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Abstract In this work, we investigate hybrid PET reconstruction algo-
rithms based on coupling a model-based variational reconstruction and
the application of a separately learnt Deep Neural Network operator
(DNN) in an ADMM Plug and Play framework. Following recent
results in optimization, fixed point convergence of the scheme can be
achieved by enforcing an additional constraint on network parameters
during learning. We propose such an ADMM algorithm and show in
a realistic [18F]-FDG synthetic brain exam that the proposed scheme
indeed lead experimentally to convergence to a meaningful fixed point.
When the proposed constraint is not enforced during learning of the
DNN, the proposed ADMM algorithm was observed experimentally
not to converge.

1 Introduction

In the quest for PET image reconstructions adapted to a
protocol, to a specific patient or to a given task, deep learning
approaches are currently a promising avenue of research.
Early works have already illustrated the potential of such
approaches to achieve better resolution, contrast recovery and
noise propagation trade-offs compared to classical model-
based variational methods for PET reconstruction [1, 2]. In
particular, a reduction of the dose injected to the patient could
be envisioned without sacrificing much of the reconstructed
image quality compared to a standard dose exam, which
would be beneficial for the patient and/or to reduce the cost
of a PET scan [3].
However using deep learning in PET raises several new is-
sues compared to the aforementioned variational approaches.
In particular these specific methods can generate instabilities
related to the ill-posedness of the problem that could lead to
images with artefacts as already observed in biomedical im-
age reconstruction applications [4]. Furthermore, deep learn-
ing techniques for reconstruction often use neural networks
as a black box operator in the reconstruction pipeline. This
leads to end estimates that lack mathematical or statistical
guarantees that could make them robust, contrary to classical
reconstruction techniques typically associated with a convex
variational problem. Robustness of the reconstruction is also
of paramount importance in PET where datasets are often
small (with typically only tens of exams per protocol) leading
to limited learning and validation.
In this context, hybrid techniques inspired by model-based
PET reconstruction approaches in a learning framework have
been proposed to avoid learning the direct model and to aim
at more reliable estimates [5]. We will focus on this work on
a less investigated hybrid framework for PET reconstruction
than unrolled [2] or synthesis [1] approaches: the ADMM
Plug and Play approach [6]. In this framework, an implicit

operator related to the prior is only learned [7], making this
approach flexible. Fixed-point convergence results have been
investigated for this framework even though the optimization
problem is non-convex and the learned operator is implicit
[8, 9]. Based on these results, we propose and investigate
in this work a convergent ADMM Plug and Play approach
for PET image reconstruction using Deep Learning. We
present in section 2 the convergent ADMM Plug and Play
approach that we propose, the datasets used for training and
evaluation and detail the architecture and implementation of
the additional constraint needed for fixed-point convergence
of the scheme. We then present and discuss our results on
realistic [18F]-FDG synthetic exams.

2 Materials and Methods

2.1 Convergent ADMM Plug and Play

We consider the reconstruction of an image denoted by
x ∈ RN

+, from an observed noisy sinogram y ∈ NM. The
ADMM plug and play algorithm is described in Algorithm 1.
In our context of PET reconstruction LL(y,x) is the Pois-
son log-likelihood and Dθ is a DNN operator with inputs
the reconstructed PET images, with parameters learnt in a
separated step.

Algorithm 1 ADMM Plug and Play with a DNN Dθ .

1: Choose z(0), u(0), ρ , K.
2: for k = 0..K do
3: x(k+1)

ρ = argmin
x∈RN

+

−LL(y,x)+ ρ

2 ‖x− (z(k)ρ −u(k)
ρ )‖2

2

4: z(k+1)
ρ = Dθ

(
x(k+1)

ρ +u(k)
ρ

)
5: u(k+1)

ρ = u(k)
ρ +x(k+1)

ρ − z(k+1)
ρ

6: end for
7: return x(K+1)

ρ

Compared to unrolling techniques, this ADMM framework
decouples learning the DNN and reconstructing the images,
which is convenient for integrating DNN inside the recon-
struction. In particular the number of ADMM iterations can
be large with no impact on the GPU VRAM contrary to un-
rolling techniques. Besides the reconstruction problem in
line 3 is a standard (convex) minimization problem, which
can be solved using an efficient existing PET algorithm [10].
Compared to synthesis ADMM approaches, this Plug and
Play formulation leads to a simple condition on the DNN for
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this scheme to converge as described below. Note in partic-
ular that no heuristic choice of an iteration-dependent ρ is
needed to stabilize the algorithm as often proposed as in [8],
even though our final estimate still depends on ρ .
If the operator Dθ corresponds to the proximal operator of
a proper, closed and convex function, Algorithm 1 is the
classical ADMM algorithm with an implicit operator and
with convergence properties described in [11, 12] . However
for a general Dθ , such algorithm may not even minimize a
convex problem and there is no guarantee of convergence of
such a scheme. Conditions for fixed point convergence of the
ADMM Plug and Play algorithm have however been studied
in [8, 9] and references therein. In particular, [9] shows that
one ADMM iteration can be written equivalently as apply-
ing an operator Tθ = 1

2 Id+1
2(2Dθ − Id)(2Prox−LL/ρ− Id).

This implies in particular that if Lθ = (2Dθ − Id) is a non
expansive operator and Tθ has a fixed point, then fixed
point convergence of the scheme is obtained [9]. The non-
expansiveness constraint is however difficult to enforce nu-
merically. [9] proposed to use real spectral normalization on
each layer to constrain the Lispchitz constant of each layer of
the DNN. In this work, we rather use the approach proposed
in [13]. Taking also into account a supervised loss (Mean
Squared Error - MSE), the DNN parameters are estimated in
the following minimization problem:

min
θ

B

∑
b=1
‖Dθ (xb)− x̄b‖2

︸ ︷︷ ︸
MSE

+β max{‖∇Lθ (x̃b)‖+ ε−1,0}1+α︸ ︷︷ ︸
Non expansiveness constraint

,

(1)
where b is the batch index, ε , α and β are hyperparameters
to balance the supervised loss and the constraint and x̃b is
obtained as a random convex combination of the reference
image x̄b and the output of the neural network as follows:

x̃b = κ x̄b +(1−κ)Dθ (xb),κ ∼U [0,1]. (2)

Note that the spectral norm of the Jacobian for a given entry
point can be estimated using automatic differentiation but the
computation is particularly intensive in terms of both GPU
VRAM and execution time.

2.2 Datasets and Learning settings

The database used for learning and evaluation of the proposed
approach was derived from 14 brain [18F]-FDG brain exams
of healthy subjects and their associated T1 weighted MR im-
ages. The T1 images were first segmented into 100 regions
using FreeSurfer1. The PET signal was then measured in
a frame between 30 minutes and 60 minutes after injection
in each region using PETSurfer [14] to generate 14 distinct
anatomo-functional phantoms. 3-dimensional PET simula-
tions for a Biograph 6 TruePoint TrueV PET system were
then generated using an analytical simulator [15], including

1https://surfer.nmr.mgh.harvard.edu

normalization, attenuation, scatter and random effects. 11
phantoms were used for training and 3 for testing. Data aug-
mentation was performed for each phantom by simulating 10
realizations of the injected dose so that the total number of
counts simulated spans the range observed in the 14 exams.
This results in 110 shuffled simulations used for training and
30 realizations for testing. These simulations were recon-
structed with CASToR [16] using OSEM with 8 iterations of
14 subsets.
The network Dθ was chosen as a U-Net [17] with 443649
parameters. We made several modifications compared to the
architecture presented in [1], as a balance between perfor-
mance of the network and number of parameters to learn: we
use 3 levels with instance normalization, 3D average pooling
and concatenation between the decoder branches and encoder
branches, and we use an overall skip connection to learn on
the residual image. Note that the input reconstructed images
are first normalized so that the network performance is robust
to dose variation. The normalization factor is then applied to
the output of the network to recover the correct scale.
The DNN parameters of the U-Net were learned in two steps.
In a preliminary phase, the DNN parameters are learnt only
with the supervised MSE loss. The ADAM optimizer with 50
epochs and a learning rate of 0.001 was used. Batch size was
1, and the reference in the supervised loss corresponds to the
noise-free images. This results on a first DNN without the
constraint on the Jacobian, named "PRE" in the following.
In a second phase, the total loss in Equation 1 is considered
and the Power Iterative Method (with a maximum of 10
iterations) and automatic differentiation is used to compute
the spectral norm of the Jacobian. In this case we use 14
additional epochs on the PRE DNN to enforce the constraint,
using ADAM with a learning rate of 0.0005, batch size of 5,
β = 10, α = 0.1 and ε = 0.05 in Equation 1. This network
is named "JAC" in the following.
Both networks are then employed in Algorithm 1 using 40
iterations and compared on the simulations. For initialization
z(0) is an OSEM reconstructed image with 8 iterations of 14
subsets and u(0) = 0. We first investigated the choice of ρ on
the convergence speed and on the solution by looking at the
norm of the primal residual defined as x(k)ρ − z(k)ρ and of the

dual residual ρ(z(k+1)
ρ − z(k)ρ ) [12]. Both should converge to

zero for ADMM to converge.

3 Results

MSE curves during training and testing of the PRE U-Net
illustrate that 30 epochs are necessary to learn parameters in
the preliminary phase (not shown). Figure 1 shows that the
choice of β leads to balanced supervised and constraint loss
in the first iteration. Both MSE and Jacobian constraint com-
ponents of the loss are decreasing over epochs. Performance
in the testing and training datasets were comparable in terms
of MSE, and the proposed implementation of the constraint

https://surfer.nmr.mgh.harvard.edu
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Figure 1: Loss functions for JAC U-Net. Left: the total loss is
subdivided into its two individal contribution. Middle: MSE for
training and testing phases. Right: Jacobian spectral norm for
testing dataset.

Figure 2: Performance of U-Nets in post-processing for a simula-
tion in the test set. From top to bottom: noise-free reference image,
OSEM image, PRE U-Net estimate, JAC U-Net estimate.

leads to a Jacobian spectral norm in the testing dataset less
than 1 as expected (compared to more than 3.5 for PRE).
Figure 2 illustrates the performance of both U-Nets when
used as simple post-processing for reconstructed PET im-
ages: propagated noise has been reduced while preserving
the high frequency structures present in the original phantom.
Compared to the PRE U-Net higher frequencies are observed
in the background region for the JAC U-Net, indicating that
the denoising performance is slightly degraded when using
the Jacobian constraint.
The two networks were then employed in Algorithm 1. The
impact of hyperparameter ρ is illustrated on Figure 3 for
the JAC U-Net. This illustrates that a carefull choice of this
hyperparameter is needed to reach adequate convergence
speed for the overall scheme similarly to what is observed
in ADMM in convex problems. In the following, we chose
ρ = 5e−7 which achieves fast convergence as indicated in
both primal and dual residuals.
Figure 4 illustrates the performance of PRE and JAC U-Nets
across ADMM iterations, for the previously selected value
of ρ . It can be observed that JAC U-Net leads to decreasing
primal and dual residuals and to a rapid stabilization of both
MSE to a low value and log-likelihood to a high value. On

Figure 3: Norm of the primal (left) and dual residual (right) across
ADMM Plug and Play iterations for the JAC U-Net.

Figure 4: Evolution for both U-Nets of Top: primal (left) and dual
(right) residuals; Bottom: log-likelihood (left) and MSE (right).

the contrary the PRE U-Net has not converged as illustrated
in primal and dual residuals, and has lower log-likelihood
and higher MSE than JAC.
Figure 5 illustrates the recovered images using ADMM Plug
and Play with PRE and JAC U-Nets, compared to the best
Gaussian post-filtered OSEM image. JAC results lead to the
closest image to the reference, with the lowest MSE. On the
contrary, PRE U-Net leads to a not converged image further
from the reference.

4 Discussion

In this work we have proposed a strategy to build a conver-
gent ADMM Plug and Play algorithm by enforcing a non-
expansiveness constraint during the learning of the DNN.
Enforcing a strict (global) non-expansiveness constraint is
actually replaced by enforcing ‖∇Lθ (x̃b)‖ to be less than 1
for sampled x̃b using Equation 1. More epochs are needed
to ensure sufficient sampling of the space close to the solu-
tion. However, the results presented in this work illustrate
that the constraint is satisfied even for the test set. It was
also observed experimentally that Algorithm 1 converges as
expected. Nonetheless, robustness of such a reconstruction
scheme should be further assessed. We have shown that the
choice of hyperparameter ρ is crucial for convergence speed
as in the convex case, but in this non-convex case the solu-
tion also depends on ρ . The choice of ρ is therefore crucial,
and the choice of this hyperparameter should be investigated
more thoroughly. Finally we plan to investigate the perfor-
mance of such algorithm in low-dose scenarios to assess the
performance of such approach in a more clinically relevant
setting.
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Figure 5: Reconstructed images for the same test set simulation as
in Figure 2. On top, the OSEM reconstructed image with the best
Gaussian post-filtering selected (MSE:90265). In the middle, the
PRE U-Net results after 80 iterations (MSE:75227). In the last row,
the result obtained with the proposed JAC U-Net after 80 iterations
(MSE:50957).

5 Conclusion

In this work we have proposed a new approach for PET re-
construction using Deep Learning. Based on the ADMM
Plug and Play framework, the proposed approach uses a con-
straint on the spectral norm of an operator Jacobian during
learning. This promotes the non-expansiveness that leads
to a convergent reconstruction scheme. We show in experi-
mental simulations that without this constraint the ADMM
does not converge. On the contrary, the proposed approach
experimentally converges to a higher likelihood solution and
to a lower MSE, illustrating the interest of such an approach.
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