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Abstract

Depth from focus is a simple and effective methodol-
ogy for retrieving the scene geometry from a hologram
when used with the appropriate focus measure and
patch size. However, fixing those parameters for every
sample may not be the right choice, as different scenes
can be composed with various types of textures. In this
work, we propose a self-supervised learning methodol-
ogy for fusing the depth maps produced using differ-
ent focus measures with variable patch sizes applied to
the holographic reconstruction volume. Experimental
results show that fusing depth information produces
more accurate and smoother depth maps, which can
be directly used for alternative tasks such as motion
estimation.

Keywords : 3D Imaging, Holography, Depth Esti-
mation, Self-supervised learning, Depth from focus.

1 Introduction

Designing an efficient holographic video codec is still
an open problem in the current state of the art, due to
the lack of a fast and accurate motion estimation algo-
rithm. Indeed, traditional video codecs based on block-
matching are not appropriate for holographic data be-
cause there is no clear spatial correlation between con-
secutive frames [1]. To accurately estimate motion
from one frame to another, the scene geometry must
first be recovered to calculate the 3D motion vectors.

In [2], the authors demonstrated that the Depth-
From-Focus (DFF) [3–5] method is a simple and effec-
tive technique for retrieving the scene geometry when
implemented within a well-defined framework. This
technique involves building a reconstruction volume
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by performing a series of numerical reconstructions at
sampled distances. Then, the level of focus for each
pixel in the reconstruction volume is evaluated using
a Focus Measure (FM) on a patch centered around
the pixel, and the distance at which the pixel reaches
its optimal focus level is selected as its depth value.
Experimental results have shown that the focus mea-
sure and patch size significantly impact the precision
of the estimated scene geometry. Different focus mea-
sures may perform differently depending on whether
the input region is uniform or has high texture vari-
ation. Furthermore, the authors point out that, due
to the unique nature of holographic numerical recon-
struction, the focus curve can be subject to polarity
change when transitioning from uniform to textured
regions, depending on the reconstruction interval and
patch size. To address this issue, an automatic switch
between the global minimum and maximum of the fo-
cus curve is implemented. This allows for the handling
of polarity change and ultimately improves the final
performance.

Inspired by the latest breakthroughs in self-
supervised image denoising [6–10], we propose in this
paper an enhanced version of the automatic switch pro-
cess which determines the appropriate depth value us-
ing both local and global information. The method
involves extracting multiple depth maps from a re-
construction volume using various focus measures and
patch sizes, then training a neural network in a self-
supervised manner to identify the depth map with the
lowest average deviation. The experimental results
show that incorporating multiple focus measures and
different patch sizes significantly improves the accu-
racy and smoothness of the predicted depth map. The
remaining of the article is organized as follows: Sec-
tion 2 details the different components of the proposed
method. Then, in Section 3 a series of experiments are
conducted to validate the proposed approach. Finally,
in Section 4, we discuss the advantages and limitations
of the presented method.
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2 Methodology

2.1 Overview

The proposed approach is composed of three steps:
First, the input hologramH of size L×L is used to com-
pute a reconstruction volume. This step involves sev-
eral hyperparameters that can affect the final results,
so to ensure fair and accurate evaluation, the same
methodology as proposed in [2] is consistently used.
Next, the DFF method is applied to the reconstruc-
tion volume using various focus measures and patch
sizes, each of which produces a depth map referred
to as measurement. All these measurements can be
considered as different distorted versions of the ground
truth depth map. Finally, a neural network is used to
estimate a depth map that is as close as possible to
the ground truth by minimizing the average deviation
from the measurements.

2.2 Reconstruction volume acquisition

Given an input hologram H, a reconstruction volume
is computed by performing a set of numerical recon-
structions using the Angular Spectrum Method [11]
at uniformly sampled reconstruction distances inside
a manually defined depth interval [zmin, zmax], where
zmin and zmax are the minimal and maximal reachable
depths values respectively. Each numerical reconstruc-
tion is defined as

Pzi{H} = F−1
{
F{H}(fx, fy)ej2πzi

√
λ−2−f2

x−f2
y

}
,

(1)
where F is the Fourier transform, fx and fy are the
spatial frequencies along the X and Y axis, λ is the
acquisition wavelength, and zi is the sampled recon-
struction depth, given by

zi =
zmax − zmin

N
i+ zmin, (2)

where N is the number of sampled distances.

2.3 Depth From Focus (DFF) method

The focus level of each pixel in the reconstruction vol-
ume is evaluated locally using a patch Rm,n,i of size
s× s centered around each pixel (m,n), defined as

Rm,n,i(u, v) = |Pzi{H}(m+ u− s/2, n+ v − s/2)| .
(3)

Then, the reconstruction distances at which the focus
curve reaches its maximum dmax

m,n and minimum dmin
m,n

values are extracted, such that

dmax
m,n (FM, s) = argmax

i∈[1,N ]

{FM(Rm,n,i)} , (4)

dmin
m,n(FM, s) = argmin

i∈[1,N ]

{FM(Rm,n,i)} . (5)

According to [2], if the optimal focus measure is em-
ployed, and the reconstruction interval is close to the
boundary of the scene, the sharpness measurement for
highly textured patches will achieve its highest value
at the depth of focus. Conversely, for uniform patches,
the sharpness measurement will reach its lowest value
at the depth of focus. However, if the optimal condi-
tions are not met, the focus curve is likely to have mul-
tiple extrema, with the optimal focus depth located
at the second or third extremum value. The objec-
tive of this study is to enhance the fusion of the tex-
tured and smooth regions obtained from the estimated
depth maps dmax and dmin, respectively. This will
be achieved by considering not only the information
provided by each pixel focus curve but also the local
neighborhood information at various patch resolutions.

Assuming a uniform distribution of both regions
throughout the depth map, each depth map can be
perceived as a degraded version of the ground truth
depth map. The degradation can be visually assessed
using the in-focus map linked with each depth map,
where the well-estimated areas appear sharp and the
remaining areas are contaminated by speckle noise. All
possible predictions produced using different pairs of
focus measurements and patch size can be united into
a set given by:

D =
⋃

FM∈Φ

⋃
s∈S

{
dmin(FM, s), dmax(FM, s)

}
(6)

where Φ and S are all the possible focus measures and
patch sizes.

2.4 Self-supervised learning

Given the set D, the task at hand is to determine the
depth map d that has the minimum average deviation,
according to the loss function L, by minimizing

argmin
d

Ey∈D(L(d, y)). (7)

A methodology similar to the one proposed in [7] is
used, which reformulates image restoration as an op-
timization problem. Given a degraded image ẋ and a
clean image x, the conventional image denoising prob-
lem can be written as

x̂ = argminE(ẋ;x) +R(x), (8)

where E(ẋ;x) is a fidelity term and R(x) is a regu-
larization term. The optimal value of x is iteratively
searched in the image space starting from a random ini-
tial point until an optimal value is reached according to
predefined criteria. An alternative approach outlined
in [7] involves constructing a parameterized function
G with parameters θ and optimizing them in the pa-
rameter space using gradient descent until convergence.
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More formally

x̂ = argminE(Gθ(z); ẋ) +R(Gθ(z)), (9)

where Gθ is a convolution network and z is random
noise. The authors claim that due to the surjective
nature of the function G, the two problems are equiv-
alent. Experimental results indicate that using a suit-
able network architecture G initialized randomly and
optimized with gradient descent, the network can con-
verge to a naturally-looking local optimum or, at least,
pass near one before reaching the optimal solution
ẋ = Gθ(z). To prevent the network from overfitting
to the input, the authors employed an early stopping
technique by manually setting a limit on the number
of iterations.

In the present work, we used the assembled encoder-
decoder proposed in [7] for the inpainting task [12]. It
has a depth of 5 layers, 128 output channels at each
stage and does not use skip connections. We used the
ℓ2 and Sobel gradient for the fidelity and regularization
terms, respectively. Overall, the training process can
be formalized as

x̂ = argmin
1

| L |2
[
∑
i,j

∥ẋ− x̂∥2 +

(∇x ∥ẋ− x̂∥2 +∇y ∥ẋ− x̂∥2)], (10)

where ẋ is a random sample from D, x̂ is the predicted
value, and ∇x and ∇y are the image gradients along
the x and y directions respectively.

3 Experiments

To evaluate the performance of the proposed method-
ology, a collection of 500 holograms, divided into five
categories (Piano, Table, Wood, Dices, Cars), were ob-
tained using a layer-based method [13], with a reso-
lution of 1024 × 1024, a pixel pitch of 6µm, and 100
different acquisition angles for each scene.

Each hologram is then reconstructed at 256 different
distances within the range of [zmin, zmax], with zmin

and zmax set to 0.0049cm and 1.23cm, respectively.
Four of the best-performing focus operators from [2],
namely the Variance of Laplacian [14] (LAPV), the Ra-
tio (WAVR) and Variance (WAVV) of wavelet coeffi-
cients [15], and the Normalized Graylevel variance [16]
(GLVN), are used with variable patch-sizes in the set
{5, 9, 13, 17, 21, 33}.

For each hologram, the network is trained using the
depth maps D for 20000 iterations with an exponential
learning rate decay starting from 0.1 with a factor of
0.8 every 100 iterations.

(a) (b)

Figure 1: An illustration of the estimates produced on
the Table scene, where occluded areas in the ground
truth depth map in (a) are misestimated on the pre-
dicted depth map in (b).

3.1 Results

Table 1 gives the obtained ℓ1 norm for both the auto-
switch method [2] and the proposed method.

Piano Table Woods Cars Dices
LAPV 22.4 37.17 7.65 9.47 21.4
WAVV 24.46 39.4 7.12 9.53 19.01
WAVR 10.24 22.64 4.89 6.1 9.99
GLVN 15.63 26.3 4.2 7.24 5.54
Ours 4.41 8.54 2.53 3.82 3.02

Table 1: The ℓ1 norm evaluates the number of recon-
struction planes between the predicted and the ground
truth depth. Green for the first, blue for the second,
and red for the third best-performing method.

The obtained results show that for the DFF method
with auto-switch, the GLVN and WAVR focus mea-
sures generally perform the best across all scenes, with
the highest ℓ1 norm for the Table scene due to multiple
scene objects occlusions. The performance of the fo-
cus measures can be attributed to three factors. First,
the size of the reconstruction interval and the number
of sampled reconstruction distances: when the recon-
struction interval and depth sampling rate increase, the
focus curves become noisier, which complicates the op-
timal focus plane estimation. Second, estimating the
depth map using a single patch size may not be adapt-
able as different regions may require larger or smaller
patches to have a proper focus curve with single ex-
tremum values. Third, the performance also depends
on the nature of the used operators. For example,
gradient-based operators will have higher performance
in textured regions and poor performance in smooth
regions.

Fusing the depth maps leads to improved perfor-
mance across all scenes. The difference in performance
between the auto-switch approach and the proposed
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approach varies depending on the initial depth esti-
mation. For instance, the improvement in Dices and
Woods class, where initial estimations are close to the
ground truth, is relatively small compared to other
scenes where the performance is twice as good as the
auto-switch. Despite the network improved handling of
the occlusions in the Table scene, the performance re-
mains the weakest. Indeed, while the estimated depth
map presents clear boundaries between occluded ob-
jects, our proposed method fails to accurately predict
the depth in occluded regions, as depicted in Figure 1.

The final results of the network are determined by
the chosen regularization term and the used output
space D. When no regularization is applied, the net-
work is prone to converge to an over-smoothed solution.
To remedy this, the Sobel loss is employed to increase
the output depth map sharpness. The total variation
method was also considered, however, it hinders the
convergence speed and gives poor results.

3.2 Discussion

In addition, the images in the set D should have a
consistent degradation compared to the ground truth
depth map and each region of the depth map should
be accurately estimated in at least half of the images
utilized. If a region is poorly estimated in several im-
ages, the network tends to average those estimates in-
stead of propagating the well-estimated values from the
other regions. In order to achieve accurate depth map
estimation for each region, it may be necessary to re-
duce the number of images used to a minimum number
where each region is accurately estimated in at least
half of them. Another potential solution is to directly
train the network using the depth maps produced using
the auto-switch method. For example, in Figure 2, the
network was trained only with the depth map gener-
ated by the WAVR operator with a patch size of 33×33.
This resulted in a smoother depth map, but it lacked
spatial coherence. In addition, the network struggles
to properly address discontinuous areas. By supervis-
ing the network with more depth maps, the results are
significantly improved and the predicted depth map is
close to the ground depth.

Although the network yields meaningful results, it
has limitations. Firstly, the choice of neural network
architecture influences the final results. The selected
network should have a long path from input to output
while avoiding too many parameters that cause fast
overfitting. Secondly, finding the optimal number of
iterations can be challenging, since stopping too soon
leads to poor depth maps, while stopping too late de-
grades the results as shown in Figure 3. Lastly, the op-
timization step takes considerable time, around 10-15
minutes in our experiments, which may hinder online
use.

4 Conclusion

In this work, we present a learning-based approach
to fuse information obtained by applying the DFF
method on a holographic reconstruction volume using
various focus measures with varying patch sizes.

The experimental results showed that combining dif-
ferent focus measures can significantly improve the ob-
tained results when selecting the appropriate hyper-
parameters, such as network architecture, number of
iterations, optimization, and a regularization term.
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