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An innovative wearable sensing system based on
flexible piezoresistive sensors to estimate upper

body joint angle using a Nonlinear AutoRegressive
eXogenous Neural Model

Abdo-rahmane Anas Laaraibi, Corentin Depontailler, Gurvan Jodin, Damien Hoareau, Nicolas Bideau and
Florence Razan

Abstract— The widespread adoption of instrumented textiles has made a
significant impact in various domains, encompassing health monitoring,
rehabilitation, biomechanics, and sports. This study specifically focuses
on the development and evaluation of a smart garment that employs low-
energy flexible sensors embedded within the fabric to effectively monitor
upper body movements. These sensors utilize a piezoresistive polymer
integrated into the garment and establish a connection with an elec-
tronic board for data acquisition. Wireless data transmission is achieved
through the utilization of Bluetooth Low Energy (BLE) technology, with
the garment showcasing an impressive average power consumption of
approximately 10 𝜇W. To ensure the sensor’s performance and reliability,
a comprehensive characterization process is meticulously conducted
utilizing a dedicated test bench. Furthermore, this study conducts a
comparative analysis between two distinct estimators utilized for de-
termining the flexion/extension angles of the upper body joint. The first
estimator leverages a Nonlinear AutoRegressive eXogenous (NARX) neural network model, while the second estimator employs
a viscoelastic model. Through extensive evaluation, it becomes evident that the NARX neural network model outperforms the
viscoelastic model, showcasing superior accuracy with a root-mean-square error of 4.85°. Consequently, the NARX neural network
model emerges as the preferred option for accurately estimating the flexion/extension angles of the upper body joint.

Index Terms— Wearable sensors, low-energy flexible sensors, smart garment, piezoresistive polymer, upper body movements,
body joint angle, BLE, mechanical bending, IoT, NARX.

I. INTRODUCTION

THE popularity of wearable and flexible electronics is
growing due to their ability to integrate with body

movements, particularly in sports and health. Many applications
utilize wearable technology to monitor sports activity [1],
enhance quality of life, and prevent disease [2], [3]. These
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devices provide continuous monitoring of physical activities,
health parameters and lifestyle, thanks to sensors to measure
physiological parameters like heart rate, body temperature, and
movements. However, the design and optimization of these
systems present technical challenges that require innovative
solutions and interdisciplinary collaboration.

Several alternatives to wearable technology for monitoring
movements are available. These alternatives include video
cameras, such as Kinect cameras [4], GPS and LPS technol-
ogy like Catapult [5], optoelectronics systems like Vicon [6]
and Qualisys [7], and motion sensors such as IMU sensors
[8] and force/pressure sensors. Each alternative has its own
advantages and limitations: video cameras (real-time, limited
precision/range), GPS/LPS (accurate position, imprecise track-
ing), optoelectronics (high accuracy, complex setup), motion
sensors (common, design challenges).

In addition to wearable technology, the integration of flexible
sensors into garments for monitoring human motion offers sig-
nificant advantages. Various types of flexible sensors, including
capacitive sensors [9], fiber optic polymers [10], piezoelectric
sensors [11], and piezoresistive polymers [12], have undergone
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extensive research and have been proven effective in accurately
sensing pressure or strain to monitor movement.

Yu et al. [13] discussed the development of a novel type
of flexible, wearable capacitive pressure sensor aimed at rec-
ognizing human motion states. The article recognizes that the
effectiveness of flexible sensors in recognition has been limited
by factors such as sensor sensitivity and stability. Accurately
discerning changes in capacitance values of the sensor has
also been a challenging task due to noise interference. Wang
et al. [14] presented the development of a stretchable optical
fiber sensor made with graphene and PDMS. The sensor
is capable of detecting human movement and has potential
applications in health monitoring systems. However, the article
mentions that the sensor’s sensitivity may be affected by
temperature changes, and its performance may degrade over
time due to environmental factors. Mokhtari et al. [15] discussed
the potential of nanostructured piezoelectric fibers in smart
garments, focusing on applications such as energy harvesting
and force measurement. The article acknowledges the challenges
associated with widespread adoption and emphasizes the need
to enhance durability, washability, and comfort for long-term
viability. Zhang et al. [16] proposed a method for capturing
and recognizing human arm/hand gestures using flexible strain
sensors. However, the study acknowledges several challenges
in the field, including the need to address inconsistencies in
capturing dynamic behaviors and the lack of accurate gesture
recognition techniques. Abro et al. [17] conducted a study on a
flexible smart garment integrating flex sensors to monitor body
postures. The study emphasizes the benefits of flex sensors
but also reveals important limitations in the smart garment
context. Notably, flex sensors cannot withstand washing, have a
restricted range of motion, and are unidirectional. Furthermore,
their fragility poses an additional drawback.

Recent research has demonstrated exceptional detection per-
formance; however, the seamless integration of the technology
has not yet been fully optimized, and certain commercial
solutions have been constrained by price or performance
limitations. Notwithstanding these constraints, piezoresistive
sensors have garnered significant popularity in various scientific
advancements due to their cost-effectiveness and flexibility.
Consequently, they are well-suited to fulfill the current require-
ments for human motion detection.

Our manuscript focuses on the development of a low-cost and
portable sensing system utilizing flexible piezoresistive sensors
to estimate the angle of the upper body joint. Our approach
entails comparing different models to comprehensively analyze
the data acquired by the sensors, enabling us to deliver precise
and reliable angle measurements.

The article begins by introducing a garment incorporating
piezoresistive sensors connected to an electronic board, ensuring
the system’s portability. We demonstrate the garment’s capa-
bility to detect resistance changes corresponding to alterations
in joint angles while simultaneously examining the system’s
energy consumption. Subsequently, we describe the design and
characterization process of the piezoresistive sensors, which
comprise a piezoresistive elastomer and a conductive textile.
These sensors are integrated into a fabric and sewn using
a sewing machine, after which they undergo comprehensive

characterization on a dedicated test bench. The resulting solution
is not only cost-effective but also reliable, enabling resistance
measurements of the sensors during static and dynamic move-
ments. The paper concludes with a comparative analysis of two
models: a neural network model and a viscoelastic model. We
assess their effectiveness in estimating the bending angle of the
upper body based on the measured resistance.

II. SYSTEM DESCRIPTION

A. Description of the piezoresistive effect
The piezoresistive effect is a change in the electrical resistivity

of a material when mechanical stress is applied, as illustrated in
Fig. 1. In other words, the application of mechanical pressure,
tension, or bending decreases the distance between charge
particles within the Velostat and increases the number of
conductive paths, leading to resistance variations.
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Fig. 1: Velostat diagram with particles inside the material are
represented by white circles, (a) normal state; (b) with pressure;
and (c) mechanical bending.

The designed sensor is based on a single layer of polyolefins
carbon black, namely, Velostat (3M Electronics division, Saint
Paul, USA) [18]. It is a piezoresistive material made of polymer
sheet and having a high resistivity (<500 Ωcm). It can be used
in flexible electronics, portable electronics and matrix sensors.

The sensitivity of the Velostat to applied pressure is mainly
defined by two physical factors: quantum tunneling and perco-
lation [19].

Quantum tunneling affects the conductivity of a composite
material when the distance between the conductive particles
inside the polymeric materials varies due to the applied pressure,
which deforms the material. Therefore, the particles in the
Velostat interact electrically through interparticle tunneling.

The percolation is related to a change in conductivity between
the insulating and the conductive state of a material caused by
the change of applied pressure.

The system’s complete resistance consists of two parts: a) the
contact resistance between the electrodes and the piezoresistive
polymer, and b) the piezoresistive effect. This results in a
significant change in resistance when we manipulate the sensor,
providing it with the sensitivity to detect the application of a
load (i.e., applied pressure or mechanical deformation).

B. Smart Garment
1) Sensors description: Our proposed smart garment com-

prises four embedded piezoresistive sensors. Each sensor de-
sign adopts a sandwich structure consisting of five layers, as
illustrated in Fig. 2.
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Fig. 2: An in-depth look at the smart garment using piezore-
sistive sensors: (1), (2): Sensors on elbows; (3), (4): Sensors
on shoulders; (a): Conductor wires; (b): Electronic board; (c):
Battery.

The sensor construction begins with a layer of Velostat
positioned at the middle, with two conductive textile tapes
placed above and below the Velostat.

The conductive textile material used is obtained from an
A4 sheet of silver-plated knitted fabric (STATEX Shieldex®
Technik-tex P130 + B [20]). It is composed of 78% Polyamide
and 22% Elastomer, serving as electrodes to provide the
necessary voltage to the piezoresistive material.

To ensure optimal contact between the electrodes and Velo-
stat, a non-conductive thread has been used to sew the conductive
textile onto the piezoresistive material. Furthermore, we have
incorporated a layer of polyimide, specifically Kapton®, which
serves two crucial purposes:

• Firstly, the inclusion of Kapton minimizes potential inter-
ference in voltage changes, ensuring precise and accurate
sensor readings. By reducing external disturbances, we can
obtain reliable data on the garment’s movement detection
capabilities;

• Secondly, Kapton acts as a protective barrier, effectively
isolating the sensors from the external environment. This
shielding helps safeguard the sensors from potential dam-
age or contamination, thereby prolonging their lifespan and
maintaining their functionality over time.

These sensors demonstrate dynamic resistance changes across
a defined mechanical angular range spanning from 5 to 160
degrees. Furthermore, in accordance with prior research [21], it
has been established that these sensors also exhibit sensitivity
to pressure.

2) Sensors positioning on the garment: Proper placement of the
sensors on the garment is crucial for identifying areas where
mechanical bending can be applied to the sensors. For this study,
we opted to integrate the sensors at the back of the shoulders
and on the elbows. Fig. 2 illustrates the sensor locations on the
garment.

The dimensions of the sensors have been chosen in relation
to the studied zone in order to capture the pressure and the
mechanical flexion of the elbows and the shoulders. For this
reason, the elbow sensors are 10 cm x 7 cm and the shoulder
sensors are 7 cm x 5 cm. The designed piezoresistive sensors are
sewn with classic sewing thread on the garment. Moreover, the
electrical connection of the sensors with the electronic board is

made by winding the conductive wires around the copper areas
on both the top and bottom layers.

The smart garment composed of 4 piezoresistive sensors
(𝑁𝑠 = 4) validates the presence of motion by simply detecting
changes in resistance. To capture the signals, a customized
printed circuit board (PCB) has been developed. It incorporates
a voltage divider bridge to convert the resistance variation
(output from the piezoresistive sensors) into voltage changes.
Additionally, an electronic board, namely the Nano 33 BLE
(Arduino, Ivrea, Italy), equipped with an analog-to-digital
converter (ADC) and a Bluetooth module is integrated to
transmit the converted data to a laptop running a custom
algorithm within the MATLAB environment.

3) Dynamic behavior and quantitative results: In the analysis of
the garment-based detection system depicted in Fig. 3, changes
in normalized resistance values (𝑁𝑟 ) serve as crucial indicators
of movement. The normalized resistance is a criterion defined
as follows 𝑁 𝑖

𝑟 = max(𝑅𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 , 300Ω)/300Ω, with 𝑅𝑖

𝑠𝑒𝑛𝑠𝑜𝑟 the
i-th sensor resistance. These values are reliable indicators used
to trigger detection when 𝑁𝑟 falls below 1, indicating significant
motion in the corresponding joint. To ensure the accuracy of the
motion data, a sampling frequency of 10 Hz was employed
to capture the sensor signals. The dataset used for analysis
comprises 700 data samples. However, to maintain space and
improve clarity, only 265 representative samples are presented
in the Fig. 3.

Fig. 3: Motion Detection via Embedded Sensors in Garment: (1)
Right Elbow, (2) Left Elbow, (3) Left Shoulder, and (4) Right
Shoulder, leveraging changes in normalized resistance values
(𝑁𝑟 ) as indicators of movement; triggering detection when 𝑁𝑟

is less than 1.

Fig. 3 (1) illustrates the observed detection in the right elbow
sensor (blue area) during a 135° flexion. Similarly, the red area
in Fig. 3 (2) depicts the response of the left elbow sensor to the
same flexion. It is important to note that a value of 𝑁𝑟 less than
1 indicates the detection of a flexion.

Fig. 3 (3) illustrates the movement of the left shoulder and a
90° flexion of the left elbow, resulting in a decrease in resistance
in both the shoulder and elbow sensors. This change is visually
represented by the purple area.

On the other hand, Fig. 3 (4) displays the movement of the
right shoulder (yellow area), which differs from that of the left
shoulder. In this scenario, the right elbow remains unflexed,
maintaining its initial position at 0°. Consequently, the variation
in resistance is only detected by the right shoulder sensor.

The normalized resistance evolution from Fig. 3 demonstrates
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the potential of integrating flexible sensors into clothing to detect
movement, specifically changes in angle. The remainder of the
article focuses on a methodology to reconstruct the rotational
angle from resistance measurements obtained from a single
sensor.

4) Resistance measurement technique: As presented on the
electrical diagram on Fig. 4, resistance measurements are made
through the General Purpose Input/Output (GPIO) ports using a
voltage divider bridge, placing the sensor resistance, 𝑅𝑖

𝑠𝑒𝑛𝑠𝑜𝑟 , in
series with a fixed known reference resistor, 𝑅𝑟𝑒 𝑓 . The analog
input voltage of the analog to digital converter (𝑉 𝑖

𝑜𝑢𝑡 ) is linked
to the resistance by equation (1).

GPIO x 2 

Piezoresistive Sensors

R
sensor

3

R
sensor

4

R
sensor

1

R
sensor

2

Fig. 4: Measuring Resistance with GPIO: Voltage Divider
Bridge Method in Action

𝑉 𝑖
𝑜𝑢𝑡 = 𝑉𝑖𝑛 ·

𝑅𝑖
𝑠𝑒𝑛𝑠𝑜𝑟

𝑅𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑅𝑟𝑒 𝑓

, (1)

Where, 𝑉 𝑖
𝑜𝑢𝑡 the voltage at the sensor, 𝑉𝑖𝑛 the supply voltage,

𝑅𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 the i-th sensor resistance and 𝑅𝑟𝑒 𝑓 the reference resistor.
A 470Ω reference resistor 𝑅𝑟𝑒 𝑓 is chosen to maximize the

output voltage amplitude across the entire 𝑅𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 range of

10KΩ to 100Ω.

C. System energy consumption
The analysis of the system’s energy consumption involves

estimating the average power consumption for each transmitted
data frame between the system and the laptop and calculating
the operating time. The average power of the system, denoted
as 𝑃𝑎𝑣 , is determined using Equation (2) and is found to be 56
mW.

𝑃𝑎𝑣 =
1
𝜏

∫ 𝜏

0
𝑉𝑠𝑡𝑜𝑟 (𝑡) · 𝐼𝑠𝑦𝑠𝑡 (𝑡) · d𝑡, (2)

The time interval between 0 and 𝜏 which is used to calculate
the average power, corresponds to a whole number of program
operation periods once the system reaches a steady state.

As explained in Section II-B.4, the sensors are powered by
GPIOs through a bridge divider. The GPIOs alternate driving
the voltage dividers to interrogate all the sensors, with an
interrogation duration of 𝑡𝑜𝑛 = 750 𝜇s occurring every 100 ms.
To save energy, the GPIOs are not driven most of the time.

The average power consumption of the garment sensors,
denoted as 𝑃𝑎𝑣,𝑔𝑎𝑟𝑚𝑒𝑛𝑡 , is indeed 10 𝜇W, as given by Equation
(3).

𝑃𝑎𝑣,𝑔𝑎𝑟𝑚𝑒𝑛𝑡 (𝑡) =
1
𝜏

𝑁𝑠∑︁
𝑖=1

𝑉2
𝑖𝑛
(𝑡)

𝑅𝑟𝑒 𝑓 + 𝑅𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 (𝑡)

· 𝑡𝑜𝑛
𝑁𝑠

, (3)

In this equation, 𝑁𝑠 is the total number of sensors, and 𝑅𝑖
𝑠𝑒𝑛𝑠𝑜𝑟

represents the resistance of the i-th sensor.
Furthermore, the developed smart garment is equipped with

a rechargeable lithium-ion battery consisting of a single cell
with nominal characteristics of 3.7V and 380mAh. With the
observed power consumption, the battery can ensure a lifetime
of 25 hours, which corresponds to over 3 days of daily use for 8
hours each day.

III. CHARACTERIZATION OF PIEZORESISTIVE SENSORS
AND EXPERIMENTAL SETUP

A. Design of piezoresistive sensors
In this section, we provide a comprehensive characterization

of a piezoresistive textile sensor, aiming to gain a deeper
understanding of the material’s behavior and establish a link
between the sensor’s resistance measurements and the bending
angle. The tested sensor design follows a sandwich structure, as
depicted in Fig. 5.

(a) (b)

Fig. 5: Manufacturing of a piezoresistive sensor with electrodes
made of conductive textile material: (a) The 5 layers of the
sensor, where (1) is the conductive textile tape (0.55 mm), (2)
the polyamide elastane fabric, (3) the conductor wire and (4) the
piezoresistive layer (0.1 mm thick); (b) The sandwich structure
before final closing.

B. Experimental setup
1) Electromechanical characterization of conductive textile alone:

Prior to characterizing the realized piezoresistive sensor, we
conduct thorough static and dynamic studies on the conductive
textile alone.

These studies serve as a crucial foundation for understanding
the behavior and properties of the conductive textile, which
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plays an integral role in the sensor. By examining the con-
ductive textile in isolation, we gain valuable insights into its
electrical conductivity, mechanical stability, and performance
under various conditions. This preliminary analysis ensures a
comprehensive understanding of the conductive textile’s char-
acteristics, forming a solid basis for subsequent characterization
and evaluation of the complete piezoresistive sensor.

The static characterization involves subjecting the conductive
textile strip to a tensile test on a specialized test bench, as
depicted in Fig. 6. This test allows us to study the behavior of
the textile and record its resistance as a function of the length of
stretching. To measure the variation in resistance, we utilize the
analog output of an Arduino through a voltage divider bridge,
as explained in section III-B.2. Simultaneously, the length of
stretching is determined using an ultrasonic telemeter, ensuring
accurate data collection.

Fig. 6: Test bench made to measure resistance and strain: (1)
Conductive textile (10 cm x 5 cm), (2) Sliding guide, (3)
Acquisition board, (4) Ultrasonic sensor.

In the dynamic study, we sew the conductive textile onto
the garment at the elbows, enabling us to capture real-time
data. The recorded information is then transmitted wirelessly
via Bluetooth Low Energy (BLE), facilitating convenient and
seamless communication between the sensor and other devices
or applications. This dynamic study provides insights into the
behavior of the conductive textile during movement and allows
for the evaluation of its performance in practical scenarios.

2) Electromechanical characterization of piezoresistive sensors:
Following the characterization of the conductive textile and
gaining an understanding of its behavior, we proceed to
characterize the developed piezoresistive sensor in the section
III-A on a dedicated test bench. During this characterization, we
record both the resistance and bending angle of the sensor using
a specially designed plastic instrumented hinge. This hinge is
constructed using 3D printed PLA and laser cut acrylic, ensuring
its precision and durability.

To measure the bending angle, a potentiometer is securely
attached at the center of the joint. Its initial position corresponds
to a bending angle of 0°, providing a reference point for further
measurements. As the sensor undergoes bending or flexing,
the potentiometer captures the changes in the bending angle,
allowing us to accurately quantify and record the sensor’s
response.

The experimental device depicted in Fig. 7 consists of several
components that play specific roles in the characterization
process. It includes a rotating joint (2) responsible for applying

Fig. 7: The joint for the characterization of the piezoresistive
sensor as a function of the angle, (1) the piezoresistive sensor,
(2) 3D printed hinge, (3) Acquisition board, (4) acrylic, (5)
potentiometer.

mechanical bending to the tested piezoresistive sensor (1). Addi-
tionally, a reference angle sensor in the form of a potentiometer
(5) is incorporated to measure the angle of rotation, denoted as
𝜃. The acquisition card (3) is utilized to collect and process data
from the sensor.

During the process of characterization, the electrical resis-
tance of the piezoresistive sensor is precisely measured utilizing
an Arduino board, specifically designated as 𝑅𝑏𝑒𝑛𝑑𝑖𝑛𝑔. This
measurement procedure offers valuable insights into the sensor’s
electrical characteristics and its behavior when subjected to me-
chanical bending. To accurately determine the resistance of the
sensor, a voltage divider configuration was employed, as visually
depicted in Fig. 8. The corresponding mathematical equation
utilized for this determination is represented as Equation 4.

Fig. 8: Illustration of a Voltage Divider Circuit with a Fixed
Reference Resistor (𝑅𝑟𝑒 𝑓 = 470Ω) and Sensor Resistance
(𝑅𝑏𝑒𝑛𝑑𝑖𝑛𝑔), demonstrating the Supply Voltage (𝑉𝑖𝑛) and Voltage
at the Sensor (𝑉𝑏𝑒𝑛𝑑𝑖𝑛𝑔).

𝑅𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑅𝑟𝑒 𝑓 ·
𝑉𝑏𝑒𝑛𝑑𝑖𝑛𝑔

𝑉𝑖𝑛 +𝑉𝑏𝑒𝑛𝑑𝑖𝑛𝑔

, (4)

IV. MODELING OF PIEZORESISTIVE SENSORS

This section utilizes two distinct methods to determine the
mechanical bending based on the electrical resistance of the
sensors. The first approach employs viscoelastic modeling,
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while the second approach utilizes a neural network model
known as Nonlinear AutoRegressive eXogenous (NARX). Both
models have been developed utilizing a single dataset containing
6057 samples, all collected at a consistent sampling rate of 10
Hz.

The source code and datasets are available on the follow-
ing open-source repository: https://gitlab.com/satie.
sete/flexangleestimate.

Further comparison between predicted data and measured
data for both models has been performed in this paper using
the Root Mean Square Error (RMSE) and the normalized error
through equations (5) and (6) respectively.

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸 =

√︄∑𝜏
1 (𝜃𝑖 − 𝜃𝑖)2

𝜏
(5)

𝑒𝑟𝑟 (%) = 𝜃 − 𝜃

160
· 100 (6)

Where 𝜃 is the measured reference angle by the test bench,
and 𝜃 is the angle estimated by both models. The normalization
is relative to the maximum observed rotation, i.e., 160°.

The overall view of the modeling of piezoresistive sensors
section is represented by the diagram in Fig. 9.

A. Viscoelastic model

Due to the nature of the polymer, which is a viscoelastic
material, the resistance of this sensor is a function of the
material properties of the polymer composite, the mechanical
bending and the strain. The modeling is decomposed twofold, as
illustrated in Fig. 10. Linear dynamic viscoelasticity and time-
independent nonlinear piezoresistive relationship are assumed.

differential 
equation

nonlinear 
equation

Rbending (Ω) θ!viscoelastic °𝛆

Fig. 10: The viscoelastic model of electrical resistance as a
function of strain 𝜀 and bending angle 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐.

In our case, a phenomenological approach is used to describe
the relationship between an imposed bending angle, denoted
as 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐, and the corresponding damped response of
the resistance as a function of the strain, denoted as 𝜀. As
shown in Fig. 11, this relationship is characterized by a non-
linear function proposed in equation (7). Additionally, a set of
differential equations, proposed in equations (8), (9), and (10),
relate the bending angle to the strain.

Time-dependent parts

Time-independent parts

𝜀1

𝜀0

𝐴0
𝐴1

𝐵1

θ"viscoelastic θ"viscoelastic

Fig. 11: Standard Linear Solid (SLS) model.

𝑅𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑅0 · (1 − 𝜀) · 𝑒−𝛾 ·𝜀 , (7)

where, 𝑅𝑏𝑒𝑛𝑑𝑖𝑛𝑔 denotes the resistance of the sensor, 𝑅0 the
initial resistance, 𝜀 the strain, and 𝛾 the relaxation parameter.

𝜀 = 𝜀0 + 𝜀1, (8)

𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = (𝐴1 · 𝜀1) + (𝐵1 · ¤𝜀1), (9)

𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝐴0 · 𝜀0, (10)

where, 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 the bending angle, 𝐴0, 𝐴1 and 𝐵1 the
internal variables of the viscoelastic model.

In this study, we have employed the viscoelastic model
described by [21] to estimate the bending angle applied to the
sensors.

To estimate the model’s bending angle 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 shown
in Fig. 10, we require the parameter values 𝐴0, 𝐴1, 𝐵1, and 𝛾

illustrated in Fig. 11. To determine these values, we formulated
an optimization problem as presented in Equation 11. To
solve this problem, we utilized MathWorks MATLAB with the
Genetic Algorithm solver.

The four parameters (𝐴0, 𝐴1, 𝐵1, and 𝛾) were optimized by
minimizing the mean square error (MSE) using Equation 11
between the measured bending angle 𝜃 on the test bench and the
bending angle 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 calculated by our algorithm 1.

minimize
𝑥

𝑓0 (𝑥) =
𝜏∑︁
𝑖=0

| |𝜃𝑖 − 𝜃𝑖𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 (𝑥) | |
2

(11)

Starting with Algorithm 1, we first determined the strain 𝜀 as
a function of 𝑅𝑏𝑒𝑛𝑑𝑖𝑛𝑔, 𝑅0, and 𝛾 using Equation 7 through the
trust region dogleg method available in MathWorks MATLAB
2023a software.

Subsequently, we applied the implicit Euler method to solve
the standard linear solid model described by Equations 9 and 10
in order to find the bending angle 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐.

B. NARX Model
The NARX (Nonlinear AutoRegressive eXogenous) concept

is an extension of the Autoregressive Exogenous (ARX) ap-
proach, which is a commonly used technique for identifying
linear black box systems. NARX models are a type of recurrent
dynamic neural network that are well-suited for modeling a

https://gitlab.com/satie.sete/flexangleestimate
https://gitlab.com/satie.sete/flexangleestimate
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Fig. 9: Comprehensive diagram for modeling piezoresistive sensors.

Algorithm 1 Viscoelastic model
1: find 𝜀 in function of 𝑅𝑏𝑒𝑛𝑑𝑖𝑛𝑔, 𝑅0 and 𝛾

2: for 𝑖 = 1, 2, . . . , 𝑠𝑖𝑧𝑒(𝑡) do
3: 𝜀(𝑖 + 1) = 𝜀(𝑖)
4: 𝐴0 (𝑖) = (𝐴0𝑎 · 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 (𝑖)) + 𝐴0𝑏

⊲ Elastic modulus of the spring 𝐴0
5: 𝐴1 (𝑖) = (𝐴1𝑎 · 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 (𝑖)) + 𝐴1𝑏

⊲ Elastic modulus of the spring 𝐴1
6: 𝐵1 (𝑖) = (𝐵1𝑎 · 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 (𝑖)) + 𝐵1𝑏

⊲ Viscosity of the damper 𝐵1
7: 𝜀 = argmin (equation 9)

⊲ Implicit Euler method
8: 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 (𝑖) = (𝜀 − 𝜀1) · 𝐴0

⊲ equation (10)
9: end for

t: time vector.

wide range of nonlinear dynamic systems, including time series.
This makes NARX models a powerful tool in many different
areas, including signal processing, control systems, and more.
In particular, they have been used to model and analyze complex
systems with nonlinear dynamics, such as financial markets,
weather patterns, and biological systems. The flexibility and
versatility of NARX models make them a valuable tool for a
wide range of applications in science, engineering, and beyond
[22].

To improve the performance of the NARX model in nonlinear
time series prediction, it is important to take advantage of its
memory capacity by incorporating past values of the predicted or
true time series. The architecture of the NARX model is depicted
in Fig. 12, which employs Tapped-Delay-Lines (TDLs) to create
the network’s dynamics.

There are two types of NARX neural network architectures,
namely :

• Series-parallel architecture (open-loop), given by equation
(12);

• Parallel architecture (close-loop), given by equation (13).

ŷ(𝑡) = 𝑓
[
𝑦(𝑡), 𝑦(𝑡 − 1), 𝑦(𝑡 − 2), . . . , 𝑦(𝑡 − 𝑛𝑦), (12)
𝑢(𝑡 + 1), 𝑢(𝑡), 𝑢(𝑡 − 1), . . . , 𝑢(𝑡 − 𝑛𝑥)]

Feed
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Fig. 12: Both NARX network architectures: (a) Series-parallel
architecture; (b) Parallel architecture.

ŷ(𝑡) = 𝑓
[
ŷ(𝑡), ŷ(𝑡 − 1), ŷ(𝑡 − 2), . . . , ŷ(𝑡 − 𝑛𝑦), (13)
𝑢(𝑡 + 1), 𝑢(𝑡), 𝑢(𝑡 − 1), . . . , 𝑢(𝑡 − 𝑛𝑥)]

To implement the proposed model, two types of inputs are
required: the target output of the neural network denoted 𝜃 and
a set of inputs 𝑅𝑏𝑒𝑛𝑑𝑖𝑛𝑔 that are specific to the system being
modeled. The structure of the model, as defined in our study, is
illustrated in Fig. 13.

NARX

Resistance 
measurement

[Ω]

3D printed
joint

θ!NARX [°]
Angle 

measurement
θ [°]

Time [s]

Fig. 13: Inputs and output for the proposed NARX neural
network model, which the bending angle estimated by this model
is denoted as 𝜃𝑁𝐴𝑅𝑋.

The proposed model is implemented using the MATLAB
2021a software, utilizing a NARX model. The implementation
follows Algorithm 2, as outlined below.

The parameters employed in programming this model are
outlined in Table I. The necessary data was obtained by
conducting measurements on the test bench depicted in Fig.
7.
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Algorithm 2 NARX model
1: Load data

⊲ Resistance and angle measurement
2: Normalize data
3: Prepare data

⊲ Convert the normalized data into ”tonndata” format
4: Choose training function
5: Create NARX network

⊲ Use the ”narxnet” function
6: Prepare data for training and simulation

⊲ Use the ”preparets” function
7: Set up data division

⊲ Outlined in Table I
8: Train the network

⊲ Use the ”train” function to train the network
9: Evaluate the performance of the trained model and analyze

its predictions ⊲ Using equations 5 and 6.

TABLE I: Parameters used in MATLAB Programming for
proposed model.

Parameters Values
Training Function Bayesian Regularization

Network performance RMSE
Number of input delays 2

Number of feedback delays 6
Size of the hidden layers 15

Data used for training (%) 70
Data used for validation (%) 15

Data used for testing (%) 15

With these settings, the input and target vectors are randomly
partitioned into three distinct sets as described below:

• 70% of the data is allocated for training purposes.
• 15% of the data is reserved for validating the network’s

generalization and for halting the training process before
overfitting.

• The remaining 15% of the data is utilized to independently
test the network’s generalization ability.

V. RESULTS AND DISCUSSION

A. Experimental results related to textile conductive
characterization

Initially, the resistance of the conductive textile alone is de-
termined by assessing its behavior when subjected to stretching
along its length using a test bench. This characterization process
involves evaluating the conductive textile’s resistance in both the
weft and warp directions. In Fig. 14, the static characterization
results of the conductive textile are presented, where the blue
curve depicts a reduction in resistance as the conductive textile
is stretched in the weft direction. It is worth noting that the
length of stretching is fixed at 10 cm for both the warp and weft
directions.

Nevertheless, when the conductive textile is stretched in
the warp direction (as shown by the red curve in Fig. 14), it
exhibits a parabolic response. This behavior renders the warp
direction unsuitable for use as a sensor within the intended
range. Consequently, a dynamic characterization is exclusively

0 20 40 60 80 100 120 140

Strain (%)
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8

Warp weft

Fig. 14: Static characterization of the conductive textile, Resis-
tance vs. strain in the weft and the warp direction.

conducted in the weft direction, which is considered more
reliable for the desired purpose.

In the subsequent phase, the conductive textile attached to
the elbow is characterized specifically in the weft direction.
The objective is to detect movement by monitoring the change
in resistance during stretching, as depicted in Fig. 15. This
characterization process allows us to establish a relationship
between resistance variations and movement, enabling the textile
to serve as a reliable sensor.

1 2 3

0° 90° 135°

1 2 3

Fig. 15: Dynamic characterization of the conductive textile weft
resistance as a function of time: (1) rest position; (2) mechanical
bending (90°); (3) maximum bending (135°), where 𝑅 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 is
filtered with a low-pass filter of order 2 and a cut-off frequency
of 0.3Hz.

Fig. 15 provides a visualization of the dynamic charac-
terization of a conductive textile. The plot illustrates the
weft resistance of the textile (shown by the blue curve) and
the corresponding filtered resistance (represented by the red
curve).Although the signal remains free from noise, the desired
signal exhibits an exceptionally low amplitude, presenting a
significant challenge in detection.

During movements, peaks appear before the resistance de-
creases, making it challenging to identify the specific movement
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and its progression. The resistances recorded are consistently
close to 5 Ω, further complicating the interpretation of per-
formed movements. Additionally, the sensor’s behavior remains
somewhat unstable, adding to the difficulty in accurately
interpreting the detected movements.

However, while textiles alone may not possess sufficient
piezoresistive properties to serve as standalone sensors, it has
been observed that the resistance of the conductive textile
remains relatively stable, typically around 4 Ω. This stability
makes it an ideal candidate for use as a flexible and adaptable
electrode within a garment-embedded sensor. Further details on
this concept will be discussed in the subsequent section of this
study.

B. Experimental results related to the piezoresistive sensors

This section provides an overview of the experimental results
obtained from the developed piezoresistive sensor, which was
described in detail in Section III-A. The performance of
the sensor was thoroughly evaluated through comprehensive
characterization under both quasi-static and dynamic conditions.

1) Quasi-static characterization: Using the joint test bench
shown in Fig. 7, the piezoresistive sensor was characterized
to determine its resistance as a function of the bending
angle. Quasi-static characterization was performed to avoid any
viscoelastic effects, with a 3-minute waiting period between
each data point. Consequently, eight different measurement tests
were conducted on the studied sensor, and the dispersion and
mean values were calculated.

For each data point, eight measurements were realized. From
these measurements, the average resistance was calculated, rep-
resented by the dashed blue line on the blue graph in Fig. 16. The
maximum error bar was calculated by subtracting the maximum
measurement from the average, while the minimum error bar
was calculated by subtracting the minimum measurement from
the average.
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Fig. 16: Resistance vs. Mechanical Bending Angle (𝜃) for the
Piezoresistive Sensor (with error bars representing minimum
and maximum values)

.

The results obtained in Fig. 16 illustrate the qualitative
behavior of the sensor, which perfectly detect the resistance
variations as a function of the angle. Furthermore, we conclude

that the repeatability is the main unsolved problem of the
Velostat. This is due to the differences observed in the 8 tests.

Subsequently, the sensor underwent continuous cycles of
increasing and decreasing angles ranging from 0° to 160°, with
a resting period of 3 minutes between each consecutive angle
before measuring the resistance.
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Resistance decrease vs Angle

Resistance increase vs Angle

Increasing angle

Decreasing angle

Fig. 17: The response of sensor to decreasing and increasing
angle, as well as hysteresis trends.

The response of the sensor to increasing (blue curve) and
decreasing (red curve) bending angles is illustrated in Fig. 17. As
observed in previous characterizations [23], the sensor exhibits
hysteresis in both responses, which can be largely attributed to
viscoelasticity.

In this context, hysteresis refers to the maximum difference
in output observed during the increasing and decreasing phases.
To quantify this, the error was calculated as a percentage of the
full-scale output using equation 14.

𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠(%) =
����𝑅𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 − 𝑅𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛

���� · 100% (14)

Here, 𝑅increasing and 𝑅decreasing represent the responses during
ascending and descending bending, respectively, while 𝑅max and
𝑅min denote the maximum and minimum values of the sensor
responses. The determination of hysteresis followed the same
quasi-static characterization process.

2) Dynamic characterization: Fig. 18 depicts the dynamic
characterization of the piezoresistive sensor’s resistance, along
with the corresponding angle 𝜃, as measured on the test
bench. The red curve represents the applied rotation angle
over time. Initially, the angle is set to zero, followed by
progressively increasing dynamic variations. The blue curve
illustrates the measured resistance response at the corresponding
time instances. Notably, the resistance of the piezoresistive
sensor decreases as a result of mechanical bending.

C. Data processing and joint angle estimation
This section presents the results for both viscoelastic and

NARX neural network models.
1) Viscoelastic model: The inverse viscoelastic model algo-

rithm, as detailed in Section IV-A, is implemented for analysis.
To initiate the parametric optimization process, an initial dataset,
as shown in Fig. 19, is utilized. Subsequently, additional datasets
will be introduced to evaluate the performance of the model.



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

0 10 20 30 40 50 60 70 80

Time (s)

0

100

200

300

400

500

600

700

800

900

1000 0

20

40

60

80

100

120

140

160

180

A
n
g
l
e
 
(
°
)

Fig. 18: The mechanical bending 𝜃 measured by the test bench
and the dynamic resistance R vs. time.
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Fig. 19: Experimental angle 𝜃 and estimated angle of the
viscoelastic model 𝜃𝑣𝑖𝑠𝑐𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 versus time.

The viscoelastic model provides a mechanical angle estimate
with an RMSE of 12.88°, as demonstrated in Fig. 19. Although
this error was calculated using the optimized dataset with a
sample size of 6057, only 500 samples are displayed in the Fig.
for brevity.

2) NARX model: The other model that has been implemented
is the parallel architecture of the NARX model, as shown in the
Fig. 20, with the parameters defined in Table I.

Fig. 20: Parallel architecture NARX model, where x is the
electrical resistance and y is the estimated mechanical angle.

As it can be seen in Fig. 21, the NARX model can
estimate correctly the mechanical angle with a RMSE = 4.85°
calculated from validation data, and the angles tested are quite

homogeneous, this graph also shows that the estimated angle
has been underestimated for the lowest values.
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Fig. 21: Experimental angle 𝜃 and estimated angle of the NARX
model versus time.

Comparing Fig. 19 and Fig. 21, it appears that the NARX
model is more accurate for low angles, and has fewer overshoots
for high values.

Fig. 22 shows that the majority of the errors are less than 5%
for the NARX model, and it clearly indicates that the proposed
NARX model is more accurate than the viscoelastic model.

Fig. 22: Histogram of normalized data errors of both viscoelastic
and NARX models.

The results obtained from the study indicate that the NARX
neural network model shows a high degree of accuracy in
estimating piezoresistive sensor data, achieving an impressive
accuracy of approximately 5°. On the other hand, the viscoelastic
model demonstrates an accuracy of nearly 13°. Such levels of
accuracy position the proposed wearable garment as a credible
alternative in the estimation of elbow and shoulder flexion
angles, when compared to other solutions such as the OpenPose
system with an RMSE of over 8° for right elbow flexion, or the
Kinect system which records an RMSE exceeding 10° for the
same task, as reported by [4].

VI. CONCLUSIONS

In conclusion, this work presents a groundbreaking and
cost-effective sensing system that utilizes flexible piezoresistive
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sensors to accurately estimate the angle of upper body joints. We
conducted a comprehensive comparative analysis of two models,
a neural network, and a viscoelastic model, to process the sensor
data, resulting in precise and reliable angle measurements.

The development of our garment, which incorporates piezore-
sistive sensors connected to an electronic board, offers a
practical and portable solution for detecting resistance changes
corresponding to joint movements. Notably, our study highlights
the system’s low energy consumption, ensuring extended use
without frequent recharging.

The meticulous design and characterization of the piezoresis-
tive sensors, utilizing a piezoresistive elastomer and a conductive
textile, produced promising results with consistently reliable
resistance measurements during both static and dynamic move-
ments. This approach paves the way for numerous applications
in healthcare, rehabilitation, and various other fields where
accurate joint angle measurement is essential.

Overall, the perspectives for this research are exciting and
wide-ranging, with potential applications in various fields. The
low power consumption of the proposed system makes it a
potential candidate to be power from harvested energy, thus
shifting forward the paradigm of wearable sensors towards more
integrated and comfortable solutions.

AKNOWLEDGMENT

The authors express their sincere gratitude to Ms. Rozenn
Jodin for her invaluable technical assistance in prototyping the
integrated textile sensors.

REFERENCES

[1] G. Aroganam, N. Manivannan, and D. Harrison, “Review on wearable
technology sensors used in consumer sport applications,” Sensors, vol. 19,
no. 9, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/
9/1983

[2] S. Beg, M. Handa, R. Shukla, M. Rahman, W. H. Almalki, O. Afzal,
and A. S. A. Altamimi, “Wearable smart devices in cancer diagnosis
and remote clinical trial monitoring: Transforming the healthcare
applications,” Drug Discovery Today, vol. 27, no. 10, p. 103314,
2022. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1359644622002835

[3] M. H. Iqbal, A. Aydin, O. Brunckhorst, P. Dasgupta, and K. Ahmed, “A
review of wearable technology in medicine,” Journal of the Royal Society
of Medicine, vol. 109, no. 10, pp. 372–380, 2016, pMID: 27729595.
[Online]. Available: https://doi.org/10.1177/0141076816663560

[4] W. Kim, J. Sung, D. Saakes, C. Huang, and S. Xiong,
“Ergonomic postural assessment using a new open-source human
pose estimation technology (openpose),” International Journal of
Industrial Ergonomics, vol. 84, p. 103164, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0169814121000822

[5] Catapult, “Catapult sports. (n.d.). about us. retrieved april 11, 2023, from,”
https://www.catapultsports.com/about-us/.

[6] Vicon, “Vicon motion systems ltd. (n.d.). about us. retrieved april 11,
2023, from,” https://www.vicon.com/about-us.

[7] Qualisys, “Qualisys ab. (n.d.). about us. retrieved april 11, 2023, from,”
https://www.qualisys.com/about-us/.

[8] D. Hoareau, X. Fan, F. Abtahi, and L. Yang, “Evaluation of in-cloth
versus on-skin sensors for measuring trunk and upper arm postures
and movements,” Sensors, vol. 23, no. 8, 2023. [Online]. Available:
https://www.mdpi.com/1424-8220/23/8/3969

[9] Z. Zhang, X. Gui, Q. Hu, L. Yang, R. Yang, B. Huang, B.-R. Yang,
and Z. Tang, “Highly sensitive capacitive pressure sensor based on
a micropyramid array for health and motion monitoring,” Advanced
Electronic Materials, vol. 7, no. 7, p. 2100174, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.202100174

[10] X. Yue, R. Lu, Q. Yang, E. Song, H. Jiang, Y. Ran, and B.-O. Guan,
“Flexible wearable optical sensor based on optical microfiber bragg
grating,” Journal of Lightwave Technology, vol. 41, no. 6, pp. 1858–1864,
2023.

[11] X. Guan, B. Xu, and J. Gong, “Hierarchically architected
polydopamine modified batio3@p(vdf-trfe) nanocomposite fiber mats
for flexible piezoelectric nanogenerators and self-powered sensors,”
Nano Energy, vol. 70, p. 104516, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2211285520300732

[12] E. Jeong, J. Lee, and D. Kim, “Finger-gesture recognition glove using
velostat (ICCAS 2011),” p. 5.

[13] Q. Yu, P. Zhang, and Y. Chen, “Human motion state recognition based on
flexible, wearable capacitive pressure sensors,” Micromachines, vol. 12,
no. 10, 2021. [Online]. Available: https://www.mdpi.com/2072-666X/12/
10/1219

[14] D. Wang, B. Sheng, L. Peng, Y. Huang, and Z. Ni, “Flexible
and optical fiber sensors composited by graphene and pdms for
motion detection,” Polymers, vol. 11, no. 9, 2019. [Online]. Available:
https://www.mdpi.com/2073-4360/11/9/1433

[15] F. Mokhtari, G. M. Spinks, C. Fay, Z. Cheng, R. Raad,
J. Xi, and J. Foroughi, “Wearable electronic textiles from
nanostructured piezoelectric fibers,” Advanced Materials Technologies,
vol. 5, no. 4, p. 1900900, 2020. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900900

[16] Y. Zhang, Y. Huang, X. Sun, Y. Zhao, X. Guo, P. Liu, C. Liu, and
Y. Zhang, “Static and dynamic human arm/hand gesture capturing and
recognition via multiinformation fusion of flexible strain sensors,” IEEE
Sensors Journal, vol. 20, no. 12, pp. 6450–6459, 2020.

[17] Z. A. Abro, Z. Yi-Fan, C. Nan-Liang, H. Cheng-Yu, R. A.
Lakho, and H. Halepoto, “A novel flex sensor-based flexible
smart garment for monitoring body postures,” Journal of Industrial
Textiles, vol. 49, no. 2, pp. 262–274, 2019. [Online]. Available:
https://doi.org/10.1177/1528083719832854

[18] Velostat, “Film, velostat, 36 x 150 roll 67y8891.” https://
datasheet.octopart.com/170436X150-SCS-datasheet15984175.pdf/, ac-
cessed: 20.04.2022.

[19] A. Dzedzickis, E. Sutinys, V. Bucinskas, U. Samukaite-Bubniene,
B. Jakstys, A. Ramanavicius, and I. Morkvenaite-Vilkonciene,
“Polyethylene-carbon composite (velostat®) based tactile sensor,”
Polymers, vol. 12, no. 12, 2020. [Online]. Available: https:
//www.mdpi.com/2073-4360/12/12/2905

[20] STATEX-Shieldex-Techniktex, “Statex shieldex techniktex p130 +
b(),” https://www.shieldex.de/products/shieldex-technik-tex-p130-b/,
(accessed: 20.04.2022).

[21] A.-R. A. Laaraibi, G. Jodin, D. Hoareau, N. Bideau, and F. Razan,
“Flexible dynamic pressure sensor for insole based on inverse viscoelastic
model,” IEEE Sensors Journal, vol. 23, no. 7, pp. 7634–7643, 2023.

[22] Z. Boussaada, O. Curea, A. Remaci, H. Camblong, and N. Mrabet Bellaaj,
“A nonlinear autoregressive exogenous (narx) neural network model for
the prediction of the daily direct solar radiation,” Energies, vol. 11, no. 3,
2018. [Online]. Available: https://www.mdpi.com/1996-1073/11/3/620

[23] M. Hopkins, R. Vaidyanathan, and A. H. Mcgregor, “Examination of the
performance characteristics of velostat as an in-socket pressure sensor,”
IEEE Sensors Journal, vol. 20, no. 13, pp. 6992–7000, 2020.

Abdo-rahmane Anas LAARAIBI was born in
Casablanca, Morocco in 1996. He received his
first M.S degree in Automation-Signal Processing-
Computer Science from Hassan 1er University, Set-
tat, MA in 2020 and his second M.S degree in
Signal Image from Rennes 1 University, Rennes, FR
in 2021. He is currently a PhD student in Mecha-
tronic Engineering at Ecole Normale Supérieure
de Rennes, IETR group and SATIE laboratory of
Rennes.

His research focuses on the development of an
autonomous integrated instrumentation allowing the quantification of an ath-
lete’s movements for indoor sports

https://www.mdpi.com/1424-8220/19/9/1983
https://www.mdpi.com/1424-8220/19/9/1983
https://www.sciencedirect.com/science/article/pii/S1359644622002835
https://www.sciencedirect.com/science/article/pii/S1359644622002835
https://doi.org/10.1177/0141076816663560
https://www.sciencedirect.com/science/article/pii/S0169814121000822
https://www.catapultsports.com/about-us/
https://www.vicon.com/about-us
https://www.qualisys.com/about-us/
https://www.mdpi.com/1424-8220/23/8/3969
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.202100174
https://www.sciencedirect.com/science/article/pii/S2211285520300732
https://www.mdpi.com/2072-666X/12/10/1219
https://www.mdpi.com/2072-666X/12/10/1219
https://www.mdpi.com/2073-4360/11/9/1433
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900900
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900900
https://doi.org/10.1177/1528083719832854
https://datasheet.octopart.com/170436X150-SCS-datasheet15984175.pdf/
https://datasheet.octopart.com/170436X150-SCS-datasheet15984175.pdf/
https://www.mdpi.com/2073-4360/12/12/2905
https://www.mdpi.com/2073-4360/12/12/2905
https://www.shieldex.de/products/shieldex-technik-tex-p130-b/
https://www.mdpi.com/1996-1073/11/3/620


12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Corentin Depontailler born in Troyes, France,
earned Bachelor’s degrees in Electronics, Electrical
Energy and Automation (EEEA) and Science for
Engineering (SPI) from the Mechatronics Depart-
ment of the Ecole Normale Supérieure of Rennes in
2022. He is currently pursuing a Master’s degree in
Sciences for the Engineer and Applications (SPIA)
at the same institution and has conducted exten-
sive research on the development and evaluation
of textile piezoresistive sensors. This research in-
volved fabricating and characterizing the sensors,

designing a smart wearable garment that incorporates these sensors, and
integrating them into the garment. Additionally, Corentin has investigated the
energy consumption of the system and explored the sensors’ ability to detect
human motion. Through this work, he has gained a deep understanding of the
capabilities and limitations of textile-based piezoresistive sensors and their
potential applications in wearable technology.

Gurvan JODIN received the B.S. in both mechan-
ical engineering and electrical engineering, from
Rennes 1 University, France, in 2011. He received
the M.Ed in mechatronics from Ecole Normale
Supérieure de Rennes, and was major of the 2013
”agrégation” teacher competitive recruitment of In-
dustrial Science for Engineering. He received the
Ph.D. degree from Polytechnic National Institute
of Toulouse, France, in electrical engineering and
aerodynamics. After postdocs at Mechanical Engi-
neering Department at Massachusetts Institute of

Technology, Boston, MA, USA, and at Ecole Normale Supérieure de Rennes,
he is currently associate professor with SATIE laboratory at Ecole Normale
Supérieure de Rennes, France. His research interests are in eco-co-design
complex mechantronics systems. This includes topics in experimental ap-
proach, mechatronics, hydrodynamics, sensors, power electronics and smart
grids.

Damien HOAREAU received the B.S. degree in
both mechanical engineering and electrical engi-
neering, from Rennes 1 University, France, in 2017.
He received the M.S and M.Ed degree in mecha-
tronics from Ecole Normale Supérieure de Rennes
in 2018 and 2019. He received the Ph.D. degree
from Ecole Normale Supérieure de Rennes, France,
in electrical engineering in 2023. His research in-
terest includes the development of sensing system
for sport science and signal processing to monitor
athlete parameters to improve performance.

Nicolas BIDEAU was born in France in 1978. He
received the bachelor degree in Mathematics from
the University of Brest, France, the applied math-
ematics degree and the mechanics degree from
the university Rennes 1. He received the PhD de-
gree in Mechanics from the University Rennes 1,
France, in 2009. In 2009 he joined the University of
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