The African Holocene Humid Period in the Tibesti mountains (central Sahara, Chad): Climate reconstruction inferred from fossil diatoms and their oxygen isotope composition

To cite this version:

HAL Id: hal-04227586
https://hal.science/hal-04227586
Submitted on 7 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The African Holocene Humid Period in the Tibesti mountains (central Sahara, Chad): Climate reconstruction inferred from fossil diatoms and their oxygen isotope composition

Abdallah Nassour Yacoub a, b, *, Florence Sylvestre a, b, Abderamane Moussa b, Philipp Hoelzmann c, Anne Alexandre a, Michèle Dinies c, Françoise Chalié a, Christine Vallet-Coulomb a, Christine Pailles a, Frank Darius c, Corinne Sonzogni a, Martine Couapel a, Jean-Charles Mazur a, Stefan Kröpelin d

a Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix en Provence, France
b Université de N'Djamena, Département de Géologie, Laboratoire Hydro-Géosciences et Réservoirs, N'Djamena, Chad
c Freie Universität Berlin, Institut für Geographische Wissenschaften, Physische Geographie, Berlin, Germany
d Africa Research Unit, Institute of Prehistoric Archaeology, University of Cologne, Germany

ARTICLE INFO

Article history:
Received 13 January 2023
Received in revised form 12 April 2023
Accepted 12 April 2023
Available online xxx

Handling Editor: P Rioual

Keywords:
Oxygen isotopes of diatom silica
Crater palaeolakes
Lake water balance
Diatom-based transfer function
ITCZ
Aridification

ABSTRACT

The climate of the African Holocene Humid Period (AHHP) is reconstructed in the Tibesti Volcanic Massif (TVM) in the central Sahara from well-preserved diatomaceous deposits in the two crater palaeolakes of Trou au Natron at Pic Toussidé and Era Kohor at Emi Koussi. The two records cover the period from ~9500 to 4500 cal yr BP. Climate and palaeoenvironmental changes during this period were inferred from diatom assemblages, interpretation of variations in their oxygen isotope composition (δ18O diatom), reconstruction of lake water conductivity from diatom-based transfer functions, and estimation of the lake water balance (Evaporation/Inflow ratio, E/I). Our findings provide evidence for two distinct lacustrine episodes. During the early to mid-Holocene transition, low δ18O diatom values, high percentages of planktonic diatoms, low lake water conductivity and a positive water balance (E/I < 1) suggest wet conditions, which were likely related to the optimum of the AHHP. From the mid-to late Holocene transition, an aridification trend is revealed by increasing δ18O diatom values, high percentages of benthic diatoms and a negative water budget (E/I > 1), occurring as early as 6500 cal yr BP and intensifying after 5300 cal yr BP. Moreover, our data show on average a decrease in precipitation amounts of ~35% between the peak and the end of the AHHP in the Tibesti region. This timing of the AHHP in the mountainous Tibesti is consistent with the aridification of the central Sahara recorded at lowland sites, which has mainly been related to the southward retreat of the Intertropical Convergence Zone (ITCZ) and the associated African monsoonal rainfall belt, following the gradually declining summer insolation that led to the termination of the AHHP. Our results prove the existence of Holocene lakes in the TVM craters that developed contemporaneously with the lakes of the Chadian basin and the Libyan Sahara. On a broader scale, our data share similar hydroclimatic patterns with studies from the eastern and northern Sahara.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

During the Holocene, African tropical and subtropical areas experienced extreme climatic variations (Gasse, 2000; Shanahan et al., 2015; Pausata et al., 2020) with a prolonged humid period referred to as the “African Humid Period” (AHP) (deMenocal et al., 2000), which in our paper is renamed the “African Holocene Humid Period” (AHHP). An extensive array of palaeoclimatic records (Shanahan et al., 2015; Holmes and Hoelzmann, 2017) and archaeological investigations (Cremaschi et al., 2014; Manning and Timpson, 2014) have shown that during this humid period, large parts of the present-day hyperarid Sahara and the semi-arid Sahel regions were much wetter and “greener” than today, and thus

* Corresponding author. Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix en Provence, France.
E-mail address: yacoubabdallah@yahoo.fr (A.N. Yacoub).

https://doi.org/10.1016/j.quascirev.2023.108099

12 April 2023
characterized by grasslands with tropical trees (Hély and Lézine, 2014), hosting numerous lakes (Hoelzmann et al., 2004; Drake et al., 2011) and incised by vast fluvial networks (Skonieczny et al., 2015). This early-to-mid Holocene period of greening of the Sahara, named the Green Sahara period (Claussen et al., 2017), was linked to the low precession in Earth's orbit associated with high boreal summer insolation that induced the northward extension of the Intertropical Convergence Zone (ITCZ) and the intensification of the associated African monsoon rainfall belt (Kutzbach and Liu, 1997; deMenocal, 2015; Dallmeyer et al., 2020). These wetter conditions enabled widespread human occupation and the development of agriculture across North Africa (Kuper and Kröpelin, 2006; Manning and Timpson, 2014). After the mid-Holocene, the southward retreat of the monsoonal rainfall belt led to drier conditions that provoked the desiccation of most lakes (Gasse, 2000) and critical demographic shifts (Manning and Timpson, 2014), sealing the end of the AHHP. Throughout the African continent, the timing and magnitude of the termination of the AHHP were probably variable in space and time (Shananhan et al., 2015) and there is a long-standing and on-going debate about whether the end of the AHHP and the subsequent drying of the Sahara was abrupt or gradual (deMenocal et al., 2000; Holmes, 2008; Kröpelin et al., 2008; Bard, 2013; Collins et al., 2017; Ménot et al., 2020; Chase et al., 2022). However, while the main moisture source in this large part of the African continent is supposedly the summer monsoon belt (Kutzbach and Liu, 1997; Van der Meeren et al., 2022), some studies suggest additional sources such as Mediterranean air masses and/or the North and central Atlantic Ocean (Kutzbach et al., 2014; Cheddadi et al., 2021). In addition, rainfall linked to the seasonal tropical plumes associated with the Subtropical Jet Stream (Maley, 2000) may have contributed to the AHHP. Hence, several crucial aspects of the AHHP remain a matter of debate.

Due to their inner-continental position and their numerous lake deposits, the central Sahara and its forelands in Northern Chad are key regions for records of climatic changes. The lake deposits provide records of the wet conditions experienced during the AHHP that led to the establishment of the giant Lake Megachad (Ghiennie et al., 2002; Schuster et al., 2005). However, despite several studies carried out in this part of Chad, (Amaral et al., 2013; Armitage et al., 2015; Bristow et al., 2018), no detailed palaeoclimate data is available, largely owing to the lack of continuous and well-dated sedimentary records. Indeed, across this part of the Sahara most lake systems formed during the AHHP dried out at the end of the AHHP and lake deposits underwent eolian deflation, therefore eroding all or parts of the sedimentary records, leaving ubiquitous temporal hiatuses and making interpretation difficult (Gasse, 2000; Armitage et al., 2015). Well-preserved and continuous lake sedimentary records are critical for assessing climatic variations in the mountainous and lowland sites within the central Sahara in order to address: i) the temporal and spatial patterns of the AHHP; ii) potential palaeoclimate differences or similarities between mountainous and lowland regions; iii) local P-E quantifications.

Here, we provide palaeoclimatic data based on fossil diatoms extracted from sedimentary sequences collected in two high-elevation crater palaeolakes in the Tibesti volcanic massifs (TVC): the Trou au Natron, located at the foot of Pic Toussidé (~3315 m above sea level, asl) and the Era Kohor, located at the summit of Emi Koussi (~3415 m asl). Previous studies on well-stratified diatomites revealed that the Trou au Natron was occupied by a deep lake of at least 300 m depth (Maley, 2000; Soulié-Märscbe et al., 2010). These studies assumed that the Tibesti palaeolakes existed during the late Pleistocene and that the establishment of deep lakes was a consequence of increased precipitation during this period. A recent study by Dinies et al. (2021) on Era Kohor crater palaeolake deposits showed that these palaeolakes are rather contemporaneous to the early to mid-Holocene period (thereby AHHP) and not of late Pleistocene age (Soulié-Märscbe et al., 1995).

The main objective of this study is to provide the first δ18Odiatom record from the central Sahara and investigate fossil diatom assemblages in order to better describe palaeoclimatic conditions in the Tibesti mountains during the AHHP. The δ18Odiatom is commonly used as a climate proxy to quantify changes in past hydroclimate conditions (Leng and Barker, 2006; Quesada et al., 2015; Brown et al., 2021; Kostrova et al., 2021). The δ18Odiatom is controlled by its forming water (i.e. the lake water) temperature and oxygen isotope composition (Moschen et al., 2005; Leng and Barker, 2006). Lake water conductivity is estimated using a diatom-based transfer function. A simple lake water mass balance model is used to assess the Evaporation/Inflow (E/I) ratio (Gibson et al., 2016; Cui et al., 2018). Thus the measured δ18Odiatom values allow assumptions about the lake water isotope composition (δ18OLake) and the E/I ratio, an informative lake water-balance metric (Broadman et al., 2022). Combining these variables and placing our records in a broader regional context, we address the climate history of the Tibesti Mountains during and at the end of the AHHP and discuss possible climatic synchronicity with other regions of the central Sahara and North Africa.

2. Regional and geological setting

The mountainous Tibesti massif, in the extreme northern part of Chad, extends from ~19° to 22°N of latitude and ~16° to 19°E of longitude (Fig. 1). Located halfway between the Mediterranean sea and Lake Chad, the massif also extends into southern Libya (Deniel et al., 2015; Elshaafi and Gudmundsson, 2021). In Chad, the Tibesti Volcanic Province (TVP) has a triangular surface area of about 100,000 km², and a third of its surface is covered by a thick mantle of volcanic formations. With elevations of more than 3000 m (asl), it is the highest massif of the Saharan Desert (Gourgaud and Vincent, 2004; Permenter and Oppenheimer, 2007). It has been poorly studied, mainly because of military conflicts and ongoing political instability which make fieldwork extremely hazardous and challenging (Deniel et al., 2015). Therefore, most of the literature is from early pioneering fieldwork (Wacrenier et al., 1958; Gëze et al., 1959; Vincent, 1963; Gavrilovic, 1969; Roland, 1974). More recently, fieldwork observations have been possible again in some parts of the Tibesti massif (Deniel et al., 2015; Ball et al., 2019; Dinyes et al., 2021). Detailed available data on structural features and the geological history of the TVP are synthesized in Deniel et al. (2015 and references therein).

The western half of Tibesti forms a high plateau, punctuated by several craters, which are ignimbritic calderas (Maley, 2000). The Pic Toussidé appears to be one of the youngest volcanoes, with a height of ~3315 m and, in its south-eastern rim, the Trou au Natron caldera (~2300 m), an explosion-collapse caldera (Elshaafi and Gudmundsson, 2021). The crater is known as "Trou au Natron", referring to the white deposits of sodium carbonate (salt-trona) that developed in the deepest part of the caldera due to the still active trona-springs (Maley, 2000).

The south-eastern part of the Tibesti is dominated by the highest summit in the Sahara: the Emi Koussi, a giant ignimbritic volcano, 3415 m high and 60–70 km in diameter (Deniel et al., 2015). At the summit, a depression of 11–15 km diameter consists of basalt and phonolite lava flows resulting from three successive Plio–Quaternary volcanic events and the subsequent collapse of three different calderas (Gourgaud and Vincent, 2004). The youngest and smallest is the Era Kohor caldera, 2 km in width with vertical walls of 300 m in height.
The Tibesti mountains experience distinct patterns in terms of seasonal temperature gradients. The surrounding lower mountains and plains are characterized by mean annual temperatures ranging from 23 °C to 18 °C. However, in the mountain area a cold desert climate prevails with mean annual temperatures of ~13 °C, as recorded in the Trou au Natron by meteorological measurements (Gavrilovic, 1969). Present-day rainy events in the Tibesti mountains are erratic from year to year and the mean annual rainfall displays distinct patterns along the altitudinal gradient. For example, in the northern part, including the Trou au Natron, average annual precipitation is ~93 mm (Gavrilovic, 1969) with the rainiest and most humid events in August. Springtime rainfall of northerly origin also occurs in this region (Maley, 2000). In contrast, the southern slope, including the Emi Koussi, is characterized by a monsoonal

Fig. 1. Maps showing features and locations mentioned in the text. Panel A: The central Sahara and its southern transition to the Sahel, with the Tibesti and adjacent mountain massifs, Lake Yoa, and some other places with Holocene archives in Libya, Chad, and northern Sudan. Panel B: Oblique view of the Tibesti (dashed rectangle in Panel A, elevation x10) showing its general relief with the two highest peaks (Emi Koussi 3415 m asl, Pic Toussidé 3315 m asl) and the position of the investigated crater palaeolakes Era Kohor (~3300 m asl) and Trou au Natron (~2300 m asl). Data source: Modis, Landsat, SRTM (NASA).
precipitation regime limited to July–August with an average of 45.9 mm annual rainfall (Maley, 2000).

3. Material and methods

3.1. Field campaign

Fieldwork was conducted in March 2015 and February 2016. The Trou au Natron (TN) crater’s rim is about 8 to 6 km in diameter at an elevation between 2300 m and 2000 m asl (above sea level). Its floor lies at about 1540 m asl with no surficial outflow (Fig. 2A). Two well-preserved diatomaceous outcrops were sampled (Fig. 2a and b). The basal JK48 sequence is located 20 m above the floor of the crater and is about 300 cm thick. The W99 sequence is located 330 m above JK48 on the slope of the crater and is about 400 cm thick. The Era Kohor crater, located at the summit of Emi Koussi, has a diameter of about 2 km and a depth of ~300 m (Fig. 2A). The W566 sequence is located at about 120 m above the crater floor and is about 145 cm thick (Fig. 2c).

3.2. Lithology and chronology

The chronological framework of the Trou au Natron palaeolake was established using 6 sediment samples from the JK48 sequence and 6 sediment samples from the W99 sequence. They consist of Tamarix charcoals and concentrates of microscopic plant remains (pollen, charred plant particles, plant tissues) that were processed in the laboratory of the DAI Berlin (German Archaeological Institute). Sediment samples from selected depths without macroscopic charcoals were treated by combining different protocols to

Fig. 2. Panel A: Field pictures of the two investigated Tibesti crater palaeolakes. Panel B: Google satellite images and topographic profiles of schematic sections of the investigated Tibesti palaeolakes and their respective craters with a) and b) (two left field pictures) showing the respective positions of the W99 and JK48 sedimentary sequences (indicated by vertical black arrows) within the Trou au Natron; c) (right field picture) showing the position of W566 sedimentary sequence (indicated by vertical black arrow) within the Era Kohor.
concentrate microscopic plant particles (Brown et al., 1992; Regnell and Everitt, 1996; Vandergoes and Prior, 2003; Fletcher et al., 2017; Dini es et al., 2021). The preparation steps were: (1) Treatment with ~10% HCl (heated) to decalcify the sample, (2) treatment with ~10% KOH (heated) to remove humic acids, (3) Dense-media separation with sodium-polytungstate (SPT; ~2.1 g/cm³) to remove the mnerogenic fraction (clay, silt and sand), (4) Microscopic analysis of the residues to decide on the next steps for the processing procedure, (5) Density separation (1.6–2.0 g/cm³) with CsCl or repeated with 2.05–2.1 g/cm³ SPT, with microscopic control of the potential different phases. (6) Intermediary sieving with different mesh sizes (70 μm, 30 μm, 10 μm, 6 μm) was performed to determine concentration of microscopic plant particles if dense media separation failed. Based on the AMS-dates (Table 2), age-depth models were created for both sedimentary sequences using Rba- con, a Bayesian approach with an implemented outlier analysis (Blauuw and Christen, 2011). Results are reported as calibrated radiocarbon years before present (cal yr BP), with 0 corresponding to 1950 CE (Common Era), using the latest calibration curve IntCal20 (Reimer et al., 2020). The ages and depths are given in Table 2. For the Era Kohor palaeolake (W566 sedimentary sequence), we used the sediment chronology and the age-depth model as developed, presented and discussed in the study by Dinies et al. (2021).

3.3. Fossil diatoms analysis

In total, 104 sediment samples, including 49 from the W566 sequence, 30 from the W99 sequence and 25 from the JK48 sequence, were analyzed to investigate their diatom assemblage composition. Samples were first prepared following the standard sediment treatment protocol (Battarbee et al., 2001). Organic and carbonate contents were removed with hot hydrogen peroxide (H₂O₂; 33%) and hot HCl (10%). For taxonomic identification and the counting of diatom species, a small quantity (~200 μl) of the cleaned sample was evaporated onto coverslips and then mounted on microscope glass slides using a high refractive index resin (Naphrax®). Diatom species were counted at ×1000 magnification using a Nikon Eclipse 80i microscope equipped with differential interference contrast optics. For each sample, a minimum of 500 diatom valves were counted along random transects. Taxonomic identification of diatoms followed Krammer and Lange-Bertalot (1986, 1988, 1991a, 1991b) and Gasse (1986) using the most recent revised nomenclature (Guiry and Guiry, 2022). Diatom taxa classification regarding preferred habitat drew on the ecological classification proposed by Gasse (1986) and the modern calibration recently conducted on the Chadian lakes (Rirongarti et al., 2022). Diatom habitats are categorized into planktonic and benthic species following Kostrova et al. (2021). Thus, the term benthic includes epipellic, epipsammic and epiphytic taxa. Facultative-planktonic taxa are included in the planktonic group. Diatoms, as highly sensitive indicator organisms, are rapidly affected by changes in lake depth, chemical conditions, nutrient and light availability (Wolin and Stone, 1999). As such, qualitative changes in diatom communities are expected to indicate changes in water levels and the hydrochemistry of water. Thus, the ratio of

Table 1

<table>
<thead>
<tr>
<th>Period Variable</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Deduced from POWER/NASA data</td>
<td></td>
</tr>
<tr>
<td>Temperature lapse rate</td>
<td>Gavrilovic (1969)</td>
<td></td>
</tr>
<tr>
<td>Precipitation δ¹⁸O</td>
<td>Bowen and Wilkinson (2002)</td>
<td></td>
</tr>
<tr>
<td>δ¹⁸O</td>
<td></td>
<td>LMDZ-iso model (Risi et al., 2010)</td>
</tr>
<tr>
<td>Early to late Holocene (~10,000–4500 cal yr BP) data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air temperature (TN): 14 °C; (EK): 12 °C</td>
<td>Assumed equilibrium between lake and atmosphere (no offset between the lake and air temperature)</td>
<td></td>
</tr>
<tr>
<td>Lake water Tₜ</td>
<td></td>
<td>Estimated from δ¹⁸Odiatom (Crespin et al., 2010, corrected in Alexandre et al., 2012)</td>
</tr>
<tr>
<td>Lake water δ¹⁸O vs VSMOW</td>
<td></td>
<td>Deduced from POWER/NASA data and LMDZ-iso model (Risi et al., 2010)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation δ¹⁸O</td>
<td>6.2% VSMOW; (EK): 8.1% VSMOW</td>
<td>Estimated from Bowen and Wilkinson (2002) assuming no changes in δ¹⁸Op since Holocene according to the LMDZ-iso model (Risi et al., 2010) and Gasse (2002)</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Sequence ID</th>
<th>Depth below the surface (cm, midpoint)</th>
<th>Lab ID</th>
<th>Material dated</th>
<th>¹⁴C yr BP</th>
<th>cal yr BP (2σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W99</td>
<td>63.5</td>
<td>Beta-423374</td>
<td>Tamarix charcoal</td>
<td>4520 ± 30</td>
<td>1050–5309</td>
</tr>
<tr>
<td>W99</td>
<td>106.5</td>
<td>Beta-423375</td>
<td>Tamarix charcoal</td>
<td>5090 ± 30</td>
<td>5746–5914</td>
</tr>
<tr>
<td>W99</td>
<td>208</td>
<td>Poz-122316</td>
<td>Concentrate of charred plant particles</td>
<td>6210 ± 40</td>
<td>6990–7251</td>
</tr>
<tr>
<td>W99</td>
<td>275.5</td>
<td>Beta-453615</td>
<td>Tamarix charcoal</td>
<td>6330 ± 30</td>
<td>7165–7320</td>
</tr>
<tr>
<td>W99</td>
<td>288.5</td>
<td>Poz-122315</td>
<td>Concentrate of charred plant particles</td>
<td>6500 ± 50</td>
<td>7310–7559</td>
</tr>
<tr>
<td>W99</td>
<td>295.5</td>
<td>Poz-122316</td>
<td>Concentrate of charred plant particles</td>
<td>6800 ± 60</td>
<td>6746–7162</td>
</tr>
<tr>
<td>JK48</td>
<td>40.5</td>
<td>Beta-453611</td>
<td>Not charred plant fragment</td>
<td>5430 ± 30</td>
<td>6191–6295</td>
</tr>
<tr>
<td>JK48</td>
<td>128.5</td>
<td>Poz-126143</td>
<td>Concentrate of charred plant particles</td>
<td>6860 ± 130</td>
<td>7489–7957</td>
</tr>
<tr>
<td>JK48</td>
<td>151.5</td>
<td>Poz-122363</td>
<td>Concentrate of charred plant particles</td>
<td>7540 ± 50</td>
<td>8200–8419</td>
</tr>
<tr>
<td>JK48</td>
<td>196.5</td>
<td>Beta-470620</td>
<td>Concentrate of charred plant particles</td>
<td>7320 ± 60</td>
<td>8009–8318</td>
</tr>
<tr>
<td>JK48</td>
<td>221.5</td>
<td>Poz-122364</td>
<td>Concentrate of charred plant particles</td>
<td>8640 ± 40</td>
<td>9535–9690</td>
</tr>
<tr>
<td>JK48</td>
<td>221.5</td>
<td>Poz-122317</td>
<td>Concentrate of charred plant particles</td>
<td>8570 ± 110</td>
<td>9296–9905</td>
</tr>
</tbody>
</table>
planktonic to benthic (P/B), which is known to reveal changes in lake level fluctuations (Brown et al., 2021), was calculated for each sample.

3.4. Inferred conductivity from diatom-based transfer function

In the Tibesti area, no calibration function is available to infer water salinity from fossil diatom assemblages. A diatom-inferred conductivity transfer function was recently developed for the lakes of the Ounianga system (Rirongarti et al., 2022). However, the Tibesti fossil assemblages contain a great number of diatom taxa that are not found in the Ounianga modern training dataset, thus preventing a robust application. Therefore, we employed a diatom-based conductivity transfer function from a modern semi-hemispheric African dataset (Gasse et al., 1995), which has been widely used (Kropelin et al., 2008; Roubeix and Chalié, 2019) and which displays a sufficient diatom taxa overlap with our fossil data. The training dataset used for the reconstructed palaeosalinity (approached via the conductivity and expressed in log_{10} μS cm^{-1}) consists of 282 modern samples from about 150 African sites, in which 400 species were selected as being statistically valuable (Gasse et al., 1995). Transfer function development and conductivity inferences were carried out using the computer program C2 v.1.7.2 (Juggins, 2007). We used the Weighted Averaging Method (WAM) from ter Braak and Looman (1986). Taxonomic correspondences and synonymies of species between fossil and modern data were carefully established. As such, 95% of the species present in the Tibesti sequences were included in the transfer function procedure.

3.5. Diatom oxygen isotope composition analysis (δ^{18}O_{diatom})

For diatom oxygen isotope (δ^{18}O_{diatom}) measurements, a total of 69 sediment samples from the three sequences (30 in W566, 23 in W99 and 16 samples in JK48) were processed using chemical and physical preparation steps as detailed in Crespin et al. (2008, 2010). After the cleaning process, the purity of diatom samples and signs of dissolution were checked using optical and scanning electron microscopies (SEM) (Fig. 3).

Additionally, elemental semi-quantitative micro-X-ray fluorescence (micro-XRF) analyses were performed using a HORIBA XGT-5000177 microscope. To ensure that samples were devoid of any terrigenous matter, samples were checked through X-ray diffraction (XRD) using X PANalytical (XPert Pro). For isotope analysis, 1.6 mg of purified diatoms were dehydrated and dehydroxylated under a flow of N₂ (Chapligin et al., 2010) and oxygen extraction was performed using the IR Laser-Heating Fluorination Technique (Alexandre et al., 2006; Crespin et al., 2008). The extracted oxygen gas was sent directly to a dual inlet mass spectrometer (ThermoQuest Finnigan Delta Plus). The measured δ^{18}O_{diatom} values were corrected on a daily basis using a laboratory quartz standard (δ^{18}Oboulangé=50—100 μm) calibrated on NBS28. The long term δ^{18}O average obtained for NBS28 is 9.678±0.187 (n = 12). The data are expressed in the standard δ-notation relative to VSMOW.

3.6. Hydrologic and isotope mass balance modeling

3.6.1. Lake water balance (E/I) modeling

In order to further quantify the past hydrological fluctuations of the palaeolakes, a simple lake water balance model for estimating the E/I ratio was applied (Gibson et al., 2016; Cui et al., 2018).

The hydrologic (Eq. (1)) and isotope (Eq. (2)) mass balance model of a lake in a steady state for a given time can be expressed as follows:

\[
P + Q_i = E + Q_o \quad (1)
\]

\[
(P + Q_i) \delta I = E \delta E + Q_o \delta L \quad (2)
\]

where P and Qi are water inputs by direct precipitation and from the watershed respectively, E is the total evaporation, Qo is the surface outflow and underground leakage, δL is the δ^{18}O of the lake water, δI is the δ^{18}O of water inputs and δE is the δ^{18}O of the evaporation flux.

Based on the isotope and water mass balance equations, we determined the E/I lake water balance using \(I = P + Q_i \) following Gibson and Edwards (2002):

\[
E = \frac{(\delta L - \delta I)}{I} = \frac{(\delta L - \delta E)}{E} \quad (3)
\]

3.6.2. Lake water oxygen isotopic composition (δ^{18}O_{lake})

To calculate the past oxygen isotope composition of lake water (δ^{18}O_{lake}) from measured δ^{18}O_{diatom} both lake water temperature (T_L) and the isotopic fractionation between water and diatoms are required. Assuming that diatom frustules precipitate in equilibrium with their forming water, a thermo-dependent relationship links

Fig. 3. SEM images of purified diatom biogenic silica (main displayed species Aulacoseira granulata and Pantocsekia oblonga) from samples (A) W99-234-235 (~7020 cal yr BP) and (B) JK48-36-37 (~8960 cal yr BP). No mineral grains or signs of dissolution are visible, indicative of the high degree of purity of the samples.
$\delta^{18}O_{\text{diatom}}$ and $\delta^{18}O_{\text{lake}}$ (Moschen et al., 2005; Crespin et al., 2010; Dodd and Sharp, 2010):

\[[\delta^{18}O_{\text{diatom}} - \delta^{18}O_{\text{lake}}] \text{ (‰ vs VSMOW)} = a \cdot T_i (°C) + b, \tag{4} \]

where $\delta^{18}O$ values are in ‰ vs VSMOW and T_i is in °C.

In the present study, this corrected equation with a fractionation factor of $-0.28^{\%}_{\text{O18}}$ obtained from freshwater diatoms and previously used for $\delta^{18}O_{\text{lake}}$ reconstructions (Quesada et al., 2015; Broadman et al., 2022) is considered to capture the relationship between $\delta^{18}O_{\text{diatom}}$, T_i and $\delta^{18}O_{\text{lake}}$ at high altitude sites such as the Tibesti mountains.

T_i is assumed to be constant during the investigated period and equivalent to air temperature on the annual scale (Adallal et al., 2019). As we focus on the evolution of the proxies rather than on their absolute values, this assumption appears reasonable. The annual average air temperature recorded from 1965 to 1968 CE at the Trou au Natron station (Gavriloiv, 1969) was used for estimating the modern T_i. For the Era Kohor, meteorological data from the Bardai station (located within the Tibesti low mountains) are available. Given the altitudinal difference between Bardai (altitude: ~1000 m asl) and the Emi Koussi (altitude: >3000 m asl), and a temperature lapse rate of $-6.8^{\circ}C/km$ (Gavriloiv, 1969), the modern annual average air temperature at Era Kohor can be deduced. According to the LMDZ-iso model (Risi et al., 2010), the difference in air temperature between the mid-Holocene and the modern day is very low in most regions. For the Tibesti mountains, the model suggests a decrease in temperature of $-1^{\circ}C$–$1.5^{\circ}C$ from the early to mid-Holocene. Thus, based on the above assumptions, we estimated a constant average annual air temperature and T_i for the Trou au Natron ($14^{\circ}C$) and the Era Kohor ($12^{\circ}C$) palaeolakes for the investigated period.

3.6.3. Precipitation isotopic composition ($\delta^{18}O_p$)

Since no precipitation isotopic data appropriate to the study focus are available, we calculated annual $\delta^{18}O_p$ values for modern rains using the equation from Bowen and Wilkinson (2002), established from the International Atomic Energy Agency (IAEA)-World Meteorological Organization (WMO) Global Network for Isotopes in Precipitation (GNIP) database (IAEA/WMO, 1998) and describing the isotopic composition of precipitation ($\delta^{18}O_p$) for the continents as controlled by latitude (LAT) and altitude (ALT). For stations located >200 m asl, the equation is expressed as follows:

$$\delta^{18}O_p = -0.0051(|\text{LAT}|)^2 + 0.1805(|\text{LAT}|) - 0.002(|\text{ALT}|) - 5.247 \tag{5}$$

Turning to past periods, we used the LMDZ-iso model (Risi et al., 2010) to estimate the $\delta^{18}O_p$ from the calculated modern $\delta^{18}O_p$ data. According to this model and other regional isotopic data (Gasse, 2002), the isotopic composition of Holocene rainfall did not differ significantly from that of the present day in areas such as the Tibesti region. Thus, we assume that the modern-day $\delta^{18}O_p$ estimates resemble Holocene $\delta^{18}O_p$ values.

3.6.4. Evaporative flux isotopic composition (δE)

Estimating δE in past hydrological lake water balance modeling is a challenging task. This flux is depleted in heavy isotopes relative to the lake water, mainly depends on kinetic fractionation, and is the main parameter in the isotopic balance of a lake (Vallet-Coulomb et al., 2008). Usually, it is deduced from the Craig and Gordon (1965) model as follows:

$$\delta E = \frac{\delta L - h\delta A - e}{1 - h} \tag{6}$$

where h is the relative humidity, δL is the isotopic composition of lake water, δA is the isotopic composition of the atmospheric vapor, and e is the total isotopic enrichment factor accounting for both kinetic (e_k) and equilibrium (e^*) enrichment ($e = e^* + e_k$). The kinetic fractionation coefficient (e_k) can be approximatively estimated as follows:

$$e_k = \theta \cdot C_k (1 - h) \tag{7}$$

With (e_k) expressed as a function of the relative humidity (h), the parameter C_k (which is a “kinetic” constant dependent on the model) is determined experimentally as $C_k = 14.2^{\%}_{\text{O18}}$ for $\delta^{18}O$ in the case of evaporation from a free water surface (Gonfiantini, 1986). θ is an empirical term, representing the turbulent component. The normalized relative humidity (h) is estimated using data obtained from the Prediction of Worldwide Energy Resource (POWER/NASA) (https://power.larc.nasa.gov/). The isotope composition of atmospheric moisture (δA) is deduced from the LMDZ-iso model (Risi et al., 2010). Detailed information about the data used to resolve these equations is provided in Table 1.

4. Results

4.1. Lithology and chronology

The basal deposits of the JK48 and W99 sequences from the Trou au Natron consist of sand and gravel. In JK48, they are overlaid by diatomaceous siltstone, becoming increasingly calcareous, with the highest carbonate contents 37–62 cm below the top of the section. In the W99 sequence, 330 m above, limy diatomaceous siltstone dominates the sequence (Fig. 4). Similarly, the W566 sequence from the Era Kohor is characterized by sand and gravels in its basal part followed by varying proportions of silty diatomite.

All available ^{14}C-dates, the concentrates of plant micro-remains and the Tamarix charcoal were included in the age-depth model (Table 2), resulting in a roughly linear age-depth model (Fig. 4). Two ^{14}C-dates secure the basal age of the JK48 deposit. The only dating mismatch with the modeled age-depth relation is at a depth of about 200 cm below the surface. Since charred plant particles were also dated from this depth, the offset is difficult to explain. However, the consistent two basal datings on two fractions from the same depth (unspecified charred plant particles and the outermost layer with cuticula of plants), as well as the match of the remaining dating, indicate the reliability of the roughly linear model. The dating result near the basis of W99 overlaps the dating a few centimeters above and thus fits the age-depth model. No datable material was available for the basis of W99, composed of sand and gravel. Ages for these ~20 cm were extrapolated, despite the difficulty of extrapolation especially when there is a sediment change. However, because these basal sand and gravel sediments are devoid of diatoms, no samples from this extrapolated section were analyzed in this study.

For the JK48 sequence, the basal age is extrapolated to the early Holocene (~10,000 cal yr BP) and covers the period ranging from ~10,000–5500 cal yr BP. For the W99 sequence, the oldest ^{14}C age is 6500 ± 50 cal yr BP. The model produces an extrapolated age for the basal sample of 7500 ± 30 cal yr BP. Thus, the W99 sequence covers the period ~7500–4500 cal yr BP. For Era Kohor, the W566 sequence covers approximately the period 9500–5500 cal yr BP, as detailed in Dinies et al. (2021).
4.2. The Trou au Natron palaeolake

4.2.1. Composition of the fossil diatom assemblages

In the JK48 sequence, a total of 27 diatom taxa belonging to 16 genera were identified. A stratigraphic diagram of their relative abundance exhibited three diatom assemblage zones (DZI to DZIII in Fig. 5). Between ~9500 and 8000 cal yr BP (JK48-DZI), freshwater planktonic species such as *Aulacoseira granulata* and *Pantocsekiella*...
Fig. 5. Stratigraphic diagram of diatom abundances in the JK48 sequence from Trou au Natron: relative abundances of dominant diatom species grouped by habitat preference, planktonic to benthic ratio (P/B), lake diatom-inferred conductivity and the oxygen isotopic composition of fossil diatoms (18O$_{diatom}$).

...continued while planktonic A. granulata gradually declined and P. ocellata persisted (20–25%). The benthic assemblage, composed of R. abbreviata, E. adnata, A. pediculus, A. ovalis and C. placentula, reached up to >70% at the end of the zone while planktonic species markedly declined. In the W99-DZIII zone (~5200–4500 cal yr BP), benthic species kept developing to reach ~100% of the flora just after ~5000 cal yr BP. The benthic assemblage was similar to that of the W99-DZII zone with the exception of the decline of D. subovalis. Planktonic A. granulata disappeared while P. ocellata was poorly represented.

4.2.2. Diatom-inferred conductivity

In the following section, we report the outcomes in log$_{10}$ (conductivity) units, accompanied by the corresponding raw conductivity values enclosed in brackets. It is important to note that these reconstructed log-transformed values should not be considered equivalent to the values that could be derived from a direct diatom-conductivity transfer function.

Diatom-inferred conductivities from the JK48 sequence (Fig. 5) exhibited low values at the base of the sequence and gradually increased upwards. From ~9500 to 8000 cal yr BP, low conductivity values averaging 2.9 log$_{10}$ μS/cm (~790 μS/cm) correspond to a lake dominated by planktonic species. After 8000 cal yr BP, conductivities showed an increasing trend until ~6300 cal yr BP with average values of 3.01 log$_{10}$ μS/cm (~1020 μS/cm). After ~6300 cal yr BP the conductivity markedly increased to reach a maximum of 3.60 log$_{10}$ μS/cm (~3980 μS/cm) at ~5470 cal yr BP.

In the W99 record, diatom-inferred conductivities (Fig. 6) ranged from 2.77 log$_{10}$ μS/cm (~590 μS/cm) to 3.0 log$_{10}$ μS/cm (~1000 μS/cm) and were of a slightly lower order than those of the JK48 sequence. However, in the W99 between ~7500 and 6300 cal yr BP, conductivities values fluctuated more than in the JK48 sequence despite averaging 2.85 log$_{10}$ μS/cm (~710 μS/cm). After ~6300 cal yr BP, the conductivity increased to reach a maximum of 3.0 log$_{10}$ μS/cm (~1000 μS/cm) at ~5000 cal yr BP. Thereafter, conductivity remained relatively stable with only minor...
fluctuations at the top of the sequence at ~4500 cal yr BP.

4.2.3. Oxygen isotopic composition of fossil diatoms (δ^{18}O$_{diatom}$)

In the JK48 record, the δ^{18}O$_{diatom}$ values were between ~42% and ~48% (Fig. 5), showing an increasing trend from the base of the sequence to the top. In the basal JK48-DZI zone, the δ^{18}O$_{diatom}$ values were lower (42.03 and 42.91%) at ~9300 and ~8400 cal yr BP respectively. In the DZII zone, δ^{18}O$_{diatom}$ increased from ~7100 to ~6400 cal yr BP. In the DZIII zone, the δ^{18}O$_{diatom}$ values increased sharply by ~2% to reach the highest values (47.05% and 47.86%) at ~6000 and ~5600 cal yr BP respectively.

The δ^{18}O$_{diatom}$ values from the W99 record were between ~41% and ~46% (Fig. 6) and relatively lower than those of JK48. Overall, an increasing trend in δ^{18}O$_{diatom}$ values along the sequence was observed in both records. From ~7500 to 6300 cal yr BP, the δ^{18}O$_{diatom}$ values were low and centered around 41.01%. Between 6300 and 4800 cal yr BP, δ^{18}O$_{diatom}$ values displayed an increasing trend up to ~43.3% although two drops (41.27% and 41.42%) were observed at ~6150 and ~5650 cal yr BP respectively. After ~5300 cal yr BP, the δ^{18}O$_{diatom}$ values increased from 45.01% at ~5000 cal yr BP to reach a maximum (47.11%) at ~4800 cal yr BP. Thereafter, the diatom assemblage was co-dominated by benthic and planktonic species. Freshwater benthic taxa were represented by E. adanata, R. gibba, Mastogloia elliptica, U. capitata, C. placentula and D. subovalis. In the W566-DZII zone (~8000-6400 cal yr BP), the diatom assemblage was dominated by the same benthic species while planktonic P. ocellata developed again. In the DZIII zone (~6400-5500 cal yr BP), the relative abundance of planktonic diatom slightly decreased.

4.3. The Emi Koussi palaeolake

4.3.1. Composition of the fossil diatom assemblages

The W566 sequence was characterized by more diversified diatom flora than that of the Trou du Natron: 65 species from 19 genera, although the dominant species remained the same. However, the striking feature of this sequence was the almost equal proportions of planktonic and benthic forms. Based on a stratigraphic diagram of their relative abundances, three zones could be identified (Fig. 7).

The base of W566-DZI (~9400 cal yr BP) was dominated (up to 75%) by freshwater planktonic Aulacoseira spp. (A. granulata, A. granulata var. angustissima, A. ambigua) and P. ocellata. From ~9300 cal yr BP to ~9200, an abrupt decrease in planktonic forms occurred concomitantly with a rise in benthic forms (see P/B ratio).
5. Discussion

5.1. Proxy evidence and lake water balance

To assess the lake water balance of the Tibesti crater palaeolakes we employed a quantitative model that displays an E/I ratio ranging from <1 (i.e., higher precipitation) to >1 (i.e., drop in the lake level due to increased evaporation) and that fits well with diatom assemblages (P/B ratio), oxygen isotopic composition (δ18O_diatom) and inferred lake conductivity (Fig. 8).

From ~9500 to 7500 cal yr BP, the records show concomitantly low δ18O_diatom values, a positive lake water balance (E/I < 1; Fig. 8i and j) and low δ18O_lake values (Fig. 8e and f), suggesting high moisture conditions associated with monsoon air masses and/or tropical depressions that produce 18O-depleted values (Fontes et al., 1993). Moreover, fossil diatom assemblages provide additional evidence of a wet episode. The dominance of two planktonic freshwater species, A. granulata and P. ocellata (high P/B ratio) suggests a deep and permanent lake (Fig. 8a and b). At this time, low water conductivities supported freshwater lake conditions (Fig. 8c and d), in agreement with similar diatom-inferred chemical variables reported from the nearby northern Niger palaeolakes (Gasse, 2002). This lake highstand is consistent with the wet conditions deriving from palynological data (Dinies et al., 2021), which show a high humidity index from the Era Kohor palaeolake. The timing of a moist stage in the Tibesti mountains seems to coincide with the optimum of the AHHP as seen elsewhere in the central Sahara (Gasse, 2000; Cremaschi et al., 2014; Armitage et al., 2015; Bristow et al., 2018). Moreover, the positive water balance recorded in the Trou au Natron and the Era Kohor palaeolakes is also consistent with the evidence of enhanced precipitation in the Sahara between 10,000 and 8000 cal yr BP (Tierney et al., 2017). At that time, the Tibesti mountains might have acted as topographic barriers to the northern expansion of monsoonal air masses inducing high summer precipitation. Because of this geological configuration, the Tibesti may have also facilitated the penetration of Mediterranean winter humid air masses further south than is the case today, between 18°N and 24°N, as shown by Cheddadi et al. (2021), leading to two rainy seasons over the central Sahara during the Holocene, as already suggested by Fontes et al. (1993).

From ~7500 to 6000 cal yr BP, the lake at Trou au Natron experienced a slight increase in evaporation (E/I ratio), leading to somewhat high δ18O_diatom and lake water conductivity. These characteristics are the first signs of aridification that were likely linked to reduced precipitation, as revealed by the increasingly negative water balance (Fig. 8c and d; g and h). After 6000 cal yr BP, the lake experienced drops in water level that favored the development of benthic forms which then became as abundant as planktonic species. The lowering of the lake level is supported by the slightly increased δ18O_diatom values accompanied by an increasingly negative water balance, as seen in the Trou au Natron palaeolake. Meanwhile, the Era Kohor palaeolake experienced positive and negative fluctuations in the water balance, associated with a slightly increasing trend in δ18O_diatom, together with a relative increase in water conductivity. The diatom assemblage was dominated by benthic forms while planktonic taxa gradually receded, reflecting a low-stand lake. Although expressed with different intensities and magnitudes in the Trou au Natron and the Era Kohor palaeolake records, these variables can be interpreted as signs of aridification. The water balance (E/I ratio) and the inferred freshwater character of the Tibesti lakes at the time are indeed coherent with those observed for the central Sahara and the Sahel lowlands (Gasse, 2002).

From ~6000 to ~5500 cal yr BP, the Trou au Natron and the Era Kohor palaeolake records show higher δ18O_diatom values and a shift towards a gradually negative water budget (E/I > 1), supporting the progression of aridification. This shift towards drier conditions is also evidenced by the decline in planktonic diatoms, which was likely due to a shortage of freshwater supply resulting from reduced precipitation in the surroundings. Diatoms that thrived at the time in the Trou au Natron were mainly benthic forms, which included many epiphytic taxa such as A. pediculus, E. adnata, N. frustulum, R.
Fig. 8. Palaeohydrological variations within Tibesti palaeolakes during the AHHP: (a) Planktonic to benthic ratio (P/B) from Trou au Natron (W59 and JK48 sequences) (b) Planktonic to benthic ratio (P/B) from Era Kohor (W566 sequence) (c) Conductivity inferred from transfer function (W99 and JK48 sequences, Trou au Natron) (d) Conductivity inferred from transfer function (W566 sequence, Era Kohor) (e) Lake water isotopic composition estimated from the measured $\delta^{18}O_{\text{diatom}}$ (W99 and JK48 sequences) (f) Lake water isotopic composition estimated from the measured $\delta^{18}O_{\text{diatom}}$ (W566 sequence) (g) Measured $\delta^{18}O_{\text{diatom}}$ (W99 and JK48 sequences) (h) Measured $\delta^{18}O_{\text{diatom}}$ (W566 sequence) (i) Lake water balance (E/I ratio) from W99 and JK48 sequences (j) Lake water balance (E/I ratio) from W566 sequence. Vertical dashed black lines depict the main interval of hydroclimate changes in the Tibesti mountains.
reconstructed conductivities of the W99 and JK48 sequences shifted after ~7500 cal yr BP (Fig. 8c and g). The heaviest isotopic signal and the highest conductivities were recorded in the JK48 sequence close to the palaeolake bottom, whereas the lowest values came from the W99 sequence located 330 m higher on the margin of the crater.

When examining the isotope records from a lake, it is imperative to consider the hydrological conditions of the lake and potential changes that could have occurred in the past and could have led to variable and generally high δ18O values, particularly when investigating crater lakes (Lamb et al., 2000) or in the case of terminal (closed) lakes (Leng and Marshall, 2004). Moreover, it is commonly believed that diagenetic processes, including silica dissolution, can significantly influence a rise in δ18O_diatom values, as previously suggested (Leng and Barker, 2006; Moschen et al., 2006). However, our cleaning procedure of the diatom frustules revealed no evidence of dissolution, showing well-preserved valves as depicted in Fig. 3. Therefore, we can confidently assert that dissolution is not a factor affecting our δ18O_diatom values. Thus, the vertical stratification of the lake water isotopic composition observed in the Trou au Natron palaeolake may be explained by the location of the investigated sedimentary records within the Trou au Natron crater palaeolake. Due to the stratification of the lake, diatoms are limited in their representation to the epilimnion, rather than encompassing the entire water column. Therefore, the JK48 sequence, due to its location near the lake bottom (thereby distant from the shore), records the average composition of the central part of the epilimnion water body, while the W99 sequence records the water inputs to the lake because of its location nearer to the shore area. During the period of aridification after 7500 cal yr BP, the lake experienced reduced precipitation and higher evaporation, which is reflected in the E/I ratio observed in JK48. However, during this time, precipitation had not completely stopped, and inputs to the lake continued to flow down from the shores. The W99 sedimentary record may likely reflect these inputs. This hypothesis is further supported by the fact that JK48 has a more stable composition, while W99 varies considerably, suggesting contrasting responses to inputs depending on their amount. Hence, the isotopic signature captured by JK48 during this period represents the isotopic composition of the entire lake water.

5.2. Hydroclimate evolution of the Tibesti mountains (central Sahara) during the AHHP compared to other regional records

In the Trou au Natron and Era Kohor palaeolakes, fossil diatom assemblages and their oxygen isotope composition provide strong evidence of humid conditions during the early to mid-Holocene, evolving gradually towards arid conditions during the mid-to-late Holocene transition (Fig. 9). The overall trend in the δ18O_diatom records and the diatom assemblages followed the gradual decline in summer insolation at 30°N during the Holocene (Fig. 9a). Our results are consistent with the assumption that during the early to mid-Holocene period, wetter conditions prevailed across the central Sahara due to a strengthened northward extension of the ITCZ and enhanced boreal summer insolation causing the intensification of the African monsoonal rainfall belt (Sun et al., 2019; Chandan and Peltier, 2020; Kutzbach et al., 2020). Moreover, our data support the notion that the timing of the Tibesti palaeolakes’ most humid conditions and associated highstand lakes are broadly synchronous with the peak of the AHHP reached in the interval between ~9500 and ~8000 cal yr BP, which is commonly expressed as

Vertical dashed black lines depict the main interval of hydroclimate changes in the central Sahara during the AHHP, with the striped area representing the time interval of inferred hydroclimate changes within the savannah (e.g., 12000 to 10000 cal yr BP). This interval is characterized by higher summer insolation at 30°N during the Holocene (Fig. 9a). Our results are consistent with the assumption that during the early to mid-Holocene period, wetter conditions prevailed across the central Sahara due to a strengthened northward extension of the ITCZ and enhanced boreal summer insolation causing the intensification of the African monsoonal rainfall belt (Sun et al., 2019; Chandan and Peltier, 2020; Kutzbach et al., 2020). Moreover, our data support the notion that the timing of the Tibesti palaeolakes’ most humid conditions and associated highstand lakes are broadly synchronous with the peak of the AHHP reached in the interval between ~9500 and ~8000 cal yr BP, which is commonly expressed as

Vertical dashed black lines depict the main interval of hydroclimate changes in the central Sahara during the AHHP, with the striped area representing the time interval of inferred hydroclimate changes within the savannah (e.g., 12000 to 10000 cal yr BP). This interval is characterized by higher summer insolation at 30°N during the Holocene (Fig. 9a). Our results are consistent with the assumption that during the early to mid-Holocene period, wetter conditions prevailed across the central Sahara due to a strengthened northward extension of the ITCZ and enhanced boreal summer insolation causing the intensification of the African monsoonal rainfall belt (Sun et al., 2019; Chandan and Peltier, 2020; Kutzbach et al., 2020). Moreover, our data support the notion that the timing of the Tibesti palaeolakes’ most humid conditions and associated highstand lakes are broadly synchronous with the peak of the AHHP reached in the interval between ~9500 and ~8000 cal yr BP, which is commonly expressed as

Vertical dashed black lines depict the main interval of hydroclimate changes in the central Sahara during the AHHP, with the striped area representing the time interval of inferred hydroclimate changes within the savannah (e.g., 12000 to 10000 cal yr BP). This interval is characterized by higher summer insolation at 30°N during the Holocene (Fig. 9a). Our results are consistent with the assumption that during the early to mid-Holocene period, wetter conditions prevailed across the central Sahara due to a strengthened northward extension of the ITCZ and enhanced boreal summer insolation causing the intensification of the African monsoonal rainfall belt (Sun et al., 2019; Chandan and Peltier, 2020; Kutzbach et al., 2020). Moreover, our data support the notion that the timing of the Tibesti palaeolakes’ most humid conditions and associated highstand lakes are broadly synchronous with the peak of the AHHP reached in the interval between ~9500 and ~8000 cal yr BP, which is commonly expressed as
a global wet spell over the Sahara and Sahel regions (Gasse, 2000; deMenocal et al., 2000; Lézine et al., 2011; Shanahan et al., 2015; Claussen et al., 2017; Holmes and Hoelzmann, 2017).

Regarding the mid-to-late Holocene period in the Tibesti Mountains, our results provide evidence of a progressive lowering of the lake levels between 6500 and 5000 cal yr BP (Fig. 9b and c). This period is characterized by a decreasing trend in the P/B ratio reflecting the development of benthic diatoms. An increasing trend in δ18O\textsubscript{diatom} values suggests an increasingly arid climate which started as early as 6500 cal yr BP. This is strongly supported by pollen data from the Tibesti palaeolakes that indicate the substitution of tropical taxa by desert species (Dinies et al., 2021). The onset of aridity shown by our δ18O\textsubscript{diatom} and the estimated water balance (E/I ratio) between 6500 and 5000 cal yr BP corresponds with records from several other lakes indicating a progressive reduction in the moisture balance (Abell and Hoelzmann, 2000) and a transition towards semiarid to arid conditions in the Sahara and Sahel regions (Armitage et al., 2015; Gasse, 2000, 2002; Hoelzmann et al., 2004; Kropelin et al., 2008; Lézine et al., 2011; Nguetsop et al., 2013). Our proxies characterize this interval as a period of significant changes that might be explained by the progressive southward migration of the ITCZ as a result of declining insolation subsequently leading to a weakened West African summer monsoon (deMenocal, 2015; Dallmeyer et al., 2020). Our findings show a gradual transition from relatively wet to arid conditions, leading to the end of the AHHP after 5300 cal yr BP. As illustrated by the gradual decrease in the P/B ratio (Fig. 9b and c) and the gradually increasing negative water balance, the termination of the AHHP in the Tibesti mountains was progressive and not abrupt as reported elsewhere (deMenocal et al., 2000; Armitage et al., 2015) (Fig. 9f and g). The pronounced drier conditions after ~5300 cal yr BP in the Tibesti were broadly synchronous with those in the Fezzan basin (Libya) with the final desiccation of palaeolake Shati at ~5300 cal yr BP (Drake et al., 2018).

At a regional scale, our diatom assemblages and δ18O\textsubscript{diatom} data clearly demonstrate a period of high rainfall during the AHHP in the Tibesti Mountains, in phase with that of the Central Sahara (Amaral et al., 2013; Cremaschi et al., 2014; Armitage et al., 2015; Drake et al., 2018). As such, our data are coherent with those from Lake Megachad documenting the early to mid-Holocene transition as a period of lake highstand due to high precipitation and increased runoff before abrupt desiccation (Fig. 9g) around ~5000 cal yr BP (Armitage et al., 2015). Evidence from slope deposits of the Angamma Delta, located downstream of the Tibesti Mountains, also indicates a lake highstand until ~7500 cal yr BP (Bristow et al., 2018), confirming our positive water balance and inferred freshwater conditions. In addition, in Lake Yoa, located ~400 km to the northeast, pollen data document a major Holocene highstand period with seasonal river flows from the Tibesti region lasting until ~5600 cal yr BP (Kropelin et al., 2008). Given the geomorphological context of the Tibesti region and the amount of seasonal river flow, it has been suggested that during the AHHP, the Tibesti acted as a water tower and an influent stream to sustain river flows into Lake Yoa (Grenier et al., 2009; Armitage et al., 2015) and Lake Megachad (Bristow et al., 2018).

6. Conclusion

This work provides the first high-resolution account of hydroclimatic variations during the AHHP in the Tibesti Mountains within the Central Sahara. Based on fossil diatom assemblages and their oxygen isotope composition, two distinct lacustrine periods are identified between the early to mid- and the mid-to-late Holocene transitions. From ~9500 to ~6500 cal yr BP, a highstand lake with depleted δ18O\textsubscript{diatom} values confirmed by a positive lake water balance (E/I < 1) and low water conductivities coincides with the peak of the AHHP. This reflects effective regional moisture resulting from enhanced precipitation triggered by increased summer insolation. This wet interval is in phase and consistent with the palaeoclimate changes recorded in the adjacent lowlands in the nearby Chadian and Fezzan basins and other sites from the Sahara and Sahel regions in northern Africa.

From ~6500 to 4500 cal yr BP, our results highlight the progressive establishment of arid conditions. High δ18O\textsubscript{diatom} values, a negative water balance (E/I > 1), high lake water conductivities and dominant benthic diatoms provide clear evidence of increasing evaporation in the lake catchment and lowering lake levels. The onset of aridification started as early as 6500 cal yr BP and is likely attributed to the gradual decline of summer insolation causing the southward migration of the ITCZ and the weakening of associated monsoonal precipitation. In the Tibesti region, our data showed an average decrease in precipitation amounts of ~35% between the peak and the end of the AHHP. In this area of the central Sahara, the pace of aridification is gradual and the termination of the AHHP is dated between 5500 and 5000 cal yr BP.

Author contributions

F.S., A.N.Y., P.H. and S.K. designed the study. F.S., P.H. and S.K. supervised the scientific development of this project. A.N.Y. and F.S. provided the diatom data, fossil taxonomy assemblages, oxygen isotope analysis and conductivity inferred values. S.K. provided the sedimentary records and pictures from the field. A.M. contributed to the geological and palaeoenvironmental background of the Tibesti area. P.H., M.D. and F.D. provided lithological sampling, description, chronological data, and topographic profiles with DEM/satellite maps. J.-C.M. contributed to diatom preparation samples. C.P. contributed to taxonomy identification and English revision. A.A., C.S. and M.C. contributed to oxygen isotope analysis. F.C. contributed to the diatom-based transfer function. C.V.C contributed to the lake water modeling experiment. A.N.Y. and F.S. prepared the original manuscript and all authors contributed to the discussion of results and commented on the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by a grant from the LEFE/INSU/CNRS program ‘COMPLIAD’ project. This work is part of the PhD thesis research by A.N. Yacoub (Aix-Marseille University) supported by the French Embassy in Chad and the IRD (Institut de Recherche pour le Développement) through the ARTS program. Frank Darius, Michèle Dinies and Philipp Hoelzmann were supported by a grant from the DFG priority program SPP2143 “Entangled Africa” (project number 404354295). Special thanks to Dr Baba Mallaye, Director of the CNRD (Centre National de Recherche pour le Développement), N’Djamena, Chad, for his steady administrative backing and logistic contributions during fieldwork. We thank the anonymous reviewers for their constructive comments. We also thank P. Chaurand, D. Borschneck and Y. Gally for providing assistance with Micro-XRF, XRD and SEM at CEREGE (France).

