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ABSTRACT This paper introduces SPOT, a Secure and Privacy-preserving prOximity based protocol
for e-healthcare systems. It relies on a distributed proxy-based approach to preserve users’ privacy and
a semi-trusted computing server to ensure data consistency and integrity. The proposed protocol ensures
a balance between security, privacy and scalability. As far as we know, in terms of security, SPOT is
the first one to prevent malicious users from colluding and generating false positives. In terms of privacy,
SPOT supports both anonymity of users being in proximity of infected people and unlinkability of contact
information issued by the same user. A concrete construction based on structure-preserving signatures and
NIWI proofs is proposed and a detailed security and privacy analysis proves that SPOT is secure under
standard assumptions. In terms of scalability, SPOT’s procedures and algorithms are implemented to show
its efficiency and practical usability with acceptable computation and communication overhead.

INDEX TERMS Anonymity, e-healthcare, NIWI proofs, Privacy, Structure-preserving signature, Unlinka-
bility.

I. INTRODUCTION
The recent health crisis has led governments to apply different
tracing solutions to control the contamination chain among
the population. These solutions are aimed at sharing valuable
data while preserving users’ privacy. However, there are still
privacy threats and robustness challenges as long as users are
required to disclose and share correct sensitive and personal
information with different third parties with various levels of
trust.

Most of the solutions rely on the Bluetooth technology,
namely Bluetooth Low Energy (BLE), to exchange contact
information, thanks to its efficiency in active communications
[17]. Among these governmental solutions, the TraceTo-
gether application [11] has been launched by Singapore.
TraceTogether enables to collect, via the Bluetooth technol-
ogy, temporary IDs (generated by a central trusted server)
of users in close proximity. Collected IDs are stored in
an encrypted form using the server’s public key, at users’
devices, and in case of infection, they are shared with the
server. The COVIDSafe application [6] from the Australian
government is another Bluetooth-based solution. It also logs

encrypted users’ contact information, and share them once an
infection is detected. The server is required to alert users at
risk without revealing the identity of the infected user. Both
TraceTogether and COVIDSafe applications are set upon a
centralized architecture. Many other applications like Stop
COVID-19 (Croatia) [3], CA Notify (California) [1] rely on
the Google and Apple Exposure Notification (GAEN)
service [5], which is set upon a decentralized architecture. Al-
though contact tracing applications have helped governments
to alleviate the widespread of the pandemic by automating
the manual contact tracing done by health authorities, they
raise critical privacy concerns, namely users tracking and
identification [15].

Academic solutions have been also proposed to support
both centralized [13] and decentralized [7], [8], [14], [16],
[18] architectures. However, each architecture has his merits
and limits in terms of security and privacy. Indeed, using
centralized solutions, users guarantee the reception of correct
alerts as long as the generation of users’ contact tokens and the
verification in case of infection are performed by a centralized
server. This guarantee is compensated with threats to users’
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privacy, i.e., users are exposed to tracking and identification of
their contact lists. Decentralized solutions have been proposed
to mitigate these privacy threats. Users are responsible for
generating their contact tokens in order to ensure their privacy
and anonymity, but, they are not prevented from forging
contact information, which results in high level of false alerts.
To get the best of both architectures, hybrid architecture based
solutions [9], [12] have been proposed. However, security
and privacy requirements, like the correctness of contact
information and the anonymity of contacted users, are not
yet handled and ensured together.

In this paper, we present SPOT, a novel hybrid Secure and
Privacy-preserving prOximity-based protocol for e-healthcare
systems. It combines a decentralized proxy front-end architec-
ture, ensuring both users’ anonymity and contact information
integrity, and a centralized back-end computing server, guaran-
teeing a real time verification of contact information integrity.
SPOT assumes that two users in close proximity rely on
their Ephemeral Bluetooth IDentifiers (EBID) to compute
a common contact message. This message is relayed to a
central server through a group of proxies. With the help of
the computing server and relying on a proof-based group
signature, SPOT prevents users from forging their contact
lists. The signed contact messages are given to the user to be
locally stored. In case of a detected infection, the user consents
to share his contact list, i.e., a set of signed contact messages,
with the health authority. This latter checks the correctness of
the received list and shared it back with all the involved users,
if the verification holds. The contributions of this paper are
summarized as follows:

• we design a proximity protocol for e-health services
that prevents the injection of false positives, i.e., alert
users to be at risk when they are not. SPOT enforces
the verification of the correctness and the integrity of
users’ contact information by health authorities, thanks
to the support of both a computing server and a group of
proxies.

• we guarantee strong privacy properties namely the
anonymity of users being in contact with infected people,
and the unlinkability of users’ transactions when relying
on random EBIDs that can neither be linked to each other
nor be linked to their issuer.

• we propose a concrete construction of the SPOT
protocol relying on a structure-preserving signature
scheme [4] that supports securely signing group’s ele-
ments, i.e., contacts’ information. This signature scheme
is coupled with Groth-Sahai Non-Interactive Witness-
Indistinguishable (NIWI) proof [10] in order to ensure
integrity of proxies’ keys. Indeed, NIWI proofs guarantee
the anonymity of proxies while the health authority is
still able to verify that proxies are trustful by verifying
the validity of their keys without having access to them.

• we evaluate the performances of SPOT through the full
implementation of different procedures and algorithms.
The conducted experiments have shown acceptable

computation times proving the efficiency and practical
usability of the proposed solution.

This paper is organized as follows. Section II introduces and
compares most closely-related proximity tracing algorithms
and solutions to SPOT. Section III gives an overview of
SPOT. After introducing the underlying building blocks
in Section IV The concrete construction of the proposed
SPOT protocol is presented in Section V. Section VI and
Section VII provide security and privacy properties and a
detailed discussion of SPOT’s conducted experiments, before
concluding in Section VIII.

II. RELATED WORK
Recently, several industrial and research contact tracing
solutions have been proposed for e-health applications [17],
[19]. These solutions aim at ensuring security properties,
namely anti-replay mitigating the multi-submission of the
same contact information , and unforgeability preventing
malicious entities1 from threatening data integrity. Privacy
properties have been significantly addressed, including the
anonymity of end-users and the unlinkability between their
different transactions (i.e., a formal definition of security and
privacy requirements is given in Section III-D).

Indeed, researchers from Inria, France, and Fraunhofer,
Germany proposed Robert [13], a contact tracing protocol
that relies on a centralized architecture, where a central server
delivers pseudonyms to users. Each user collects pseudonyms
of users in close proximity and shares them with the server
when being infected. In such centralized solution, users are
sure that they receive correct alerts (i.e., collected pseudonyms
are neither replayed nor falsified by malicious entities), how-
ever, their privacy is threatened as long as the server is able to
identify users’ contacts and to track them. In [7], Troncoso et
al. introduced the Decentralized Privacy-Preserving Proximity
Tracing (DP-3T) solution which is one of the most popular
contact-tracing protocols. DP-3T has been proved to mitigate
the privacy threats of centralized solutions as there is no need
for a central entity which collects users’ contact information
with the risk of tracking them. However, it does not prevent
relay and replay attacks and gives no mean to verify the
correctness of contact information. Thus, users are exposed
to false alerts from malicious entities either by creating
falsified information or replaying information of previous
sessions. Afterwards, Castelluccia et al. proposed Desire [9],
a proximity tracing protocol that leverages the advantages of
the centralized and decentralized solutions. However, some
security and privacy issues have not been considered in this
solution. First malicious users are able to collude and merge
their contact lists, which leads to false positive injection
attacks. Second, the server requested to compute the exposure
status and risk, is able to link users’ requests, and to de-
anonymize them. Two very similar proposals called PACTs
are also introduced. The east coast PACT [18] and the west

1Malicious entities involve either a single malicious adversary or colluding
adversaries.
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coast PACT [8] are very close to DP-3T. The two solutions
rely on random pseudonyms derived from a private seed,
that are broadcasted to users in proximity via Bluetooth. The
pseudonyms are generated using cryptographic pseudorandom
generators and pseudorandom functions. Apart from the non-
resistance against replay attacks, these two proposals give
no mean to check the correctness of the contact information
before being broadcasted. Pietrzak [16] proposed a decen-
tralized contact-tracing solution to mitigate replay attacks
against DP-3T. However, privacy concerns are raised, namely
tracking users, as geo-location and time of contacts are shared
within the Bluetooth message. In [12], Hoepman proposed two
tracing protocols, the first one relies on an interactive session
between two users in proximity to register contact information.
If the interaction fails, the contact is not registered. Thus, the
second protocol comes to mitigate this risk of failure and
relies on an authority that relays information between users.
In both protocols, the identities of users who have been in
contact with an infected person, are revealed to a central entity,
which contradicts the defined anonymity requirement. Liu et
al. [14] use zero-knowledge proofs and group signatures in
order to preserve users’ privacy for their proposed tracing
protocol. Zero-knowledge proofs are generated by users over
the contact information they collected. Indeed, users prove
the contacts to their doctors without revealing the information.
Afterwards, doctors, being members of a group, sign the
proofs and publish them in a public board. Then, relying
on their secrets, users can check if they were in contact with
infected people. As such, no entity can identify the contacts
of an infected user. However, based on a long interactive
protocol between two devices, the collection of contacts’
information may result in a failed interaction, thus causing
the non-registration of the contact. Furthermore, the authors
only consider honest but curious adversaries, which leads
to possible false alerts due to malicious colluding users. It
is also worth noticing that, unlike SPOT and other related
work [7], [9], [16], [14] assume that all the computations
(handshake, zero-knowledge, verification) are performed by
the user’s device, which leads to device’s battery depletion. A
new contact tracing strategy based on online social networking
is proposed in [20] but does not provide privacy guarantees.
Table 1 provides a comparative summary between SPOT and
related works in terms of architecture settings and properties.
As shown, SPOT is the only solution which supports strong
security and privacy requirements.

III. SPOT OVERVIEW
This section first presents the involved entities and gives an
overview of SPOT. Then, it details the system model with
its procedures and algorithms and defines the threat model
through formal security games.

A. ENTITIES
Figure 1 depicts the four main actors involved in SPOT with
their interactions according to the different phases. Four actors
are defined as follows:

• The user (U) represents the entity that owns the device
where the proximity-tracing application is installed.
During the Generation phase, U broadcasts his EBID
(Ephemeral Bluetooth IDentifier), collects the EBIDs
of other users in proximity, and computes a common
contact message shared between each two users being
in contact. U wants to receive alerts if he was in contact
with confirmed cases.

• The Health Authority (HA) is responsible for issuing
users’ identifiers during the Sys_Init phase, and for
checking the correctness of the contact messages pro-
vided by an infected user during the Verification phase.

• The Server (S) is responsible for anonymously collecting
and storing users’ contact messages relayed by proxies
during the Generation phase2. S performs a real-time
verification of the received contacts during the Genera-
tion phase, in order to helpHA to verify the correctness
and integrity of the contact messages.

• The Proxy (P) is considered as a member of a group of
proxies managed by the group manager (GM)3. Proxies
form an intermediate layer by relaying the common
contact messages of users to S in order to ensure the
anonymity of involved users towards the server during
the Generation phase. Proxies also play an important role
in ensuring data integrity and user geolocation privacy
thanks to group signatures.

B. OVERVIEW
SPOT is set upon an hybrid architecture that leverages the
best of the centralized and decentralized settings in proximity-
tracing protocols. It relies on a proxy-based solution to
preserve users’ privacy (i.e., users remain anonymous towards
the server, thus preventing users’ tracking) and is based on a
semi-trusted computing server to ensure data consistency and
integrity (i.e., users are ensured that the received alerts are
correct). The architecture of the proposed protocol is depicted
in Figure 1. SPOT involves three main phases: Sys_Init,
Generation and Verification presented hereafter.

The Sys_Init phase consists of initializing the whole
system. It relies on seven algorithms, referred to as
Set_params, HA_keygen, S_keygen, Setup_ProxyGrGM and
Join_ProxyGrP/GM, Set_UserIDHA and UserkeygenU . Dur-
ing the Sys_Init phase, a trusted authority4 generates the
system public parameters published to all involved entities and
the pair of keys of both HA and S, relying on Set_params,

2The Server can be distributed by considering one or several servers per
geographical area, each server participating in locally storing part of users’
contact messages databases. All the parts are then collected on offline in a
centralized server. Thus, for ease of presentation, we consider only one server.

3Proxies are distributed over several geographical areas. We assume that
a load-balancing is established between at least two proxies in the same
geographical area to ensure the system availability in case of failure or
overload. More precisely, proxies in a same geographical area are separated
into two subsets - a primary and a secondary - and two users in a contact
interaction must contact proxies belonging to different subsets in order to
prevent a proxy from gaining too much knowledge about users’ interactions.

4For ease of presentation, the trusted authority is neither presented in
Figure 1 nor in the system’s model entities.
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TABLE 1: Comparison between SPOT and related works

SPOT [14] [12] [7] [18] [8] [13] [9] [16]

Architecture
Centralized - - - - - ✓ - -

Decentralized - ✓ - ✓ ✓ - - ✓
Semi-centralized ✓ - ✓ - - - ✓ -

Properties

Unforgeability a ✓ ✓b ✓b ✗ ✗ N.A. ✗ ✗
Anti-replay ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Unlinkability ✓ N.A. ✗ ✓ ✓ ✗ ✓ ✗
Anonymity ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗

NOTE: N.A. is the abbreviation for Not Applicable; a indicates that the unforgeability implies the integrity of users’ contact information and the prevention of false positives injection;
a indicates that unforgeability is partially satisfied while not considering malicious colluding entities.

FIGURE 1: Overview of the SPOT protocol

HA_keygen and S_keygen algorithms. During this phase, the
group manager defines the group of proxies. It generates the
group signature parameters using the Setup_ProxyGrGM al-
gorithm and it interacts with each group member to derive the
associated keys relying on the Join_ProxyGrP/GM algorithm.
The Health Authority is also involved in this phase to register
a user when installing the proximity-tracing application.
HA generates a specific secret value tU (only known by
HA) and a unique identifier IDU for each user (U), using
the Set_UserIDHA algorithm. Finally, U uses his identifier
to generate his pair of keys relying on the UserkeygenU
algorithm. The user’s identifier IDU , secret value tU and public
key are stored in a database DBUSER owned byHA. We note
that the trusted authority, the group manager and proxies are
involved only once in the Sys_Init phase, while the health
authority must intervene every time a user wants to register.

The Generation phase occurs when two users UA and UB
are in contact. It represents the process of generating contact
messages and contact lists for users. Three main entities
participate in this phase relying on three different algorithms,
referred to as Set_CCMU , S_PSignS and P_SignP . At first,
UA and UB execute the Set_CCMU algorithm to generate a
common contact message relying on their random EBIDs
(denoted by DeA and DeB) for an epoch e5. UA and UB choose

5An epoch e denotes a period of time in which the Bluetooth identifier
(EBID) remains unchanged.

two different proxies to relay their common contact message
to the server. For this purpose, they compare their EBIDs,
i.e., if DeA > DeB , UA chooses the first proxy and UB selects the
second one, and vice versa. Each of the two proxies relays the
common contact message to the server. S checks if the two
copies are similar. If so, S executes the S_PSignS algorithm to
partially sign the common contact message, thus proving that
the contact message correctly reached the server. Afterwards,
given back only a correct message, each proxy executes the
P_SignP algorithm. Indeed, each proxy extends the message,
given by S, with the corresponding user’s identifier and it
signs the resulting message on behalf of the group. He, finally,
sends back the message and the corresponding group signature
to the user and closes the communication session, while
removing all the exchanged and generated contact information.
The user adds the group signature, along with the common
contact message, the date, time and duration of contact, in his
contact list CLU . Note that each contact information is stored
for ∆ days.

The Verification phase is run by the health authority to
check the correctness of a contact list CLU provided by
U during a period of time t. To this end, HA performs
three successive verifications relying on two main algorithms,
referred to as Sig_VerifyHA and CCM_VerifyHA. (i) HA
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checks if, in his DBUSER database, U is infected6. (ii) HA
checks the validity of the group signatures relying on the
Sig_VerifyHA algorithm, w.r.t. the messages contained in the
contact list CLU . (iii)HA verifies that the contact messages
have been correctly generated and have successfully reached
S, using the CCM_VerifyHA algorithm.

It is worth mentioning that if one of the verifications given
above fails, the contact message is rejected. Otherwise,HA
collects all verified messages of all infected users in a set
SCCM that she signs. Note that for each period of time t, HA
removes users’ contact lists after verifications. SCCM and the
corresponding signature are sent to the server that shares
them with all users. To compute the risk score, each user
compares the set SCCM with his contact list, taking into account
the number of infected users being contacted and the contact
duration.

For ease of presentation, the different notations used in this
paper are depicted in Table 2.

TABLE 2: Notations used in this paper

Notation Description
U User
HA Health Authority
S Server
P Proxy

GM Group Manager
T A Trusted Authority
IDU An identifier of a user U
tU A secret value associated to U

DBUSER The users’ database at HA
De An ephemeral Bluetooth Identifier during an epoch e

CLU A user’s contact list
λ A security parameter
pp The system’s public parameters
sk A private key
pk A public key
vkg The group public parameters
CCM A common contact message

(PS, PS′) A partial signature
σ A signature
M A message derived from PS and IDU
π A NIWI proof

SCCM A set of verified CMMs of infected users

C. SYSTEM MODEL
Based on the three phases, Figure 2 presents the chronological
sequence of twelve PPT algorithms, defined below. For ease of
presentation, we consider only one user and one proxy in the
sequence diagram. For the Generation phase, we suppose that
two users have been in contact and exchanged their EBIDs.
The Verification phase occurs only if the user receives a
negative analysis’ result.

• Sys_Init phase:
Set_params(λ)→ pp – run by a trusted authority. Given

6We suppose that the health status of a user is updated when being tested.
Indeed, to be tested, U has to provide an encrypted form of his identifier
IDU (i.e., IDU is encrypted meaning the HA public key). Afterwards, the
analysis’ result is sent with the encrypted identifier to HA, that extracts the
identifier and updates the user’s health status in the DBUSER database.

the security parameter λ, this algorithm generates the
system public parameters pp that will be considered as a
default input for all the following algorithms.
K_keygen() → (skj , pkj) – performed by a trusted
authority. It returns the pair of keys (skj , pkj) of j where
j = {HA,S}.
Setup_ProxyGrGM() → (skg, vkg) – this algorithm is
performed by the group manager to set up the group
signature. It returns the proxies’ group verification key
vkg represented as (pkg,ΣNIWI), where pkg is the public
key of the group manager and ΣNIWI is the Common
Reference String CRS of a NIWI proof [10]. The
Setup_ProxyGrGM algorithm also outputs the secret key
skg that is privately stored by GM.
Join_ProxyGrP/GM(skg) → (skp, pkp, σp) – this al-
gorithm is performed through an interactive session
between the proxy and the group manager. It takes
as input the secret key skg, and outputs the pair of
keys (skp, pkp) of P belonging to the group (i.e., P
is responsible for generating his pair of keys), and
a signature σp over P’s public key pkp (i.e., σp is
generated by GM).
Set_UserIDHA()→ (tU , IDU ) – this algorithm is run by
HA and returns a secret value tU specific for U and the
identifier IDU of U .
UserkeygenU(IDU )→ (skU , pkU ) – performed by U to
set his pair of keys (skU , pkU ) relying on the identifier
IDU .

• Generation phase:
Set_CCMU (D

e
A, D

e
B) → CCMeAB – run by each of two

users UA and UB being in contact during an epoch
e. Given two Bluetooth identifiers DeA and DeB , this
algorithm generates a common contact message CCMeAB .
S_PSignS(CCMeAB , skS) → (PSeAB , PS

′e
AB) – run by

S. Given a common contact message CCMeAB sent by
UA and UB through two different proxies P1 and P2,
this algorithm outputs the couple (PSeAB , PS′eAB) that
is stored with CCMeAB at S, for ∆ days. Note that only
PSeAB is given back to P1 and P2 to prove that CCMeAB

has been successfully received and verified by S (i.e., a
real contact took place), while PS′

e
AB is kept secret at

S and is sent only to HA to check the correctness of a
contact message provided by a infected user.
P_SignP(vkg, skp, pkp, σp, IDUA

, PSeAB) → (MeAB ,
σm, π)7 – performed by the proxy P (P1 or P2).
This algorithm takes as input the proxies’ group public
parameters vkg, the pair of keys (skp, pkp) of P , the
signature σp over P’s public key, the identifier IDUA

of
user UA and the message PSeAB . It returns a signature
σm over a new message MeAB and a group signature
represented by a NIWI proof π over the two signatures
σp and σm. The couple (MeAB , π) is sent to user UA to
be stored with the contact message CCMeAB in his contact

7In this algorithm, we only consider user UA with IDUA
. The same

operations are performed for user UB with IDUB
.
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FIGURE 2: Workflow of the SPOT protocol

list. Note that each input of the contact list is stored for
∆ days.

• Verification phase:
Sig_VerifyHA(vkg, M

e
AB , π) → b – performed by HA.

Given the public parameters vkg, a message MeAB from
the contact list of an infected user, and the corresponding
NIWI proof π, the Sig_VerifyHA algorithm returns
a bit b ∈ {0, 1} stating whether the proof is valid.
CCM_VerifyHA(M

e
AB , PS

′e
AB , pkS , tUA

) → b – run by
HA. This algorithm takes as input the message MeAB , the
message PS′eAB requested from S , the server’s public key
pkS and the secret value tUA

, and outputs a bit b ∈ {0, 1},
i.e., CCMeAB is correctly generated or not.

D. THREAT MODEL

In this section, we first present the adversaries considered
in SPOT, and then, the formal definitions of the different
security and privacy properties.

• A malicious user (U): this adversary attempts to inject
false contact messages or contact messages of other users
in his contact list. He may also collude with corrupted
proxies or malicious users.

• A honest but curious health authority (HA): given a
valid group signature,HA tries to identify the signer (i.e.,
proxy) of a particular message, hence for identifying the
appropriate geographical area and for tracking the user’s
movements. She may also attempt to link two signatures
issued by the same group member. A curious HA may
also try to identify, from a contact list of a particular user,
the list of users he had been in contact with.

• A honest but curious server (S): he attempts to link
several common contact messages generated by the same
user, to trace users’ movements.

• A malicious proxy (P): this adversary, either colluding
with a malicious user or with n other proxies, attempts to
forge the partial signature of the server and to generate a
valid signature over a false contact message.

Both malicious users and malicious proxies are considered
against security properties, i.e., unforgeability, anti-replay,
while the curious health authority and server are considered
against privacy requirements, i.e., unlinkability and anonymity.
The different adversaries are involved in different phases.
Note that the anti-replay property which aims at mitigating
the multi-submission of the same contact information is not
formally presented below, but is informally discussed in
Section VI. The following properties are defined w.r.t the
corresponding phases and the involved adversaries.

Remark 1. We do not deeply analyze the case of a malicious
GM although our scheme is resistant against this adversary.
Indeed, proxies are responsible for generating their key pair
and only their public keys are shared with GM. Thus, unless
holding a proxy’s secret key, GM is not able to generate a
valid signature on behalf of P thanks to the unforgeability of
the signature scheme.

1) Unforgeability
The unforgeability property ensures the security of SPOT
for the different phases. It states that a malicious user is not
able to forge his contact list (i.e., forging either the group
signature or the server’s partial signature when colluding
with a malicious proxy)8. Formally, this is defined in a game
ExpunforgA where an adversary A, playing the role of a
corrupted proxy colluding with a malicious user, has access to

8We assume that (i) malicious user refers to either a single user or colluding
users, and (ii) the group signature scheme used in SPOT is unforgeable as
proven in [4], thus in the security model and analysis, we will only consider
the unforgeability of the server’s partial signature.
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a S_PSign oracle. We note that, for each session i,A only gets
PSi from the S_PSign oracle, while PS′

i is kept secret from
the adversary. Then, given a valid message PS′ that cannot be
obtained by combining either a part of or all messages PSi, A
succeeds if it outputs a valid message PS∗ to be signed using
P_Sign, such that the CCM_Verify verification holds.

Definition 1. Unforgeability – We say that SPOT sat-
isfies the unforgeability property, if for every PPT ad-
versary A, there exists a negligible function κ such that:
Pr[ExpunforgA (1λ) = 1] ≤ κ(λ), where ExpunforgA is given
below.

ExpunforgA (λ)
pp← Set_params(λ)
(skHA, pkHA)← HA_keygen(pp)
(skS , pkS)← S_keygen(pp)
(skg, vkg)← Setup_ProxyGr(pp)
(skp, pkp, σp)← Join_ProxyGr(pp, skg)
IDU ← Set_UserID(pp)
(skU , pkU )← Userkeygen(pp, IDU )
CCM← Set_CCM(D1, D2)
(PS, PS′)← {S_PSign(CCM, skS)}
O ← {S_PSign(·, skS)}
PS∗ ← AO(vkg, skp, pkp, σp, IDU , pp, PS

′)
letting CCM and PSi denote the queries
and answers to and from oracle S_PSign

(M∗, σ∗, π∗)← P_Sign(vkg, skp, pkp, σp, IDU , PS
∗)

If CCM_Verify(M∗, PS′∗, pkS , tU ) = 1
return 1

Else return 0

2) Unlinkability
The unlinkability property can be divided into two sub-
properties. The first one constitutes the group-signature
unlinkability stating that a curious health authority is not able
to link two or several group signatures issued by the same
proxy during the Verification phase. The second sub-property
multi-CCM unlinkability ensures that a curious server is not
able to link two or several common contact messages to the
same user during the Generation phase 9.

We note that the multi-CCM unlinkability property will
be informally discussed in Section VI. In this section, we
only focus on the group-signature unlinkability. Formally, this
property is defined in a game ExpunlinkA where an adversary
A acting as a curiousHA has access to a P_Sign oracle. The
adversary may query this oracle on the same message PS∗

and on a tuple ((skpj , pkpj
, σpj ), where j ∈ {0, 1} (i.e., the

tuple belongs either to proxy P0 or proxy P1). A left-or-right
oracle LoRSig is initialized with a secret random bit b and
returns to A P_Sign on message PS∗ and respectively on

9The collusion between the health authority and the server does not pose
additional and plausible threats to the different procedures of the whole
framework. Indeed, during the GENERATION phase, contact messages are
anonymous to the server (and a possible colluding health authority); during
the VERIFICATION phase, the health authority knows the true identity of the
confirmed cases with their contact information; as such, a collusion between
the server and the authority does not bring extra knowledge.

tuples (skp0
, pkp0

, σp0
) and (skpb

, pkpb
, σpb

). The adversary
wins the game if he successfully predicts the bit b (i.e., the
guessing probability should be greater than 1

2 ).

Definition 2. Unlinkability – We say that SPOT satisfies
the unlinkability property, if for every PPT adversaryA, there
exists a negligible function κ such that: Pr[ExpunlinkA (λ) =
1] = 1

2 ± κ(λ), where ExpunlinkA is defined below.

ExpunlinkA (λ)
pp← Set_params(λ)
(skHA, pkHA)← HA_keygen(pp)
(skS , pkS)← S_keygen(pp)
(skg, vkg)← Setup_ProxyGr(pp)
(skpi , pkpi

, σpi) ← Join_ProxyGr (pp, skg), i ∈
{0, 1}
IDU ← Set_UserID(pp)
(skU , pkU )← Userkeygen(pp, IDU )
m∗ ← Set_CCM(D1, D2)
(PS∗, PS′

∗
)← S_PSign(m∗, skS)

b← {0, 1}
O ← {P_Sign(·,skpj ,pkpj

,σpj ,·,·), LoRSig(·,·,b)}
b′←AO (skHA,pkHA, vkg ,pkp0

,pkp1
,pp,PS∗)

If b = b′

return 1
Else return 0

LoRSig (vkg, ((skp0
, pkp0

, σp0
), (skp1

, pkp1
, σp1

)),
IDU , PS∗, b)

(M∗, σ∗, π∗) ← P_Sign(vkg, skp0 , pkp0
, σp0 , IDU ,

PS∗)
(M∗, σ∗

b , π
∗
b ) ← P_Sign(vkg, skpb

, pkpb
, σpb

, IDU ,
PS∗)
return ((M∗, π∗), (M∗, π∗

b ))

3) Anonymity
This property guarantees that no entity is able to identify users
involved in a contact list (i.e., the owner and the contacted
users), during the Verification phase, and is described through
the game ExpanonA . The anonymity property implies that even
if HA knows that a contact list belongs to a user (U), HA
is not able to identify users being in contact with U 10. This
should hold even if an efficient adversary, playing the role
of the curious health authority, is given access to Set_CCM,
S_PSign, P_Sign oracles. A can learn contact messages and
signatures associated to the selected users’ identifiers. A also
gets access to a left-or-right oracle LoRCU which is initialized
with a secret random bit b ∈ {0, 1}. A may query this oracle
on IDU0

and IDU1
referred to as the identifiers of respectively

user U0 and user U1. Observe that user UA is involved in all
queries. D∗UA

and D∗Ub
, respectively belonging to user UA and

user Ub, are randomly selected in order to execute the LoRCU
oracle. To win the proposed anonymity game, the adversary

10We assume that the probability of two confirmed users being in contact
and submitting their respective contact lists to HA at the same period, is low.
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should predict the bit b (i.e., which one of users U0 and U1
is involved in the contact with user UA) with a probability
greater than 1

2 .

Definition 3. Anonymity – We say that SPOT fulfills the
anonymity requirement, if for every PPT adversary A, there
exists a negligible function κ such that: Pr[ExpanonA (1λ) =
1] = 1

2 ± κ(λ), where ExpanonA is defined as follows.

ExpanonA (λ)
pp← Set_params(λ)
(skHA, pkHA)← HA_keygen(pp)
(skS , pkS)← S_keygen(pp)
(skg, vkg)← Setup_ProxyGr(pp)
(skp, pkp, σp)← Join_ProxyGr(pp, skg)
IDUA

← Set_UserID(pp)
(skUA

, pkUA
)← Userkeygen(pp, IDUA

)
IDUi ← Set_UserID(pp), i ∈ {0..N}
(skUi

, pkUi
)← Userkeygen(pp, IDUi

), i ∈ {0..N}
b← {0, 1}
O ← {Set_CCM(·,·), S_PSign(·,skS), P_Sign(·,skp,
·,σp,·,·), LoRCU(·,·,b,·)
b′ ←AO (skHA, pkHA, pp, IDUA

, {IDUi
}Ni=0)

If b = b′

return 1
Else return 0

LoRCU (D∗UA
, D∗Ub

, b, vkg, skS , skp, pkp, σp, IDUA
,

IDUb
)

CCM∗
b ← Set_CCMUA

(D∗UA
, D∗Ub

)

(PS∗b ,PS
′∗
b)← S_PSign (CCM∗

b , skS)
(M∗b , σ

∗
b , π

∗
b ) ← P_Sign (vkg, skp, pkp, σp, IDUA

,
PS∗b)
return (CCM∗

b , M
∗
b , π

∗
b )

IV. BUILDING BLOCKS
After introducing bilinear maps and security standard assump-
tions in Section IV-A, the section next presents structure-
preserving signatures [4] with their different variants as
main building blocks of the SPOT protocol. Sections IV-B
and IV-C describe respectively constant-size signatures and
signatures on mixed-group messages that are instantiated in
Appendix IV-D to build a group signature scheme on group
element messages.

A. MATHEMATICAL BACKGROUND AND
CRYPTOGRAPHIC ASSUMPTIONS
Hereafter, we define bilinear maps and we present the
computational indistinguishability property and the CDH
assumption.

1) Bilinear Maps
Let G1=⟨g1⟩ and G2=⟨g2⟩ be two cyclic groups of order n so
there exists a bilinear map e : G1 × G2 → G3 that satisfies
the following properties: (i) bilinearity for all g1 ∈ G1, g2 ∈

G2, (ii) non-degeneracy: e(g1, g2) ̸= 1 and (iii) e(g1, g2) is
efficiently computable for any g1 ∈ G1 and g2 ∈ G2.

2) Computational Witness-Indistinguishability
The Computational Witness-Indistinguishability property is
defined as follows: Let L ∈ NP be a language and let (P,V)
be an interactive proof system for L. We say that (P,V) is
witness-indistinguishable (WI) if for every PPT algorithm V∗

and every two sequences {w1
x}x∈L and {w2

x}x∈L such that
w1

x and w2
x are both witnesses for x, the following ensembles

are computationally indistinguishable, where z is an auxiliary
input to V∗:

1) {⟨P(w1
x),V∗⟩(x)}x∈L,z∈{0,1}∗

2) {⟨P(w2
x),V∗⟩(x)}x∈L,z∈{0,1}∗

3) Computational Diffie Hellman Assumption (CDH)
The CDH assumption is defined as follows: Let G be a group
of prime order n, and g is a generator of G. The CDH problem
is defined as: Given the tuple of elements (g, gx, gy), where
{x, y} ← Zn, there is no efficient algorithm ACDH that can
compute gxy .

B. STRUCTURE-PRESERVING CONSTANT-SIZE
SIGNATURE
Structure-preserving constant-size signature was defined by
Abe et al. [4] as the main scheme of structure-preserving
signatures used to sign a message m⃗ = (m1, ...,mk) ∈
G2

k, considering an asymmetric bilinear group (n,G1,G2,
G3, g1, g2, e). A constant-size signature scheme CSIG [4]
relies on the following three PPT algorithms (CSIG.Key,
CSIG.Sign, CSIG.Verify):

CSIG.Key(1λ): This algorithm takes as input the security
parameter (1λ) and outputs the pair of public and secret
keys (sk, pk) of the signer. It chooses two random gener-
ators gr, hu ← G∗

1 and random values γi, δi ← Z∗
n and

computes gi = gr
γi and hi = hu

δi , for i = 1, ..., k.
It then selects γz, δz ← Z∗

n and computes gz = gr
γz

and hz = hu
δz . It also chooses α, β ← Z∗

n and sets
the couples (gr, g

α
2 ) and (hu, g

β
2 ). The public key is set as

pk = (gz, hz, gr, hu, g
α
2 , g

β
2 , {gi, hi}ki=1) and the secret key

is set as sk = (pk, α, β, γz, δz, {γi, δi}ki=1).

CSIG.Sign(sk, m⃗): This algorithm generates a signature σ
over a message m⃗ using the secret key sk. That is, the signer
randomly selects ζ, ρ, τ, φ, ω ← Z∗

n and computes

z = gζ2 , r = g2
α−ρτ−γzζ

∏k

i=1
mi

−γi , s = gr
ρ, t = g2

τ ,

u = g2
β−φω−δzζ

∏k

i=1
mi

−δi , v = hu
φ, w = g2

ω

The signature is set as σ = (z, r, s, t, u, v, w).

CSIG.Verify(pk, m⃗, σ): This algorithm checks the validity
of the signature σ on the message m relying on the signer’s
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public key pk. It outputs 1 if the signature is valid and 0
otherwise. The verifier checks if the following equations hold:

A = e(gz, z)e(gr, r)e(s, t)
∏k

i=1
e(gi,mi) (1)

B = e(hz, z)e(hu, u)e(v, w)
∏k

i=1
e(hi,mi) (2)

where A = e(gr, g
α
2 ) and B = e(hu, g

β
2 )

C. STRUCTURE-PRESERVING SIGNATURE ON
MIXED-GROUP MESSAGES
A structure-preserving signature on mixed-group messages
XSIG [4] represents a signature scheme where the message
space is a mixture of the two groups G1 and G2. We
consider two constant-size signature schemes CSIG1 and
CSIG2. CSIG2 is the same scheme as in Section IV-B where
the message space is G2

k2 , while CSIG1 is a ’dual’ scheme
obtained by exchanging G1 and G2 in the same scheme, where
the message space is G1

k1 . The message space for the XSIG is
then G1

k1 ×G2
k2 . Let (m⃗, ⃗̃m) be a message in G1

k1 ×G2
k2 .

For a vector ⃗̃m ∈ G1
k1 and a single element s ∈ G1, let m⃗||s

denote a vector in G1
k1+1 obtained by appending s to the end

of m⃗.
A mixed-group messages signature scheme XSIG relies on

the following three PPT algorithms (XSIG.Key, XSIG.Sign,
XSIG.Verify):

XSIG.Key(1λ): This algorithm runs (sk1, pk1) ←
CSIG1.Key(1λ) and (sk2, pk2)← CSIG2.Key(1λ) and sets
(sk, pk) = ((sk1, sk2), (pk1, pk2)).

XSIG.Sign(sk, (m⃗, ⃗̃m)): This algorithm runs σ2 =
(z, r, s, t, u, v, w) ← CSIG2.Si- gn(sk2, ⃗̃m) and σ1 =
(z′, r′, s′, t′, u′, v′, w′) ← CSIG1.Sign(sk1, m⃗||s), and out-
puts σ = (σ1, σ2).

XSIG.Verify(pk, (m⃗, ⃗̃m), (σ1, σ2)): This algorithm takes
s ∈ G1 from σ2, runs b2 = CSIG2.Verify(pk2, ⃗̃m, σ2) and
b1 = CSIG1.Verify(pk1, m⃗||s, σ1). If b1 = b2 = 1, the
algorithm outputs 1, otherwise it outputs 0.

D. GROUP SIGNATURES DRAWN FROM
STRUCTURE-PRESERVING SIGNATURES
We present hereafter an instantiation of a group signature
scheme that allows to sign a group element message relying
on a constant-size signature scheme CSIG, a mixed-group mes-
sages signature scheme XSIG and a witness indistinguishable
proof of knowledge system NIWI [10] (cf. Appendix ).

A group signature scheme GSIG relies on the four
following algorithms (GSIG.Setup, GSIG.Join, GSIG.Sign,
GSIG.Verify):
GSIG.Setup : represents the setup algorithm. It runs

XSIG.Key algorithm that generates the key pair (skg, pkg)
of the group manager and sets up a CRS ΣNIWI for the NIWI
proof. The group verification key is set as vkg = (pkg,ΣNIWI),

while the certification secret key skg is privately stored by the
group manager.
GSIG.Join: represents the join algorithm. It is composed of

two steps. In the first one, the group member generates his
key-pair (skp, pkp) while running the CSIG.Key algorithm.
Only the public key pkp is sent to the group manager. This
latter generates a signature σp over pkp, using the XSIG.Sign
algorithm, and sends it to the group member.
GSIG.Sign: represents the signing algorithm run by a group

member on a message m ∈ G2. The group member generates,
over the message m, a signature σm ← CSIG.Sign(skp,m)
and a non-interactive witness indistinguishable proof
of knowledge π ← NIWI.Proof(ΣNIWI, pub, wit) that
proves 1 = XSIG.Verify(pkg, pkp, σp) and 1 =
CSIG.Verify(pkp,m, σm) with respect to the witness wit =
(pkp, σp, σm) and the public information pub = (pkg,m).
The signing algorithm outputs the group signature π.

GSIG.Verify: represents the group signature verification
algorithm run by a verifier. It takes (vkg,m, π) as input and
verifies the correctness of the NIWI proof π w.r.t. pub =
(pkg,m) and the CRS ΣNIWI.

V. SPOT ALGORITHMS
This section gives a concrete construction of the different
phases and algorithms of SPOT, introduced in Section III-A.
SPOT relies on the different variants of structure-preserving
signatures represented in Appendix IV.

A. SYS_INIT PHASE
• Set_params – a trusted authority sets an asymmetric

bilinear group (n, G1, G2, G3, g1, g2, e) relying on the
security parameter λ, where G1 and G2 are two cyclic
groups of prime order n, g1 and g2 are generators of
respectively G1 and G2 and e is a bilinear map such
that e : G1 × G2 → G3. The trusted authority also
considers a cryptographic hash function H : {0, 1}∗ →
Zn. The output of the Set_params algorithm represents
the system global parameters that are known by all the
system entities. The tuple (n,G1,G2,G3, g1, g2, e,H)
is denoted by pp, and is considered as a default input of
all algorithms.

• HA_keygen – a trusted authority takes as input the public
parameters pp, selects a random x ∈ Z∗

n and generates
the pair of secret and public keys (skHA, pkHA) of the
health authority as follows:

skHA = x ; pkHA = gx2
• S_keygen – a trusted authority generates the pair of secret

and public keys (skS , pkS) of the server as given below,
relying on the system public parameters pp and two
selected randoms y1, y2 ∈ Z∗

n.
skS = (y1, y2) ; pkS = (Y1, Y2) = (gy1

2 , gy2

2 )
• Setup_ProxyGrGM – GM sets up the group of proxies

by generating a group public key vkg and a certification
secret key skg as shown in Algorithm 1.

• Join_ProxyGrP/GM – P first generates his pair of keys
(skp, pkp) w.r.t. the CSIG.Key algorithm (cf. Section
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IV-B). Afterwards, GM generates a signature σp over
the public key pkp w.r.t. the XSIG.Sign algorithm (cf.
Section IV-C). The Join_ProxyGrP/GM algorithm is
detailed in Algorithm 2.

Algorithm 1 Setup_ProxyGrGM algorithm

1: Input: the system public parameters pp
2: Output: the public parameters vkg of the proxies’ group

and the secret key skg
3: // The next iterations are executed to generate the pair

of keys of GM
4: pick at random gr1, hu1 ← G∗

1, gr2, hu2 ← G∗
2

5: for i = 1 to 2 do pick at random γ1i, δ1i ← Z∗
n compute

g1i ← gr1
γ1i , h1i ← hu1

δ1i

6: end for
7: for j = 1 to 7 do pick at random γ2j , δ2j ← Z∗

n compute
g2i ← gr2

γ2j and h2j ← hu2
δ2j

8: end for
9: pick at random γ1z, δ1z, γ2z, δ2z ← Z∗

n ;
10: compute g1z ← gr1

γ1z , h1z ← hu1
δ1z , g2z ← gr2

γ2z

and h2z ← hu2
δ2z ;

11: pick at random α1, α2, β1, β2 ← Z∗
n ;

12: pk1 ← (g2z, h2z, g2r, h2u, g
α2
1 , gβ2

1 , {g2j , h2j}7j=1) and
sk1 ← (pk1, α2, β2, γ2z, δ2z, {γ2j , δ2j}7j=1) ;

13: pk2 ← (g1z, h1z, g1r, h1u, g
α1
2 , gβ1

2 , {g1i, h1i}2i=1) and
sk2 ← (pk2, α1, β1, γ1z, δ1z, {γ1i, δ1i}2i=1) ;

14: set pkg ← (pk1, pk2) and skg ← (sk1, sk2) ;
15: // The next iterations are executed to generate the CRS

ΣNIWI

16: pick at random r, s← Z∗
n and set U = rg1 and V = sg2

;
17: set ΣNIWI = (G1,G2,G3, e, ι1, p1, ι2, p2, ι3,U ,V) ;
18: vkg ← (pkg,ΣNIWI) ;
19: return (skg, vkg)

• Set_UserIDHA – every time, a user (U) installs the
application and wants to register, HA picks a secret
tU ∈ Z∗

n and sets the user’s identifier IDU as
IDU = hU = gtU2

• UserkeygenU – After receiving his identifier IDU , a user
generates his pair of secret and private keys (skU , pkU ).
Indeed, U randomly selects qU ∈ Z∗

n and sets (skU , pkU )
as

skU = qU ; pkU = hU
qU

B. GENERATION PHASE
• Set_CCMU – For each epoch e, UA and UB generate

random EBIDs DeUA
and DeUB

, respectively. UA and UB
exchange their EBIDs and each of them executes the
Set_CCM algorithm. UA (resp. UB) computes me

AB =
DeUA
∗DeUB

and sets the common contact element between
UA and UB as CCMeAB = H(me

AB).
• S_PSignS – After checking that he receives two copies of
CCMeAB , the server picks at random rs ← Z∗

n and, relying
on his secret key skS , he computes the two messages

PSeAB and PS′
e
AB such that

PSeAB = CCMeABy1rs + y2 and PS′
e
AB = CCMeABrs

• P_SignP – We consider that when being requested by
a user UA, the proxy opens a session and saves the
user’s identifier IDUA

. This latter is used when executing
the P_SignP algorithm (c.f. Algorithm 3) to generate a
new message MeAB (Line 4). The proxy then signs MeAB

(Line 6 – Line 8) following the CSIG.Sign algorithm and
finally generates a proof π (Line 10 – Line 16) w.r.t. the
GSIG.Sign algorithm.

Algorithm 2 Join_ProxyGrP/GM algorithm

1: Input: the security parameter λ and the secret key of the
group manager skg

2: Output: the pair of keys of a proxy group member
(skp, pkp) and the signature σp over the public key the
public pkp

3: // The next is set by P
4: pick at random gr, hu ← G∗

1, γ, δ ← Z∗
n ;

5: compute gγ ← gr
γ and hδ ← hu

δ ;
6: pick at random γz, δz ← Z∗

n ;
7: compute gz ← gr

γz and hz ← hu
δz ;

8: pick at random α, β ← Z∗
n ;

9: set pkp = (gz, hz, gr, hu, g
α
2 , g

β
2 , gγ , hδ) and skp =

(pkp, α, β, γz, δz, γ, δ) ;
10: // The next is set by GM
11: σp ← XSIG.Sign(skg, pkp) ;
12: return (skp, pkp, σp)

C. VERIFICATION PHASE
• Sig_VerifyHA – Given a contact list of user UA (a

list of tuples (CCM, M, π) such that π can be parsed
as {(A⃗i, B⃗i,Γi, ti)}Ni=1, {(C⃗i, D⃗i, πi, θi)}Ni=1),HA veri-
fies the validity of the group signature of each message,
w.r.t. GSIG.Verify algorithm (cf. Appendix IV-D).

• CCM_VerifyHA – We consider thatHA requests from S
the message PS′ corresponding to a contact message CCM
contained in the contact list of user UA. The message PS′

is taken as input with the message M (corresponding to
CCM), the server’s public key pkS and the secret value
tUA

specific to user UA, to the CCM_VerifyHA algorithm
that checks if the equation 3 holds:

M = Y1
tUA

PS′Y2
tUA (3)

VI. SECURITY AND PRIVACY ANALYSIS
In this section, we prove that SPOT achieves the defined
security and privacy requirements with respect to the threat
models defined in Section III-D, by relying on the following
theorems and lemmas.

Theorem 1 (Unforgeability). If a probabilistic-polynomial
time (PPT) adversary A wins ExpunforgA , as defined in
Section III-D1, with a non-negligible advantage ϵ, then a PPT
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Algorithm 3 P_SignP algorithm

1: Input: the public parameters of the proxies’ group vkg , the secret key skp, the signature σp over the proxy’s public key, the
identifier IDUA

of user UA and the message PS
2: Output: a message M, the corresponding signature σm and a proof π

3: // The next is executed by P to generate M
4: compute M = IDUA

PS;
5: // The next is executed by P to sign M

6: pick at random ζ, ρ, τ, φ, ω ← Z∗
n ;

7: run z = gζ2 , r = g2
α−ρτ−γzζM−γ , s = gr

ρ, t = g2
τ , u = g2

β−φω−δzζM−δ , v = hu
φ, w = g2

ω ;
8: set σm = (z, r, s, t, u, v, w) ;
9: // The next is set to generate a proof on equations {(A⃗im, B⃗im,Γim, tim)}2i=1 where A⃗im = B⃗im = 0⃗, Γim =MAT 3×3(1)

for i = 1, 2, t1m = t2m = 1G3

10: X⃗1m = (gz, gr, s), X⃗2m = (hz, hu, v), Y⃗1m = (z, g2
α−ρτ−γzζ , t) and Y⃗2m = (z, g2

β−ρτ−δzζ , w) ;
11: πm = {( ⃗Cim, D⃗im, πim, θim)}2i=1 ← NIWI.Proof(vkg , {(A⃗im, B⃗im,Γim, tim)}2i=1, {(X⃗im, Y⃗im)}2i=1) ;
12: // The next is set to generate a proof on equations {(A⃗ip, B⃗ip,Γip, tip)}4i=1 where A⃗1p = (gα2

1 ), A⃗2p = (gβ2

1 ), A⃗3p =

(g1z, g1r), A⃗4p = (h1z, h1u), B⃗1p = (g2z, g2r), B⃗2p = (h2z, h2u), B⃗3p = (gα1
2 ), B⃗4p = (gβ1

2 ), Γ1p = (γ2z,−1),
Γ2p = (δ2z,−1), Γ3p = (γ1z,−1), Γ4p = (δ1z,−1), t1p = e(gα2

1 , g2r), t2p = e(gβ2

1 , h2u), t3p = e(g1r, g
α1
2 ) and

t4p = e(h1u, g
β1

2 )

13: X⃗1p = (z1, g1
α2−ρ1τ1−γ2zζ1), X⃗2p = (z1, g1

β2−ρ1τ1−δ2zζ1), X⃗3p = (g1r), X⃗4p = (h1u), Y⃗1p = (g2r), Y⃗2p = (h2u),
Y⃗3p = (z2, g2

α1−ρ2τ2−γ1zζ2), and Y⃗4p = (z2, g2
β1−ρ2τ2−δ1zζ2) ;

14: πp = {(C⃗ip, D⃗ip, πip, θip)}4i=1 ← NIWI.Proof(vkg, {(A⃗ip, B⃗ip,Γip, tip)}4i=1, {(X⃗ip, Y⃗ip)}4i=1) ;
15: set πp = ((πip, θip)

4
i=1) ;

16: set π = (πp, πm) ;
17: return (M, σm, π)

simulator B can be constructed to break the CDH assumption
with a non-negligible advantage ϵ.

Proof. In this proof, we show that a simulator B can be
constructed with the help of an adversary A having advantage
ϵ against SPOT scheme.

The CDH challenger C sends to B the tuple (g2, g
a
2 , g

b
2),

where a, b← Z∗
n are randomly selected. C asks B to compute

gab2 . Then, B sets gtU2 to ga2 and gy2

2 to gb2. During the challenge
phase, B randomly selects y1 ∈ Z∗

n and sends gy1

2 toA as part
of the server’s public key. A forges the partial signature over
the message PS′ and generates the message M∗ with advantage
ϵ: M∗ = IDU

PS∗ = g2
tU (PS′y1+y2). The tuple (g2

tU , PS′, M∗) is
sent back to B. Upon receiving this tuple and knowing y1,
B can compute the value of gtUy2

2 which is the same as gab2
and can then send the result to the CDH challenger. As such,
B succeeds the forgery against the CDH assumption with
advantage ϵ.

Theorem 2 (Unlinkability). Our SPOT system achieves the
unlinkability requirement with respect to the group-signature
unlinkability and multi-CCM unlinkability properties.

We prove Theorem 2 through Lemma 3 and Lemma 4
with respect to group-signature unlinkability and multi-CCM
unlinkability properties, respectively.

Lemma 3 (Group-signature unlinkability). SPOT satisfies
the group signature unlinkability requirement with respect to
the computational witness indistinguishability property of the
NIWI proof.

Proof. In this proof, the objective is to show that the adversary
is not able to distinguish group signatures issued by the same
proxy. For this purpose, we suppose that, for each session i, the
adversary receives the message M∗ (i.e., the same message
M∗ is returned by each oracle) and the NIWI proof πi =
(πi

m, πi
p) = ((πi

jm, θijm)2j=1, (πi
jp, θ

i
jp)

4
j=1).

To simplify the proof, we will only consider the NIWI proof
πi
m, as the statements used to generate the proofs πi

p do
not give any information about the proxy generating the
proof (i.e., statements do not include the proxy’s public
key). Thus, for each session i, the adversary is given the
tuples (C⃗ik1, D⃗i

k1, π
i
k1, θ

i
k1) and (C⃗ik2, D⃗i

k2, π
i
k2, θ

i
k2) referred

to as the group signature generated by a proxy Pk, where
k ∈ {0, 1}. During the challenge phase, the adversary is also
given two group signatures. The first signature is represented
by the tuples (C⃗∗1 , D⃗∗

1 , π
∗
1 , θ

∗
1) and (C⃗∗2 , D⃗∗

2 , π
∗
2 , θ

∗
2) generated

by proxy P0, while the second one is represented by the tuples
(C⃗∗b1, D⃗∗

b1, π
∗
b1, θ

∗
b1) and (C⃗∗b2, D⃗∗

b2, π
∗
b2, θ

∗
b2) and is generated

by a proxy Pb (b ∈ {0, 1}).

Let us consider a simulator B that can be constructed with
the help of an adversary A having advantage ϵ against SPOT
scheme. A challenger C selects two couples of witnesses
(X0, Y0) and (X1, Y1). C computes a commitment (C,D)
over (X0, Y0), and then selects a bit b ∈ {0, 1} and computes a
commitment (C ′

b, D
′
b) over (Xb, Yb). C asks B to guess the bit

b. Then, B selects the tuples (A,B,Γ, t) and (A′
b, B

′
b,Γ

′
b, t

′
b)

and computes the proofs (π, θ) and (π′
b, θ

′
b). B returns the two

proofs to A. Finally, A outputs a bit b′ that it sends to B. This
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latter outputs the same bit b′ to its own challenger C. As such,
A succeeds in breaking the group-signature unlinkability with
advantage ϵ, which is the same as breaking the computational
witness-indistinguishability property.

Corollary 3.1. If SPOT satisfies the unlinkability property,
then the proxies’ group signature (i.e., NIWI proof) fulfills
the anonymity requirement stating that it is not possible to
identify the proxy that issued a particular group signature.

Lemma 4 (Multi-CCM unlinkability). SPOT satisfies the
multi-CCM unlinkability requirement with respect to the
common contact message structure.

Sketch of proof. Let A be a successful adversary against the
multi-CCM unlinkability property. Assume that A receives
two messages CCM1 = H(Di ∗ Dj) and CCM2 = H(Di ∗ Dk)
(with j ̸= k) meaning that user Ui met Uj and Uk, then
A is not able to link CCM1 and CCM2 to the same user Ui as
all EBIDs are randomly generated in each epoch e, and the
hashing function H behaves as a pseudo-random function.

Theorem 5 (Anonymity). SPOT satisfies the anonymity
property, in the sense of Definition 3, if and only if, the CCM-
unlinkability requirement is fulfilled.

Sketch of proof. We prove that our proximity-based protocol
SPOT satisfies the anonymity property using an absurdum
reasoning. We suppose that an adversary A can break the
anonymity of SPOT, in the sense of Definition 3, by reaching
the advantage Pr[ExpanonA (1λ) = 1] ≥ 1

2 ±κ(λ).A is given
the pair of public-private keys (pkHA, skHA) of the health
authority, the identifiers IDU of all users and a contact list of a
particular user UA, obtained when relying on several sessions.
Then, relying on the left-or-right LoRCU oracle, A tries to
distinguish the user Ub being in contact with UA, better than
a flipping coin. That is, given the tuple (CCM∗

b , M
∗
b , π

∗
b ), A

successfully predicts the identifier IDUb
. Obviously, A tries

to identify user Ub relying on the message CCM∗
b , since both

M∗b and π∗
b are generated based on CCM∗

b and give no further
information about the user Ub. This refers to link the message
CCM∗

b to its issuer Ub. Thus, if A succeeds, this means that
A is able to link two or several common contact messages to
the same user, which contradicts the multi-CCM unlinkability
property previously discussed. As such, we prove that the
adversary succeeds ExpanonA (1λ) with a probability Pr =
1
2 ± κ(λ), where κ(λ) is negligible. Thus, SPOT satisfies
anonymity.

Theorem 6 (Anti-replay). SPOT satisfies the anti-replay
requirement and supports false positive hindrance, if the
proposed scheme is unforgeable.

Sketch of proof. To successfully replay a common contact
message generated in an epoch e, in another epoch e′ ̸= e,
a malicious user can perform in two ways. (i) The user

reinserts, in his contact list, the tuple (CCMe, Me, πe) generated
in an epoch e. The reinsertion is performed in an epoch
e′ > e + ∆11. Afterwards, the contact list is sent to HA
when the user is infected.HA asks the server to provide the
message PS′ corresponding to CCMe. As the server has no
entry corresponding to CCMe in the last ∆ days, the second
verification performed byHA does not hold and the tuple is
rejected. (ii) We assume that, in an epoch e′ > e+∆, the user
is able to replay a message CCMe with two different proxies
and he successfully receives the corresponding message M

and the group signature π. Thus, when the user is infected,
the health authority validates false positives, but this has no
impact on the computation of the risk score, as no user has
the same entry in his contact list. As such, we can prove the
resistance of SPOT against replay attacks.

VII. PERFORMANCE ANALYSIS
This section introduces SPOT test-bed, discusses the exper-
imental results, presented in Table 3, and demonstrates the
usability of the proposed construction for real world scenarios.

A. SPOT TEST-BED

For our experiments, we developed a prototype of the SPOT
protocol that implements the three phases Sys_Init, Gen-
eration and Verification including the twelve algorithms12.
The tests are made on an Ubuntu 18.04.3 machine - with
an Intel Core i7@1.30GHz - 4 cores processor and 8GB
memory. The twelve algorithms were implemented based on
JAVA version 11, and the cryptographic library JPBC13. We
evaluate the computation time of each algorithm relying on
two types of bilinear pairings, i.e., type A and type F. The
pairing type A is the fastest symmetric pairing type in the
JPBC library constructed on the curve y2 = x3 + x with
an embedding degree equal to 2. The pairing type F is an
asymmetric pairing type introduced by Barreto and Naehrig
[2]. It has an embedding degree equal to 12. For the two types
of pairing, we consider two different levels of security i.e.,
112-bits and 128-bits security levels recommended by the US
National Institute of Standards and Technology14 (NIST).
Based on the selected cryptographic library and the implemen-
tation of Groth-Sahai proofs15, the SPOT test-bed is built with
six main java classes, w.r.t. to the different entities of SPOT,
referred to as TrustedAuthority.java, GroupManager.java,
Proxy.java, HealthAuthority.java, User.java and Server.java.
Each class encompasses the algorithms that are performed
by the relevant entity as described in Section III-A. In order
to obtain accurate measurements of the computation time,
each algorithm is run 100 times. Thus, the computation

11It makes no sense to reinsert an element in an epoch e′ < e + ∆, as
duplicated messages will be deleted either by the server or at the user’s
end-device.

12The source code is available at https://github.com/privteam/SPOT
13http://gas.dia.unisa.it/projects/jpbc/
14http://keylength.com
15https://github.com/gijsvl/groth-sahai
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times represent the mean of the 100 runs while considering a
standard deviation of an order 10−2.

B. COMMUNICATION AND COMPUTATION
PERFORMANCES OF SPOT

This section first proposes a theoretical analysis of the
communication cost. Then, it presents the experimental results
of the implementation of SPOT algorithms.

As presented in Table 3, the communication cost is mea-
sured according to the size of the elements G1, G2, G3

and Zn exchanged between entities. Setup_ProxyGr and
Join_ProxyGr are the most bandwidth consuming algorithms,
however this result must be put into perspective as both
algorithms are performed once. Other algorithms have accept-
able communication overhead, in particular those performed
repeatedly by the user, which proves the efficiency of SPOT.

From Table 3, it is worth noticing that the computation time
depends on the selected pairings types and is strongly related
to the security level. Some algorithms of the Sys_Init phase
are consuming but they are limited to only one execution
from a powerful trusted authority. For the Generation phase,
the most consuming algorithm is P_Sign which requires 19
seconds (resp. 40 seconds) for pairing type A and 3 seconds
(resp. 4 seconds) for pairing type F. The computation time
of Set_CCM and S_PSign are negligible, which means that
the user and the server are not required to have important
computation capacities. Finally, to verify the correctness of
a single contact message, the Verification phase requires
approximately 7 seconds (resp. 15 seconds) for pairing type
A and 32 seconds (resp. 37 seconds) for pairing type F.

It is clear that P_Sign and Sig_Verify are the most consum-
ing algorithms in terms of computation time as they include
a large number of exponentiations and pairing functions,
however this result must be put into perspective as both the
proxy and the health authority are assumed to have advanced
hardware features. Table 3 also shows that the Sig_Verify
algorithm run with pairing type A is faster than with pairing
type F, as this latter requires excessive memory allocation and
deallocation. The P_Sign algorithm has an opposite behavior
where the execution with pairing type F is faster than pairing
type A, which is compliant to the JPBC library benchmark16

showing that elementary functions of multiplication and
exponentiation require less computation time for pairing type
F.

From Table 3, we can deduce that the algorithms executed at
the user’s side, have very low computation and communication
overhead, which confirms the usability of SPOT, even
when being run on a smartphone with low capacities. For
both consuming algorithms (P_Sign and Sig_Verify) that are
repeatedly run, some performance improvement means are
proposed in the next subsection.

16http://gas.dia.unisa.it/projects/jpbc/benchmark.html

C. IMPROVED PERFORMANCES WITH
MULTITHREADING AND PREPROCESSING

For both computation consuming algorithms P_Sign and
Sig_Verify (see Section VII-B), in an effort to make the
computation time as efficient as possible, although they run on
powerful SPOT entities, we rely on a two step improvement:

• Multithreading: applied to both P_Sign and Sig_Verify
algorithms. It enables simultaneous multiple threads
execution (e.g., the computation of the different parts
of the NIWI proof for the P_Sign algorithm, the compu-
tation of either the different verification equations of the
NIWI proof, or the two sides of each equation, for the
Sig_Verify algorithm).

• Preprocessing: applied only to Sig_Verify algorithm. It
enables to prepare in advance a value to be later paired
several times, like the variables U and V which are
used as input to pairing functions for each verification
equation.

Figure 3 exposes the impacts of one or two combined
improvements applied to P_Sign and Sig_Verify. From Figure
3a, we notice that multithreading reduces the computation time
for P_Sign of approximately 35%, for the two types of pairing
and the two levels of security. For Sig_Verify, Figure 3b shows
that multithreading has a greater impact on the computation
time (i.e., approximately 40% for pairing type A and 28%
for pairing type F) than preprocessing (i.e., approximately
10% for pairing type A and 5% for pairing type F 17). The
two combined improvements ensure a gain of almost 50% for
pairing type A and 30% for pairing type F.

VIII. CONCLUSION
In this paper, a novel secure and privacy-preserving proximity-
based SPOT protocol for e-healthcare systems is introduced.
The objective of SPOT is to help governments and healthcare
systems to deal with pandemics by automating the process of
contact tracing, with security guarantees against fake contacts
injection and privacy preservation for users. Thanks to the
underlying network architecture relying on a centralized
computing server and decentralized proxies, SPOT enables
users to determine whether they were in close proximity
with infected people, with no risk of false positive alerts.
The strength of the paper is to provide a full concrete
construction of SPOT which is proven to be secure and to
support several privacy properties under standard assumptions.
Another strength of the contribution is a PoC of SPOT
including a full implementation of the different algorithms,
where practical computation costs measurements demonstrate
the feasibility of our proposed protocol.
Further research will consider aggregating the verification of
multiple contact messages in an effort to improve verification
performances.

17For type F - 128 bits, the preprocessing decreases the performances. This
is due to the excessive memory allocation and deallocation required by the
pairing type F.
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TABLE 3: Computation time and communication overhead of SPOT algorithms

Algorithm Entity Synch/Asynch Communication cost Computation time (ms)
A/112-bits A/128-bits F/112-bits F/128-bits

Set_params T A Asynch. |Zn|+ |G1|+ |G2|+ |G3| 874 2521 1230 1364
HA_Keygen T A Asynch. |G1| 59 123 12 16
S_Keygen T A Asynch. 2|G2| 119 244 24 31

Setup_ProxyGr GM Asynch. 21(|G1|+ |G2|) 1955 4075 346 451
Join_ProxyGr P/GM Synch. P : 8|G1|+ 2|G2| / GM : 7(|G1|+ |G2|) 2861 6014 1159 1409
Set_UserID HA Synch. |G2| 58 121 12 16
Userkeygen U Asynch. |G2| 117 242 24 31
Set_CCM U Synch. |Zn| 0.1 0.1 0.1 0.1
S_PSign a S Synch. |Zn| 0.1 0.08 0.02 0.02
P_Sign a P Synch. 6|G1|+ 7|G2| 19353 40371 3164 4170

Sig_Verify a HA Asynch. N.A. 6541 15406 31637 36892
CCM_Verify a HA Asynch. N.A. 174 360 148 190

NOTE: Synch./Asynch. indicates whether the algorithm must be run online (i.e., in real time) or offline (i.e., later); a indicates that the algorithm is performed on a single contact
message that is generated by the Set_CCM algorithm; |G1| (resp. |G2|, |G3| and |Zn|) indicates the size of an element in G1 (resp. G2, G3 and Zn); N.A. is the abbreviation for
Not Applicable.

(a) Influence of multithreading on P_Sign algorithm (b) Influence of preprocessing or/and multithreading on Sig_Verify algorithm

FIGURE 3: Influence of improvements on P_Sign and Sig_Verify algorithms
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APPENDIX. NON-INTERACTIVE WITNESS
INDISTINGUISHABLE PROOF
In this section we represent the Groth-Sahai NIWI proof
scheme applied on pairing product equations with an asym-
metric bilinear map. Witness-indistinguishability implies that
the verifier of a group signature is not able to find the group
member that has generated the signature. The NIWI scheme
we consider, involves four PPT algorithms (NIWI.Setup,
NIWI.CRS, NIWI.Proof, NIWI.Verify):
NIWI.Setup: This algorithm outputs a setup (gk, sk) such

that gk = (n, G1, G2, G3, g1, g2, e) and sk = (p, q) where
n = pq.

NIWI.CRS: This algorithm generates a common reference
string CRS. It takes (gk, sk) as inputs and produces CRS =
(G1,G2,G3, e, ι1, p1, ι2, p2, ι3, p3,U ,V), where U = rg1,
V = sg2 ; r, s ∈ Z∗

n and

ι1: G1 −→ G1 ι2: G2 −→ G2 ι3: G3 −→ G3

x 7−→ x y 7−→ y z 7−→ z

p1: G1 −→ G1 p2: G2 −→ G2 p3: G3 −→ G3

x 7−→ λx y 7−→ λy z 7−→ zλ

NIWI.Proof: This algorithm generates a NIWI proof for
satisfiability of a set of pairing product equations of the form
of∏l

i=1
e(Ai,Yi)

∏k

i=1
e(Xi,Bi)

∏k

i=1

∏l

j=1
e(Xi,Yj)γij = t

also written as

(A⃗ · Y⃗)(X⃗ · B⃗)(X⃗ · ΓY⃗) = t

It takes as input gk, CRS and a list of pairing product equations
{(A⃗i, B⃗i,Γi, ti)}Ni=1 and a satisfying witness X⃗ ∈ Gk

1 , Y⃗ ∈
Gl

2. To generate a proof over a pairing product equation, the
algorithm, first, picks at random R ← V eck(Zn) and S ←
V ecl(Zn), commits to all variables as C⃗ := X⃗ + RU and
D⃗ := Y⃗ + SV , and computes

π = R⊤ι2(B⃗) +R⊤Γι2(Y⃗) +R⊤ΓSV

θ = S⊤ι1(A⃗) + S⊤Γ⊤ι1(X⃗ )

The algorithm outputs the proof (π, θ).

NIWI.Verify: This algorithm checks if the proof
is valid. It takes gk, CRS, {(A⃗i, B⃗i,Γi, ti)}Ni=1 and
(C⃗i, D⃗i, {(πi, θi)}Ni=1) as inputs and for each equation, checks
the following equation:

e(ι1(A⃗i), D⃗i)e(C⃗i, ι2(B⃗i))e(C⃗i,ΓiD⃗i) = ι3(ti)e(U , πi)e(θi,V)
(4)

The algorithm outputs 1 if the equation holds, else it outputs
0.
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