, S., Apostolos, P., Daniele, A., Ludovic, B.,
Sylvain, C., Kenneth, P., Srdjan, C., David, B., Jan, B., Dennis, J.,
Marc, R., Patrick, L., Bart, P., Nigel, S., Aysajan, A., et al.: Decen-
tralized privacy-preserving proximity tracing. https://github.com/DP-
3T/documents/blob/master/DP3T%20White%20Paper.pdf (2020)

4. Chan, J., Foster, D., Gollakota, S., Horvitz, E., Jaeger, J., Kakade, S.M., Kohno, T.,
Langford, J., Larson, J., Singanamalla, S., Sunshine, J., Tessaro, S.: Pact: Privacy-
sensitive protocols and mechanisms for mobile contact tracing. arXiv:2004.03544
(2020)

18 Masmoudi et al.

5. Claude, C., Nataliia, B., Antoine, B., Mathieu, C., Cedric, L., Daniel,
L.M., Vincent, R.: Desire: A third way for a european exposure notifica-
tion system. https://github.com/3rd-ways-for-EU-exposure-notification/project-
DESIRE/blob/master/DESIRE-specification-EN-v1 0.pdf (2020)

6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE
Transactions on Information Theory 22(6), 644–654 (1976).
https://doi.org/10.1109/TIT.1976.1055638

7. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) Advances in Cryptology – EUROCRYPT 2008. pp. 415–432.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

8. Hoepman, J.H.: Hansel and gretel and the virus: Privacy conscious contact tracing.
arXiv preprint arXiv:2101.03241 (2021)

9. Inria, AISEC, F.: Robert: Robust and privacy-preserving
proximity tracing. https://github.com/ROBERT-proximity-
tracing/documents/blob/master/ROBERT-specification-EN-v1 1.pdf (2020,
[Online accessed June 2022])

10. Isshiki, T., Mori, K., Sako, K., Teranishi, I., Yonezawa, S.: Using group signatures
for identity management and its implementation. In: DIM ’06 (2006)

11. Joseph, K.L., Man Ho, A., Tsz Hon, Y., Cong, Z., Jiawei, W., Amin, S., Xiapu, L.,
Li, L.: Privacy-preserving covid-19 contact tracing app: A zero-knowledge proof
approach. IACR Cryptol. ePrint Arch, 2020 (528) (2020)

12. Kim, K., Yie, I., Lim, S., Nyang, D.: Batch verification and finding invalid signa-
tures in a group signature scheme. International Journal of Network Security 12,
229–238 (04 2011)

13. Malina, L., Smrz, J., Hajny, J., Vrba, K.: Secure electronic voting based on group
signatures. In: 2015 38th International Conference on Telecommunications and
Signal Processing (TSP). pp. 6–10 (2015)

14. Masmoudi, S., Kaaniche, N., Laurent, M.: ”spot: Secure and privacy-preserving
proximity-tracing protocol for e-healthcare systems”. In: IEEE Access. vol. 10, pp.
106400–106414 (2022). https://doi.org/10.1109/ACCESS.2022.3208697

15. Masmoudi., S., Laurent., M., Kaaniche., N.: Sevil: Secure and efficient verification
over massive proofs of knowledge. In: Proceedings of the 19th International Confer-
ence on Security and Cryptography - SECRYPT. pp. 13–24. INSTICC, SciTePress
(2022). https://doi.org/10.5220/0011125800003283

16. Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can d.s.a. be improved?
complexity trade-offs with the digital signature standard. In: Advances in Cryp-
tology - EUROCRYPT ’94, Workshop on the Theory and Application of Crypto-
graphic Techniques, Perugia, Italy, May 9-12, 1994. pp. 77–85. Lecture Notes in
Computer Science, Springer (1994). https://doi.org/10.1007/BFb0053426

17. Pastuszak, J., Micha lek, D., Pieprzyk, J., Seberry, J.: Identification of bad
signatures in batches. In: Public Key Cryptography. pp. 28–45 (03 2004).
https://doi.org/10.1007/978-3-540-46588-1 3

18. Pietrzak, K.: Delayed authentication: Preventing replay and relay attacks in pri-
vate contact tracing. In: Progress in Cryptology – INDOCRYPT 2020. pp. 3–15.
Springer International Publishing, Cham (2020)

19. Ronald L., R., Jon, C., Ran, C., Kevin, E., Daniel Kahn, G., Yael Tauman, K.,
Anna, L., Adam, N., Ramesh, R., Adi, S., Emily, S., Israel, S., Michael, S., Vanessa,
T., Ari, T., Mayank, V., Marc, V., Daniel, W., John, W., Marc, Z.: The pact
protocol specification (2020)

SPOT+: Proximity-tracing Protocol with Efficient Verification 19

20. Wasef, A., Shen, X.: Efficient group signature scheme supporting batch verifica-
tion for securing vehicular networks. In: 2010 IEEE International Conference on
Communications. pp. 1–5 (2010). https://doi.org/10.1109/ICC.2010.5502136

21. Yue, X., Xu, J., Chen, B., He, Y.: A practical group signatures for providing
privacy-preserving authentication with revocation. In: Security and Privacy in New
Computing Environments, Second EAI International Conference, SPNCE 2019,
Tianjin, China. pp. 226–245 (06 2019)

22. Zhang, A., Zhang, P., Wang, H., Lin, X.: Application-oriented block gen-
eration for consortium blockchain-based iot systems with dynamic device
management. IEEE Internet of Things Journal 8(10), 7874–7888 (2021).
https://doi.org/10.1109/JIOT.2020.3041163

