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Abstract

Growing evidence indicates that only a sparse subset from a pool of sensory neurons is

active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such

biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its

convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we

use biological vision as a test-bed and show that the soft thresholding operation associated

to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approxi-

mating ℓp with 0� p < 1 (including recently proposed continuous exact relaxations), in terms

of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a

higher degree of overcompleteness, in order to maintain the same reconstruction error as

the other methods considered. More specifically, at the same sparsity level, the thresholding

algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units com-

pared to the proposed approach, where a non-convex continuous relaxation of the ℓ0
pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity

level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes sim-

ilar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization

shows approximately five times better reconstruction of the stimulus. Our results in conjunc-

tion with recent metabolic findings indicate that for V1 to operate efficiently it should follow a

coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than

the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.

Author summary

Recordings in the brain indicate that relatively few sensory neurons are active at any

instant. This so called sparse coding is considered a hallmark of efficiency in the encoding

of natural stimuli by sensory neurons. Computational works have shown that if we add

sparse activity as an optimization term in a generative model encoding natural images

then the model will learn units with receptive fields (RFs) similar to the neurons in the pri-

mary visual cortex (V1). Traditionally, computational models have used the ℓ1 norm as

the sparsity term to be minimized, because of its convexity and claims of optimality. Here

we show that by using sparsity inducing regularizers that approximate the ℓ0 pseudo-
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norm, we get sparser activations for the same quality of encoding. Moreover, for a certain

level of sparsity, both ℓ0 and ℓ1 based generative models produce RFs similar to V1 biolog-

ical neurons, but the ℓ1 model has five times worse encoding performance. Our study thus

shows that sparsity-inducing regularizers approaching the ℓ0 pseudo-norm are more

appropriate for modelling biological vision from an efficiency point of view.

Introduction

Sensory neurons produce a variable range of responses to stimuli, the most frequent one being

inactivity [1, 2]. To explain this, Horace B. Barlow hypothesized that the task of sensory neu-

rons is not only to encode in their activity an accurate representation of the outside world, but

to do so with the least possible number of active neurons at any time [3]. Since then, growing

experimental evidence across species and sensory areas has confirmed these claims of sparse

activity [4–8].

Using Barlow’s hypothesis as an optimization principle, Olshausen and Field showed that a

neural network equipped with a learning algorithm that is set to reconstruct natural images

with sparse activity constraints develops units with properties similar to the ones of receptive

fields (RFs) of simple cells in the primary visual cortex (V1), i.e. they are bandpass, oriented

and spatially localized [9]. The model proposed by the authors belongs to the family of genera-

tive algorithms which represent a stimulus as a linear combination of units taken from an

overcomplete dictionary, i.e. a set of vectors with more basis vectors than the dimension of the

stimuli. In the context of V1, the vectors from the dictionary and their accompanying coeffi-

cients correspond to the neurons’ RFs and activities, respectively.

Computationally, overcompleteness comes with a number of advantages: the input can be

in a compressed form [10], the emerging vectors in the overcomplete dictionary are shiftable,

and transformations of the input image such as rotations or translations can be represented by

smooth changes in the coefficients [11]. Experimental findings in the macaque show that over-

complete dictionaries reflect the expansion of neurons in layer 4Cα of V1 compared to the lat-

eral geniculate nucleus (LGN) input to that area; approximately, 30 LGN neurons send their

axons to a V1 hypercolumn containing about 3000 excitatory and 1000 inhibitory neurons

[12–14].

A sparse approximation aims to find a linear combination of the dictionary vectors that has

few nonzero coefficients but also adequately represents the input signal. Ideal sparse approxi-

mation requires the minimization of the noncontinuous and nonconvex ℓ0 pseudo-norm,

which counts the number of nonzero coefficients, combined with some data fitting term.

However, this problem is NP-hard, as its solution requires an intractable combinatorial search

[15, p.418]. Greedy pursuit methods are practical solutions which bear resemblance to neural

spiking processes [16], yet their efficiency can be improved. In many applications, the ℓ0

pseudo-norm has been replaced with its convex relaxation, the ℓ1 norm, defined as the sum of

the absolute values of the coefficients. The use of the ℓ1 relaxation has become widespread in

sparse coding, due to its convexity, and since under certain conditions [17, 18] solutions of the

ℓ1-penalized sparse coding problem coincide with the ones making use of ℓ0 regularization. In

general, however, ℓ1-based models show inferior results in terms of sparsity [19, 20].

Over the last decade, advances in optimization theory and in the field of compressed sens-

ing [21] have provided several tools allowing for the replacement of the ℓ0 pseudo-norm with

tractable functions approximating it. The use of such approaches provides solutions for many
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perceptual and behavioral tasks that are in line with the energy constraints in the brain, unlike

exact solutions that need perfect prior knowledge and costly computations [22].

In this work, we examined different sparse coding algorithms relying on the use of tighter

thresholding functions associated to the use of ℓp penalties, with 0� p< 1. We found that

their solutions induce sparsity to a greater extent compared to the ℓ1 method (soft threshold-

ing, also called ISTA) while they maintain the same reconstruction of the signal. As a further

penalty we used the Continuous Exact ℓ0 relaxation (CEL0) [23] which produced the sparsest

codes.

We then analyzed the RFs learned by the resulting sparse coding algorithms and compared

them with each other and with the RFs found in the visual cortex of non-human primates. We

found that all algorithms yield localized oriented RFs. As we increased the degree of overcom-

pleteness, we found that most units shifted from sharp orientation selectivity to a broader one.

In a setting where different sets of neurons with variable numbers act as separate modules

(with different degrees of overcompleteness each) reconstructing in their totality many times

over the external world, the generative model could explain the broad orientation selectivity of

neurons in V1 [24, 25]. In accordance with the oblique effect and its representation in the

visual cortex [26, 27], we found a preference towards the vertical orientation both in terms of

overrepresentation and increased sensitivity of RFs tuned to it.

In terms of performance, when keeping sparsity constant for all methods, we found that

soft thresholding requires a dictionary of 10 times more units to reconstruct the input image

patch as well as CEL0. The other methods considered, relying, e.g., on ℓ1/2 minimization [28]

and on hard thresholding [29] are inferior to CEL0 in terms of reconstruction performance

but still superior to soft thresholding.

By definition, ℓ1 regularization employed by soft thresholding limits the absolute sum of

activations rather than the number of active neurons [9, 30]. Recent results on the metabolic

expenditure of neurons have indicated that a regime with few neurons firing vigorously (akin

to ℓ0 regularization) is far more energy efficient than one with more neurons firing at a lower

rate (ℓ1 regularization) [31]. This is corroborated by a recent study on mice showing that natu-

ral images could be decoded from a very small number of highly active V1 neurons, and that

diverse RFs ensure both reliable and sparse representations [32].

In our work we show that at a specific sparsity level both ℓ0-type and ℓ1 regularizers can

learn RF shapes similar to V1 biological cells [33], mostly round or slightly elongated. But, for

this sparsity level, CEL0 has approximately five times better reconstruction performance of the

external stimulus compared to the ℓ1 regularizer (ISTA). Our results indicate that ℓ0 based reg-

ularization is more appropriate for the visual cortex to operate efficiently.

Materials and methods

Image dataset and preprocessing

From the van Hateren’s database [34], we used for our tests a selection of 137 natural images

that did not contain artificially created structures neither significant blur [35]. We performed

the same preprocessing stage described in [36]: first, we rescaled all images separately between

zero and one, then we normalized them by subtracting and dividing each pixel value by the

image mean and standard deviation respectively. The resulting zero mean, unit variance

images were then passed through a whitening filter in order to emulate the response of retinal

ganglion cells. The images were finally rescaled such that they have a variance of 0.1. This

value serves as a baseline error, i.e. the mean square error (MSE) of a preprocessed image with

an image with only zero pixel values (produced when all the coefficients of a neural code are

zero). S1 Fig shows examples of raw and preprocessed images.
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Sparse coding generative models

Model setup and cost function. According to the linear generative model of Olshausen

and Field [9], an image I 2 RM is described as a linear combination of vectors ð�iÞ
N
i¼1

with

�i 2 R
M

for all i. The vectors ð�iÞ
N
i¼1

are stored column-wise in a matrix F 2 RM�N
. The scalar

coefficients of such linear combination are collected in a vector r 2 RN
and an additive white

Gaussian noise component n 2 RM
with n � N ð0; s2IdÞ is added to model perturbations and

uncertainty:

I ¼ Fr þ n ¼
XN

i¼1

ri�i þ n: ð1Þ

We consider features (columns) of F to form an overcomplete dictionary, i.e. N�M. Con-

sequently, the inverse problem of finding r given I in (1) becomes ill-posed since r may have

an infinite number of possible solutions. To impose well-posedness, Olshausen and Field [9]

considered a sparse regularisation approach, defined in terms of the energy function:

Eðr;FÞ≔
1

2
kI � Frk2

2
þ l �

XN

i¼1

cðriÞ: ð2Þ

While the first term in (2) pushes towards the preservation of stimulus information, the sec-

ond term acts as regularization imposing a penalty on activity with the relative weight of the

two competing tasks being controlled by a parameter λ> 0. The regularization term

CðrÞ≔
PN

i¼1
cðriÞ is a sparsity-promoting penalty that ideally encourages the number of active

units to be as few as possible. For that, one would like to choose as c(�) the so-called ℓ0 pseudo-

norm of z which costs 1 whenever z 6¼ 0 and 0 otherwise: c(z) = kzk0, with z 2 RN . However,

as shown rigorously in several mathematical works (e.g., [37]) such choice makes the problem

of minimising E in (2) NP-hard. A standard strategy, used in several sparse coding approaches,

relies on the use of the convex and continuous ℓ1 norm as a relaxation, i.e., c(z) = |z| for z 2 R.

Under suitable conditions on the matrix F, such choice guarantees indeed that the solution

computed is equivalent to the one corresponding to the ℓ0 pseudo-norm. The use of the ℓ1

norm is in fact established in the field of compressed sensing and sparse signal/image process-

ing [38].

For general choices of c(�), the problem of finding both optimal sparse codes r* (coding

step) and feature vectors F* for the given input stimulus I (learning step) can be formulated as

the problem of minimizing the energy function E with respect to both r and F, i.e:

ðr∗;F∗Þ 2 arg min
r2RN ;F2RM�N

Eðr;FÞ:
ð3Þ

In the following, we use an alternating minimization (see, e.g., [39]) to solve the problem

above. Below, we thus make precise the general approach for solving the coding and learning

steps. Subsequently, we consider few cost functions promoting sparsity in different ways.

Coding step. Our objective is to minimize the composite function E(r, F) in (2) which is

defined as the sum

Eðr;FÞ ¼ f ðr;FÞ þ lCðrÞ; ð4Þ

with f : RN
� RM�N

! Rþ being convex and differentiable with L-Lipschitz gradient w.r.t.

both variables and C : RN
! Rþ being convex, proper and lower semi-continuous, but, gener-

ally, non-smooth. As far as the coding step is concerned, we then need an algorithm solving
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the structured nonsmooth optimisation problem (3) w.r.t. r. A standard strategy for this is to

use the proximal gradient algorithm (see [40] for a review). For a given step-size μ 2 (0, 1/L],

x0 2 R
N

, �F 2 RM�N
and t� 0, such algorithm consists in the alternative application of the two

steps:

• Gradient step: rtþ1 ¼ rt � mrf ðrt; �FÞ;

• Proximal step: rt+1 = proxμ,λC(rt+1),

where the proximal operator associated to the function λC(�) and depending on the step-

size parameter μ is defined by:

prox
m;lCðzÞ ¼ arg min

y2RN
lCðyÞ þ

1

2m
ky � zk2

¼ arg min
y2RN

CðyÞ þ
1

2lm
ky � zk2

¼ prox1;mlCðzÞ; z 2 RN
:

ð5Þ

It is common to denote by Tμλ(z) the thresholding operation corresponding to proxμ,λC(z),

which sets to zero the components of z which are too large depending on a certain threshold-

ing rule defined in terms of the choice of C and the thresholding parameter μ.

Note that during coding, the vectors in �F are kept fixed, so that the algorithm seeks the

optimal activations for the given input image patches.

Learning step. During learning, the matrix F 2 RM�N
is updated so that it is optimal in

reconstructing the input I as accurately as possible. The learning step is thus obtained by mini-

mizing (2) w.r.t. F, by considering gradient-type iterations. This step is easier since F appears

only in the smooth data fit term and not in the cost term.

Learning is then obtained for all t� 0 via the iterative procedure:

Ftþ1 ¼ Ft þ ZrðI � FtrÞ; ð6Þ

where η> 0 is the learning rate whose size has to be small enough to guarantee convergence.

Note that, although such update of F does not depend explicitly on the particular choice of the

cost function considered, it depends nevertheless on the current estimate of the coefficients r
which, in turn, depend on the particular choice of C and, consequently, Tμλ. During each

learning step, we impose the norms of the current iterateFk to be equal to 1, though other nor-

malization mechanisms could be explored [41].

Thresholding operators

For different choices of the component-wise cost functions c : R! Rþ, different thresholding

rules are derived. We consider below some particular choices of c, plotting them in Fig 1A for

comparison. For each choice, we then report the corresponding explicit thresholding operator

which sets to zero coefficients with small magnitudes, see Fig 1B for an illustration. As a tech-

nical note, we remark that in definition (5) we assumed the function C to be convex, so that

the minimizer of the functional is uniquely defined due to the strong convexity of the compos-

ite function. A large class of the cost functions considered below, however, are not convex,

hence definition (5) still holds, but with a 2 sign in place of the equality one, since the set of

minimizers may not be a singleton.

The iterative soft thresholding algorithm (ISTA). For c(ri) = |ri| for all i = 1. . ., N spar-

sity in (2) is obtained by considering as regulariser the function C(r) = λkrk1 which, from an
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algorithmic viewpoint, corresponds to the iterative soft thresholding algorithm (ISTA) as an

algorithmic solver [29, 42]. Thanks to the separability of the ℓ1 norm, the proximal operator

can be computed component-wise [43]. Setting θ≔ μλ> 0 and Sθ(�)≔ Tθ(�), it holds that for

all i = 1, . . ., N:

Syðr∗i Þ ¼

r∗i � y ðr∗i > yÞ

0 ð� y � y � yÞ

r∗i þ y ðr∗i < � yÞ:

8
><

>:
ð7Þ

Such operation is typically known in literature under the name of soft thresholding operator

due to its continuity outside the vanishing thresholding region.

The iterative half thresholding algorithm. To favour more sparsity than the ℓ1 norm, a

natural improvement consists in using the ℓp (0< p< 1) pseudo-norm, i.e. setting c(ri) = |ri|q.
However, such choice makes the optimization problem (2) nonsmooth and nonconvex and, in

general, prevents from using fast optimisation solvers. One exception to this is the case when

ℓ1/2 regularization is used. Xu and colleagues showed in [28] that an iterative half thresholding

algorithm can solve the problem of minimising the ℓ1/2 pseudo-norm with an ℓ2 data fit term

with the algorithm converging to a local minimizer in linear time [44]. Using analogous nota-

tion θ = λμ as before and denoting by Xθ,1/2(�) the thresholding operator Tθ, thresholding can

still be performed component-wise as follows:

Xy;1=2ðr∗i Þ ¼
fy;1=2ðr∗i Þ; jr

∗
i j >

ffiffiffiffiffi
543
p

y
2=3

0; otherwise;

(

ð8Þ

Fig 1. Sparsity-promoting cost functions c considered and their corresponding thresholding operators. A: Plot of 1D cost functions c : R! Rþ considered. B:

Corresponding thresholding operators.

https://doi.org/10.1371/journal.pcbi.1011459.g001
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where:

fy;1=2ðr∗i Þ ¼
2

3
r∗i 1þ cos

2p

3
�

2

3
cyðr

∗
i Þ

� �� �

ð9Þ

and

cyðr∗i Þ ¼ arccos
y

8

jr∗i j
3

� �� 3=2
 !

: ð10Þ

Despite its complex form, the thresholding function (8) is still explicit, hence its computation

is very efficient.

The iterative hard thresholding algorithm. The iterative hard thresholding algorithm

has been introduced firstly in [29] to overcome the NP-hardness associated to the minimiza-

tion of the ideal problem:

arg min
r2RN

E‘0ðrÞ ¼ kI �
�Frk2

2
þ lkrk

0
; ð11Þ

for �F 2 RM�N . The idea consists in considering the following surrogate function defined for

r; z 2 RN
as:

ES
‘0
ðr; zÞ≔ kI � �Frk2

2
þ lkrk

0
� k�Fr � �Fzk2

2
þ kr � zk2

2
; ð12Þ

for which there trivially holds E‘0ðrÞ ¼ ES
‘0
ðr; rÞ for all r 2 RN

. One can show that (12) is a

majorizing functional for (11), that is, for a given �z 2 RN , E‘0ðrÞ � ES
‘0
ðr; �zÞ for all r 2 RN and

there holds E‘0ð�zÞ ¼ ES
‘0
ð�z; �zÞ. In other words, minimizing (12) with respect to r can thus be

seen as a strategy to minimize (11) by choosing at each step t of the iterations �z ¼ rt , that is the

estimate of the desired solution at the previous step. The derived thresholding operator is here

denoted by Hθ(�) and performs element-wise hard thresholding following the rule:

Hyðr∗i Þ ¼
0; jr∗i j �

ffiffiffi
y
p

r∗i ; otherwise:

(

ð13Þ

A continuous exact ℓ0 penalty (CEL0). As a further sparsity-promoting regularization,

we consider the non-convex Continuous Exact relaxation of the ℓ0 pseudo-norm (CEL0), thor-

oughly studied, e.g., in [23]. Such choice can be thought of (as it is rigorously proved in [45])

as the inferior limit of the class of all continuous and non-convex regularizations of the ℓ0

pseudo-norm with the interesting additional properties of preserving the global minimizers of

the ideal ℓ2-ℓ0 minimization problem one would need to solve, while reducing the number of

the local ones. For all i = 1, . . ., N and parameter λ> 0 such choice corresponds to considering

as cost functional:

CCEL0ðrÞ≔
XN

i¼1

cðk�ik; l; riÞ ¼
XN

i¼1

l �
k�ik

2

2
jrij �

ffiffiffiffiffiffi
2l
p

k�ik

 !2

þ

 !

; ð14Þ

where ϕi is the i-th column extracted from the matrix F and, for all z 2 R, the notation (z)+

denotes the positive part of z, i.e. (z)+ = max(0, z). The corresponding CEL0 thesholding
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operator is defined by:

Y
CEL0
m;l
ðr∗i Þ ¼

signðr∗i Þmin

(

jr∗i j;
ðjr∗i j �

ffiffiffiffiffiffi
2l
p

mk�ikÞþ

1 � k�ik
2
m

)

; k�ik
2
m < 1

r∗i 1jr∗i j>
ffiffiffiffiffi
2ml
p ðr∗i Þ þ f0; r

∗
i g1jr∗i j¼

ffiffiffiffiffi
2ml
p ðr∗i Þ; k�ik

2
m � 1;

8
>>><

>>>:

ð15Þ

where, note, μ and λ are here decoupled as the thresholding parameter is not their parameter

anymore but depends on μ only and, component-wise, by the norm of the column ϕi, i = 1,

. . ., N of F. While the operation of computing the quantities kϕik can be in principle costly

from a computational viewpoint, we remark that by construction, in our application F has

unit-norm columns, hence such computation is in fact not required.

A measure for orientation selectivity: Circular variance

To probe the orientation selectivity of each ð�iÞ
N
i¼1

vector (unit) estimated by the different

models above as well as to compare them with each other and with experimental data in

V1, we used the circular variance measure (V 2 [0, 1]) [24, 46, 47]. A unit with a zero cir-

cular variance responds only to a particular orientation; a unit with a circular variance of

one responds to all orientations equally. Values in between show some selectivity, with the

ones closer to one showing a broader orientation selectivity compared to the ones closer to

zero.

The circular variance of a vector ϕ is defined as V≔ 1 − |R| where R is:

R ¼
P

kake
i2yk

P
kak

; ð16Þ

with αk being the response of the unit at the orientation θk (θk goes from 0 to π in k = 36 equi-

distant steps). A plot of αk as a function of θk for a unit corresponds to its orientation tuning

curve.

We get the αk values for all θk orientations for a unit ϕi by first finding the spatial frequency

for which the unit responds the most. We do that by taking the inner product of ϕi with a bank

of sinusoidal gratings of different spatial frequencies, orientations, and phases. The grating giv-

ing the highest inner product value yields the optimal spatial frequency. We subsequently nar-

row down the gratings that we test, to the ones with the optimal spatial frequency. To then get

the unit’s orientation tuning curve (αk as a function of θk), we use for each orientation the

highest value from the inner products of ϕi with the subset of gratings of the same orientation

but different phase. We then proceed in estimating the circular variance for unit ϕi from Eq

(16). Examples of RFs generated by the thresholding algorithms and their corresponding ori-

entation tuning curves produced as outlined here are shown in S2 Fig.

We aim in the Results section to compare the sparse coding obtained by the different

choices of the thresholding functions. More specifically, we probe the relationship between

sparsity level and reconstruction performance at different dictionary sizes for each algorithm.

Moreover, as the coding step affects the learning step, we examine how the choice of the spar-

sity-promoting penalty affects the estimation of the RFs ϕ at convergence. Previously, it has

been shown that a highly overcomplete dictionary, or a very sparse code —for a dictionary

with fixed units— produces RFs with different functionalities [48, 49]. In the following tests,

we probe whether the different algorithms considered generate RFs that are close to biological

ones.
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Results

Sparsity of codes

We first compared the sparsity of the codes produced by the different thresholding algorithms,

each containing 500 units (* 2× degrees of overcompleteness). To make a fair comparison,

we adjusted the methods’ parameters λ and μ so that they all produce reconstructed images

with the same MSE (the values of the parameters are shown in S1 Table). We run the algo-

rithms for 4000 batches, with each batch containing 250 image patches. In all cases, the MSE

for the last 500 batches is about 0.021 (see Fig 2A for the mean values, and S3 Fig for the evolu-

tion of the MSE as a function of iterations, i.e. as we learn the ϕ vectors). As expected from pre-

processing, the baseline error, i.e. the MSE corresponding to the zero image when all units’

activations are zero, is 0.1. We found that for the same MSE, CEL0, ℓ1/2, and hard thresholding

algorithms produce sparser codes compared to ISTA, with ℓ1/2, and hard thresholding having

very similar activity distributions and CEL0 being the approach corresponding to the sparsest

solutions (Fig 2B). As expected, since ISTA aims to minimize the sum of the activations, its

units’ amplitude distribution has a smaller variance (spread from zero) compared to the other

methods (Fig 2C). We varied the λ parameter for all four thresholding algorithms so that we

test whether the sparsity difference between them holds in general. We found that consistently,

ISTA needs more active units to achieve the same reconstruction performance as the other

methods, with CEL0 providing the sparsest solutions (Fig 2D).

The vectors ð�iÞ
N
i¼1

are updated (learning step) at each iteration on a batch of image patches.

The different thresholding algorithms produce vectors ϕ that are not alike. We thus asked

whether the different thresholding algorithms considered have similar coding performances—

in terms of sparsity and reconstruction error—when they used a set of vectors ϕ that is differ-

ent from the one they would normally learn. We probed this question by using throughout the

coding steps a fixed dictionary F (we considered, in particular all dictionaries at convergence

of all four algorithms). We observed a sort of invariance property with respect to the dictionary

used: all thresholding algorithms show similar reconstruction error and distributions of activ-

ity independently of the dictionary used in coding (S4 Fig). This suggests that the cost function

landscape for learning the dictionaries has different local minima that are equally optimal.

We probed the reconstruction performance of the thresholding algorithms as we increased

their degree of overcompleteness, i.e. the number of units, while keeping the level of sparsity

relatively constant (see S5 Fig for the sparsity levels of the algorithms for different dictionary

sizes, and S2 Table for the parameters values for the different methods and number of units).

We found that the ℓ1 model needs approximately 5000 units to reach the reconstruction per-

formance of CEL0 for 500 units (Fig 3). We also observed that for dictionary sizes greater than

2000 units (i.e., greater than 8× degrees of overcompleteness) ℓ1/2 thresholding has a smaller

reconstruction error than hard thresholding, with both performing better than ISTA for any

dictionary size. CEL0 provides consistently the best reconstruction performance.

Learned dictionaries and their similarity with V1

Orientation selectivity of RFs. Experimental evidence indicates that neurons in V1 show

great variability in their orientation selectivity: some neurons respond to a narrow band

around a particular orientation, but most of them are responsive to a broader spectrum of ori-

entations [24, 25]. To examine the orientation selectivity of the vectors ϕ produced by each

thresholding algorithm and draw comparisons with experimental data, we used the circular

variance measure ([24, 46, 47]). For this and subsequent analyses, unless otherwise stated, we

use 500 units with the parameters shown in S1 Table). We found that all thresholding
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algorithms show a similar distribution with a peak at low circular variance values (sharp orien-

tation selectivity), with the only minor difference being that the peak of the CEL0 distribution

is slightly shifted to higher circular variance values (Fig 4A). Populations of V1 neurons in the

macaques do not show a sharp peak for low circular variance values but rather a more uniform

Fig 2. CEL0, and to a lesser extent, ℓ1/2, and hard thresholding produce sparser codes than ISTA. A: MSE between the reconstructed and the actual image for the

last 500 batches as a function of the thresholding method. B: Distribution of activity of the units for the image stimuli presented. The middle of the vertical lines

represent the mean number of active units per image patch, their length the standard deviation. C: Distribution of the amplitudes of the active units D:MSE as a

function of the number of active units. To get these data points we varied the λ parameter for each algorithm.

https://doi.org/10.1371/journal.pcbi.1011459.g002
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distribution across small and large values (Fig 4A; data taken from [24]). We subsequently

asked whether the orientation tuning distribution generated by the models is dependent on

their degree of overcompleteness. To answer that, we performed the same analysis for 2000

units (* 8× degrees of overcompleteness). We adjusted the λ parameter for CEL0 so that it

will have the same sparsity as in the 500 units case; we tuned λ for the rest of the methods so

that they have the same MSE as CEL0. We found that the orientation tuning curves become

more broad as indicated by a shift in the peaks of the circular variance histograms to the right

Fig 3. CEL0 and, to a lesser extent, ℓ1/2, and hard thresholding have better reconstruction error than ISTA for all

dictionary sizes tested (from approximately 2 to 20 degrees of overcompleteness). MSE of the different

thresholding methods for several dictionary sizes. The parameter λ has been adjusted for each dictionary size and

algorithm so that the sparsity level is approximately stable (see S5 Fig). Each time we run 1600 batches of 250 image

patches (in total 400000 patches), and took the mean and standard deviation of the reconstruction error of the last 100

batches.

https://doi.org/10.1371/journal.pcbi.1011459.g003

Fig 4. In contrast to macaque V1 neurons that have a uniform circular variance distributions, the units of all thresholding

algorithms show a distinct peak in their circular variance distribution that shifts to the right (more broadly tuned neurons)

as the units in the dictionary increase. Distribution of circular variance values for the ϕ learned by the different thresholding

algorithms (the area in all cases was normalized to sum to 1) with V1 experimental data from [24] included for A: 500 units and B:

2000 units.

https://doi.org/10.1371/journal.pcbi.1011459.g004

PLOS COMPUTATIONAL BIOLOGY Beyond ℓ1 sparse coding in V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011459 September 12, 2023 11 / 21

https://doi.org/10.1371/journal.pcbi.1011459.g003
https://doi.org/10.1371/journal.pcbi.1011459.g004
https://doi.org/10.1371/journal.pcbi.1011459


with CEL0’s histogram being more flattened (Fig 4B). Our results indicate that as the degree of

overcompleteness of the units increase, their RFs become on average more broad. For both

degrees of overcompleteness, however, the distributions show a distinct peak, in contrast to

the more homogeneous distribution shape of the experimental data. Assuming that the experi-

mental data is an unbiased sample of V1 simple neurons, our results show that the generative

model, irrespective of the regularization used, produces units that correspond to a subset of

the actual V1 neurons.

Perceptually, visual stimuli are better resolved when they are presented in the cardinal ori-

entations —either horizontal or vertical— as opposed to oblique ones [50]. This behavioural

oblique effect has been suggested to emerge in part due to the over-representation of simple

cells in V1 that respond to cardinal orientations as shown by single unit recordings [26, 27],

optical imaging [51] and fMRI [52]. Moreover, single unit recordings indicate that cardinal

orientations have narrower orientation tuning curves [27]. Our results for 500 units agree with

the experimental findings most prominently for the vertical orientation (π/2). We find that the

proportion of vectors ϕ responding maximally to the vertical orientation is the highest com-

pared to all the other orientations (Fig 5A), and that this subset has vectors with the narrowest

orientation tuning curves as indicated by their circular variance values (Fig 5B).

Sparsity-induced variability of RFs. Visual inspection of the RFs generated by the differ-

ent thresholding algorithms for 500 units suggests that they are not alike (Fig 6A and 6B show

a sampling of the RFs for CEL0 and ISTA, S6, S7, S8 and S9 Figs the full set of 500 units for

each algorithm). In particular, we see that CEL0 produces RFs with greater variability of shapes

compared to the other methods. Here, we first focus on a comparison between the RFs pro-

duced by CEL0 and ISTA, and subsequently with biological neurons.

To probe the shapes of the RFs, we fitted the ϕ vectors with Gabors using maximum likeli-

hood. We found that the shapes of the RFs as represented by the widths of the Gaussian enve-

lopes along the axes parallel and orthogonal to the gratings showed greater variability for

CEL0 compared to ISTA (Fig 7A). CEL0 contained most of its data points near the origin with

Fig 5. The largest number of ϕ vectors responding maximally to a particular orientation are the ones with a preference towards the vertical orientation, with this

subset also showing the sharpest orientation tuning (as indicated by their circular variance). A: Polar plots of the proportion of ϕ vectors responding maximally to an

orientation for ISTA, CEL0, ℓ1/2, and hard thresholding. B: Polar plots of the mean circular variance of ϕ vectors binned according to their preferred orientation.

https://doi.org/10.1371/journal.pcbi.1011459.g005
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ISTA having them exclusively there. That region on the graph points to shapes that are either

circular or slightly elongated. Visual inspection of the RFs near the origin indicates a distinc-

tive difference between CEL0 and ISTA: CEL0 contains RFs that are reminiscent of the differ-

ence of Gaussian filter that typically models retinal and LGN cells (Fig 6A first row), but also

found in V1 [33, 53], while ISTA does not (Fig 6B first row). CEL0 also contains RFs with long

widths either along the axis parallel or orthogonal to the enveloped grating irrespective of the

Fig 6. Sampling of RFs of different aspect ratios from our thresholding algorithms and recordings on macaques’

V1 and V2. A: Sampling of RFs generated by CEL0. As we go down the rows their aspect ratio (defined as the width

(SD) of the Gaussian envelope parallel to the axis of the Gabor over the width orthogonal to it) increases. The same RF

organization applies to the rest of the Figures. B: RFs generated by ISTA. C: RF subunits from electrophysiological

recordings in V1. D: Same as (C) for V2 (data courtesy of Liang She).

https://doi.org/10.1371/journal.pcbi.1011459.g006
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size of their paired width (Fig 7A). These regions on the graph point to elongated shapes (Fig

6A third and fourth row) mostly absent for ISTA.

We subsequently ask whether the degree of sparsity is the determining factor in the differ-

entiation of a homogeneous set of RFs into a more variable one with RFs with different func-

tions. To test that, we set the λ parameter of ISTA so that it codes image patches with the same

number of active units on average as CEL0, and compare the two sets of RFs. We refer to this

choice as sparse ISTA (compare in Fig 8 the abscissas of sparse ISTA and CEL0). We found

that, unlike its original instance (Fig 7C), sparse ISTA becomes as variable in its distribution of

shapes as CEL0 (Fig 7B). Note that in order to gain this variability, sparse ISTA degraded sig-

nificantly its reconstruction capacity, having a MSE approximately 3 times worse than the

original instance of ISTA and of CEL0 (Fig 8). We also expected that CEL0 would lose the vari-

ability in its RFs if it became less sparse. To test that, we set the λ parameter of CEL0 so that on

average it codes with the same number of active units as the original instance of ISTA (we call

this version dense CEL0; compare in Fig 8 the abscissas of ISTA with dense CEL0). We found

that dense CEL0 loses most of its RF variability, but still contains some RF widths away from

the origin (Fig 7C). The latter result indicates that the degree of sparsity is a determining factor

in the variability of the RFs produced, but there could also be something intrinsic in the algo-

rithms that is a factor as well.

To probe at which sparsity level the generated RFs best fit with the experimental data, we

compared them with V1 and V2 RF subunits of macaque monkeys acquired from single-unit

recordings while the monkeys performed a simple fixation task and random grayscale natural

images were shown [33]. The authors therein used projection pursuit regression to associate

each neuron with one or more subunits (filters); the firing rate of a neuron was estimated by a

linear-nonlinear model where the image stimulus was passed through each of the subunits

associated with the neuron separately. These outputs were then transformed through a nonlin-

earity and finally summed. We fitted the subunits with Gabors (we excluded subunits that

were below a goodness of fit r2 threshold of 0.6, keeping 119 V1 and 171 V2 subunits; not tak-

ing into account V2 subunits showing complex selectivity) and plotted the widths of their

Fig 7. Spatial properties of RFs generated by thresholding algorithms and in macaques’ V1 and V2. A: Width (SD) of the Gaussian envelope along the parallel axis of

the Gabor as a function of the width orthogonal to it (both normalized by the Gabor’s period) for the fits of the RFs generated by ISTA and CEL0. B: Same as (A) for

CEL0 and an instance of ISTA with the same sparsity level as CEL0 (sparse ISTA). C: Same as (A) for ISTA and an instance of CEL0 with the same sparsity level as ISTA

(dense CEL0). D: Same as (A) for the RF subunits from recordings in macaque V1 and V2.

https://doi.org/10.1371/journal.pcbi.1011459.g007
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Gaussian envelopes to asses their shape. We found that most V1 and V2 subunit widths are

located near the origin (Fig 7D) and best fit with the RF shapes of ISTA and dense CEL0 (Fig

7C). For this sparsity level, dense CEL0 has approximately five times better reconstruction per-

formance than ISTA (Fig 8).

We note by visual inspection that a few biological V1 and V2 subunits have a similar shape to

retinal ganglion and LGN neurons, best modelled by a difference of Gaussian model (Fig 6C

and 6D). Our previous analysis does not capture this type of RF, but we can observe it for both

CEL0 (Fig 6A first row) and sparse ISTA. For this sparsity level, CEL0 has approximately three

times better reconstruction performance than sparse ISTA (Fig 8). Our analysis shows that even

though both ℓ0 and ℓ1 based regularization can produce RFs akin to V1 neurons, CEL0 provides

a far superior reconstruction performance at any sparsity level and dictionary size. We argue

that this robustness is more likely to characterize neural processing in the visual cortex.

Discussion

We have shown here that continuous, non-convex thresholding-based algorithms produced

much sparser activations for the same reconstruction error compared to the classically used

soft thresholding algorithm, ISTA, corresponding to the convex ℓ1 regularizer. When the same

level of sparsity for all algorithms is maintained, CEL0 had the best reconstruction performance

for all the dictionary sizes tested (from* 2× to* 20× degrees of overcompleteness). Further-

more, to reach the same performance as CEL0, ISTA needed about 10 times more units.

By considering the circular variance measure, we found that all algorithms produce RFs

that represent a subset of V1 neurons in terms of orientation tuning sharpness, but as we

Fig 8. Control for probing the effect of sparsity on the RFs. MSE values computed between the reconstructed and

the actual image for the last 500 batches as a function of the mean number of active units for two instances of ISTA and

CEL0. Horizontal lines indicate the standard deviation of the mean number of units, vertical the standard deviation of

the MSE.

https://doi.org/10.1371/journal.pcbi.1011459.g008
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increased the number of units available, most of them became broader in their orientation

selectivity. Thus, in principle, different pools of neurons, each encoding separately the external

world, could represent the whole gamut of orientation selectivities found in V1 [53]. This is

supported by experimental evidence showing that V1 neurons are divided into several pools

with different objectives following diverging visual streams [54–56], with these pools being

divided further into different sub-pools, each representing the whole visual space, though

there may be some overlap in their populations [57]. Furthermore, all algorithms replicated

the cardinal orientation bias found in V1 [26, 27]: they have a disproportionally larger number

of units responding to vertical orientations with those units on average being more sharply

tuned compared to the rest.

We found that the RF shapes of V1 (and V2 subunits) are contained in both RF sets of

ISTA and CEL0 at a specific sparsity level, and are mostly circular or slightly elongated [33].

In a previous computational study [30], Rehn and Sommer found a contrasting result to

ours, i.e. a generative model that used soft sparsity (similar to ℓ1 regularization) with learned

RFs whose shapes did not fit well with the ones of V1 neurons recorded from macaques [53].

The authors showed that an improved model enforcing stronger sparsity did. The V1 neu-

rons used in that study [53] had similar width distributions as the V1 (and V2) subunits we

used [33], with most of the points being near the origin. We speculate that the discrepancy

in the results are either because of differences in the type of optimization considered or

because today’s computational resources afforded us to examine a wider range of sparsity

levels for each method (by varying the weighting of the regularization controlled by the λ
parameter) compared to [30].

Sparsity produces secondary effects in V1, such as orientation selectivity and variability in

the RFs of neurons. This appears to be a common strategy in the brain. For example, it is

shown computationally that homeostatic processes, which aim to balance the activity in the

brain, also generate neural networks that endow context sensitivity to RFs [58], and connectiv-

ity patterns with different degrees of specificity, flexibility, and robustness [59].

Efficient coding can be formulated as a generative probabilistic model that aims to describe

natural images’ complex probability distributions as linear combinations of the units vectors

(RFs) with the weighting of the linear combination given by the vector of coefficients, r, repre-

senting the underlying causes of an image. This probabilistic formulation yields the same

energy function as in (2), with the regularization function on activity (that defines each thresh-

olding algorithm), being interpreted as the prior distributions of activities, r [30, 36, 60]. The

prior distributions are highly peaked at zero [36] where in non-convex regimes, they change

from Laplace-type to Dirac-like [30]. The activations associated to each unit are assumed to be

independent of each other in line with Barlow’s proposal that the sensory cortex performs a

redundancy reduction operation that results in statistically independent activations of neurons

[61]. Another class of models that follows Barlow’s proposal is independent component analy-

sis (ICA) which finds the statistically independent components of natural images yielding

localized edge detectors as well [62].

Our iterative thresholding implementations of the coding step are closely related to neurally

plausible architectures [63, 64]. More specifically, similarly to these architectures our imple-

mentation includes in the gradient step a local competition term, where active units inhibit

other units with similar RFs, and an excitatory input current term that is proportional to how

well the input image matches with the RF of the unit. The thresholding operation of the inter-

nal states in [63, 64] takes the form of the proximal operator in our case. Finally, as in [63, 64],

we let the units’ activities charge up from zero. Due to the inhibition term, the iterative coding

operation pushes for concurrent activation of units whose features (RFs) yield pairwise inner

product values at or close to zero. In accord to our implementation, neural networks with
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recurrent competition inducing lateral inhibition between units have been shown to be more

robust against noisy stimuli and adversarial attacks compared to feedforward topologies [65].

If we assume that units’ activations map monotonically to action potentials and that the

number of action potentials is the sole indicator of energy expenditure, then ℓ1 regularization

can be considered optimal in terms of energy efficiency. Thus in principle, if that was the case

there would be some kind of load balancing implemented in the brain where many neurons

firing at low rates would encode the outside world. In contrast, ℓ0 regularization corresponds

to a regime where encoding of a stimulus happens by few neurons firing vigorously. The load

balancing hypothesis implemented by ℓ1 regularization runs counter to recent results showing

that neural communication consumes 35 times more energy than computation in the human

cortex [31]. This indicates that neurons must relay sufficient bits per second to other neurons

to justify the cost of communication. In this context, ℓ1 regularization is a very costly commu-

nication system since more neurons (compared to ℓ0 regularization) are employed for encod-

ing and relay of information. Experiments on sensory coding where few neurons firing

consistently can represent robustly the stimuli corroborate these results (see [32] for a recent

work).

Supporting information

S1 Fig. Examples of raw and whitened images. First row shows examples of raw images from

the van Hateren database. Second row shows the corresponding whitened images used in the

generative model.

(EPS)

S2 Fig. RFs overlaid by their orientation tuning curves. The most frequently used ϕ vectors

from each thresholding method for the analysis in Fig 2 (500 units) overlaid by their orienta-

tion tuning curves.

(EPS)

S1 Table. Values of learning rate r, μ, and relative weight, λ, for the different algorithms

for 500 units. The learning rate forF, η, in all cases is 10−2. For all algorithms the learning

rates were constant.

(PDF)

S3 Fig. All thresholding algorithms show a sharp decrease in MSE after just a few batch

iterations. MSE between the reconstructed and the actual image as a function of iterations of

batches for the different thresholding algorithms.

(EPS)

S4 Fig. Sparsity and reconstruction error are not affected by the F dictionary used for cod-

ing. A: (left figure) MSE of the last 500 iterations as a function of the thresholding method

when FISTA is used as a dictionary. (right figure) Distribution of activity of the units for the

image stimuli presented when FISTA is used as a dictionary. B: Same as (A) forFCEL0 as fixed

dictionary C: Same as (A) for F‘1=2
as fixed dictionary D: Same as (A) for FHard as fixed dictio-

nary.

(EPS)

S2 Table. Values of the λ parameter for the different algorithms and number of units. For

ISTA, ℓ1/2, and hard thresholding, the values for μ, are the same for the different number of

units and as shown in S1 Table. For these three algorithms, the learning rate is also constant.

For CEL0, μ, is 0.05 from 500 to 3750 units, and 0.04 afterwards while η is 5 × 10−3 for all dic-

tionary sizes. For CEL0, the learning rates decay with iterations based on a time-based decay

PLOS COMPUTATIONAL BIOLOGY Beyond ℓ1 sparse coding in V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011459 September 12, 2023 17 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011459.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011459.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011459.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011459.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011459.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011459.s006
https://doi.org/10.1371/journal.pcbi.1011459


schedule, with decay rates for both learning rates being their initial values divided by 50.

(PDF)

S5 Fig. Sparsity was constrained in a narrow window for all the dictionary sizes. Normal-

ized proportion of active units for the different number of units tested. The normalized pro-

portion of active units is defined as the average number of active units for an image patch over

the total number of units in the dictionary. The values taken by the parameter was between

0.0105 and 0.0132. Vertical lines indicate standard error from mean.

(EPS)

S6 Fig. 500 ϕ vectors learned from ISTA.

(EPS)

S7 Fig. 500 ϕ vectors learned from CEL0.

(EPS)

S8 Fig. 500 ϕ vectors learned from ℓ1/2 thresholding.

(EPS)

S9 Fig. 500 ϕ vectors learned from hard thresholding.

(EPS)
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