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S-shaped narrow framing, skewness and the demand for insurance

Introduction

Insurance market plays an important role in our modern society. It allows for different parties coming together to share their risks according to their own risk appetite. To study the functioning of such market, one needs an analytical tool that can cope with risk.

Thanks to its normative appeal and delicate mathematical foundation laid by [START_REF] Morgenstern | Theory of games and economic behavior[END_REF], expected utility theory (hereafter, EUT) has become the most prominent decision theory under risk that is widely used in insurance economics. For instance, in the 1960s, most of fundamental research in insurance economics was conducted in the framework of EUT (see, e.g., [START_REF] Arrow | Uncertainty and the welfare economics of medical care[END_REF][START_REF] Mossin | Aspects of rational insurance purchasing[END_REF]. However, with the advance in empirical research, more and more evidence speaks against the premise that people behave as described by EUT when purchasing insurance.

There are two notable puzzles in the insurance market. First, EUT predicts that a rational policyholder should at least be partially insured when insurance pricing is not unrealistically actuarially unfair [START_REF] Mossin | Aspects of rational insurance purchasing[END_REF]. However, ample evidence shows that only a small fraction of insureds demand insurance against natural disasters even with heavy government subsidization (see, e.g., [START_REF] Kunreuther | Disaster insurance protection: Public policy lessons[END_REF][START_REF] Gollier | Some aspects of the economics of catastrophe risk insurance[END_REF][START_REF] Volkman-Wise | Representativeness and managing catastrophe risk[END_REF]. Similar observations can be made in the fields of agricultural insurance and health insurance. For instance, [START_REF] Mahul | Government support to agricultural insurance: Challenges and options for developing countries[END_REF] find that even with high premium subsidies the agricultural market penetration remains small in both developed and developing countries. [START_REF] Brown | Insuring long-term care in the United States[END_REF] find that many people do not take out long-term care insurance policies in the United States even though a tax subsidy is heavily implemented. 1The other puzzling fact in the insurance market is that people sometimes buy too much insurance relative to what EUT would predict. Examples here are demand for low deductibles and markets for extended warranties or cellular-phone insurance. Using data on people's auto insurance deductible choices, [START_REF] Pashigian | The selection of an optimal deductible for a given insurance policy[END_REF] find that in a sample of more than 4.8 million policyholders in 1962, approximately 53.8% chose the lowest deductible and 45.7% selected the next lowest level. However, the premiums paid by those individuals were quite substantial given their probabilities of filing a claim. More recent empirical studies such as [START_REF] Sydnor | Over) insuring modest risks[END_REF] and [START_REF] Barseghyan | The nature of risk preferences: Evidence from insurance choices[END_REF] also confirm such a puzzling over-insuring phenomenon from the recent homeowners and auto insurance deductible choices. As argued in [START_REF] Barberis | Thirty years of prospect theory in economics: A review and assessment[END_REF], this phenomenon can only be justified by unrealistically high degrees of risk aversion under EUT.

In this paper, we show that S-shaped narrow framing can reconcile with these two puzzles when coinsurance policy is considered.2 More specifically, we assume that the policyholder views insurance not only as a hedging instrument for reducing her risk to wealth but also as a gamble with insurance companies. Namely, people may succumb to a certain degree of narrow framing and care about the outcome of an insurance contract when it is evaluated in isolation (see, e.g., [START_REF] Kahneman | Timid choices and bold forecasts: A cognitive perspective on risk taking[END_REF][START_REF] Rabin | Narrow bracketing and dominated choices[END_REF][START_REF] Barberis | Thirty years of prospect theory in economics: A review and assessment[END_REF]Huang, 2001, 2009). The preference model under narrow framing is defined by a linear combination of standard expected utility of wealth and local expected utility over the net insurance payoff. Moreover, consistent with many experimental findings (see, e.g., [START_REF] Kahneman | Prospect theory: An analysis of decision under risk[END_REF][START_REF] Tversky | Advances in prospect theory: Cumulative representation of uncertainty[END_REF], we further assume the policyholder is risk seeking over the risk of the net insurance payoff when it is negative but risk averse over the risk of the net insurance payoff when it is positive. Overall, this makes an S-shaped local utility function for evaluating insurance in isolation.

Intuitively, in the loss domain, the policyholder has an appetite to risk on the net insurance payoff and the gambling motive may drive up her insurance demand. In contrast, in the gain domain, the policyholder is averse to risk on the net insurance payoff and the gambling motive may reduce her insurance demand. Our results show that under S-shaped narrow framing, skewness of the risk to be insured determines which part of the local utility dominates the preference for risk on the net insurance payoff and which direction insurance demand goes. When only coinsurance policy is offered, the policyholder prefers to buy less insurance than what her expected utility counterpart does if the risk of loss she faces is more negatively skewed but buy more insurance if it is less negatively skewed. These theoretical results seem in line with what empirical studies have docu-mented. For instance, catastrophic risks are quite negatively skewed and underinsured.

But risks associated with warranties are often less negatively skewed and people tend to insure them more in these cases.

In addition to explaining the two insurance puzzles, we also derive the optimal insurance scheme under S-shaped narrow framing. Note that it is somehow challenging due to the convexity of the local utility in the loss domain. Under incentive compatibility, we first apply the Ohlin lemma [START_REF] Ohlin | On a class of measures of dispersion with application to optimal reinsurance[END_REF] on sufficient conditions for convex stochastic ordering and show that a straight deductible is optimal when insurance indemnity is smaller than the insurance premium. The intuition behind this result is as follows. In the loss domain, the policyholder prefers to take more risk on the net insurance payoff. Among all eligible contracts, straight deductibles are the only ones that can satisfy this objective.

From [START_REF] Arrow | Essays in the theory of risk-bearing[END_REF][START_REF] Arrow | Optimal insurance and generalized deductibles[END_REF] and [START_REF] Gollier | Arrow's theorem on the optimality of deductibles: A stochastic dominance approach[END_REF], we know that straight deductibles are also optimal in maximizing expected wealth utility. So not surprisingly, the optimal insurance contract involves a straight deductible in the loss domain. However, as indemnity increases beyond the insurance premium, the optimality of straight deductible cannot hold anymore. The reason is because the policyholder dislikes risk on the net insurance payoff when it is positive. From the narrow perspective, at optimum the net payoff of insurance should not be too risky when insurance is evaluated in isolation. But this will of course reduce its hedging effect when insurance is viewed broadly. We show that the optimal insurance contract should contain partial insurance of losses in the gain domain, which is the best compromise between the gambling and hedging motives. Furthermore, depending on the size of the insurance premium paid in the gain domain, we show that S-shaped narrow framing can generate the famous "donut hole" or "coverage gap" in medical drug insurance and other reimbursement models such as organ transplants (see, e.g., [START_REF] Einav | The response of drug expenditure to nonlinear contract design: Evidence from Medicare Part D[END_REF][START_REF] Bajari | Estimating price sensitivity of economic agents using discontinuity in nonlinear contracts[END_REF], i.e., the policyholder receives a fixed level of indemnity for some intermediate losses before a loss threshold is reached.

Among some recent works trying to explain underinsurance with narrow framing,3 our paper is closely linked to [START_REF] Zheng | Optimal insurance design under narrow framing[END_REF]. Both studies examine the problems of optimal insurance under narrow framing. However, contrary to [START_REF] Zheng | Optimal insurance design under narrow framing[END_REF], we assume an S-shaped local utility instead of a globally concave local utility, and we show that incor-porating this particular feature in the model can largely extend its ability of describing insurance behaviors. In particular, we show that in the case of coinsurance policy the appetite to risk on the net insurance payoff in the loss domain can induce overinsurance when risks to be insured are weakly negatively skewed. So our model can simultaneously account for both overinsurance and underinsurance, which is determined by how skewed the risk of loss is. 4 Notice that skewness of the risk is less relevant for insurance demand in both expected utility theory and the model of narrow framing studied by [START_REF] Zheng | Optimal insurance design under narrow framing[END_REF].

However, it is extremely essential when S-shaped narrow framing is considered. Moreover, we introduce a risk index on skewness which characterizes sufficient conditions for when overinsurance or underinsurance occurs. On the problem of designing an optimal insurance policy under narrow framing, our results are also different from what [START_REF] Zheng | Optimal insurance design under narrow framing[END_REF] finds. In particular, we show that under S-shaped narrow framing, straight deductibles may still be optimal for losses which are indemnified less than the insurance premium, while the latter shows that partial insurance above a deductible is optimal. Moreover, the incentive compatibility condition is important in our characterization of the structure of optimal insurance but is redundant in [START_REF] Zheng | Optimal insurance design under narrow framing[END_REF]. Finally, it is worth mentioning that different from many existing studies on optimal insurance (see, e.g., [START_REF] Mossin | Aspects of rational insurance purchasing[END_REF][START_REF] Arrow | Essays in the theory of risk-bearing[END_REF][START_REF] Arrow | Optimal insurance and generalized deductibles[END_REF][START_REF] Zheng | Optimal insurance design under narrow framing[END_REF], our results indicate that zero deductible could be optimal under S-shaped narrow framing even though insurance is unfairly priced.

The remainder of this paper is organized as follows: Section 2 presents the insurance demand model under S-shaped narrow framing; Section 3 discusses the relationship between insurance demand and skewness of the risk to be insured when only coinsurance policies are offered; Section 4 characterizes the optimal insurance design under S-shaped narrow framing when incentive compatibility is satisfied; Section 5 concludes.

Insurance model under S-shaped narrow framing

An insured endowed with an initial wealth W 0 faces an insurable loss X, which is a nonnegative random variable defined on the probability space (Ω, F, P) with the essential supremum M ≤ W 0 . To avoid the trivial analysis, we assume that X is not a constant.

For the sake of simplicity, an insurance contract can be represented by a pair (I(•), P ) where P is the insurance premium charged by the insurer and I(x) denotes the indemnity that is paid by the insurer if the observable loss is x. We assume the principle of indemnity is satisfied, i.e., 0 ≤ I(x) ≤ x for all x ∈ [0, M ]. Note however that such a principle is insufficient to exclude the ex post moral hazard related to misreporting of the actual loss.

Therefore, prior research recommends the incentive-compatible condition, in which both the ceded and retained loss functions (i.e., I(x) and x -I(x)) are increasing to eliminate the ex post moral hazard (see, e.g., [START_REF] Huberman | Optimal insurance policy indemnity schedules[END_REF][START_REF] Picard | On the design of optimal insurance policies under manipulation of audit cost[END_REF][START_REF] Carlier | Pareto efficient insurance contracts when the insurer's cost function is discontinuous[END_REF][START_REF] Xu | Optimal insurance under rank-dependent utility and incentive compatibility[END_REF]. 5 The constraints of the principle of indemnity and the incentive-compatible condition are exactly equivalent to

I := {I(•) : I(0) = 0, 0 ≤ I (x) ≤ 1, ∀x ∈ [0, M ]} .
(2.1) Furthermore, we assume a linear pricing rule which is standard in the theoretical literature on insurance (see, e.g., [START_REF] Arrow | Essays in the theory of risk-bearing[END_REF][START_REF] Arrow | Optimal insurance and generalized deductibles[END_REF], i.e.,

P = (1 + τ ) M 0 I(x)dF (x), (2.2)
where F (x) is the cumulative distribution function of the loss. The actuarial value of the policy is given by the integral in the above equation. Parameter τ ≥ 0 represents the loading factor. When τ is zero, we say that the insurance premium is actuarially fair;

when τ is strictly positive, it is actuarially unfair.

In this paper, we assume that an insurance contract can be viewed in isolation by the policyholder as a gamble against the insurer, i.e., a certain loss of premium traded for an uncertain insurance indemnity (see aslo [START_REF] Gottlieb | Narrow framing and long-term care insurance[END_REF]. The net amount of money the policyholder receives after buying an insurance contract is equal to I(X) -P .

Therefore, the agent wins money from the insurance company when I(X) -P is positive but loses money when it is negative. This argument is consistent with experimental findings that people are subject to narrow framing (see, e.g., [START_REF] Kahneman | Timid choices and bold forecasts: A cognitive perspective on risk taking[END_REF][START_REF] Kahneman | Maps of bounded rationality: Psychology for behavioral economics[END_REF][START_REF] Rabin | Narrow bracketing and dominated choices[END_REF]. More formally, narrow framing means that, when an individual is deciding whether to accept a gamble, she uses a utility function that depends directly on the outcome of the gamble, not just indirectly via the gamble's contribution to her total wealth.

More explicitly, we assume that the insured views insurance not only as a hedging instrument for reducing her risk to wealth but also as a gamble with the insurance company.

The objective function of the policyholder is hereafter defined as follows 6

V (I(•), P ) = E u W 0 -X + I(X) -P + k • g I(X) -P ) . (2.
3)

The first term within the bracket represents the wealth utility measured by a continuous and twice differentiable function u. We assume that the policyholder prefers more wealth than less and is averse to risk on her wealth in the sense of [START_REF] Rothschild | Increasing risk I: A definition[END_REF],

i.e., u (•) > 0 and u (•) < 0. The second term within the bracket is the local utility from evaluating insurance in isolation. Parameter k ≥ 0 is the degree of narrow framing or the weight the policyholder places on the local utility relative to the wealth utility. In the case of k being zero, our model boils down to EUT and the insured maximizes her expected wealth utility. In contrast, when the policyholder places a very high weight on the local utility (i.e., k → ∞), insurance becomes a pure gamble against the insurer. In more general scenarios, the insured balances her two goals: maximizing expected wealth utility and maximizing expected utility in the net payoff of insurance.

Consistent with experimental findings (see, e.g., [START_REF] Kahneman | Prospect theory: An analysis of decision under risk[END_REF][START_REF] Tversky | Advances in prospect theory: Cumulative representation of uncertainty[END_REF], the local utility function g(•) is assumed to be S-shaped, reflecting risk-aversion on positive deviations from the status and risk-seeking on negative deviations from the status. Namely,

g(x) = g + (x) 1 x≥0 -g -(-x) 1 x<0 , (2.4)
where g + (•) and g -(•) are increasing and concave functions defined on R + with g + (0) = g -(0) = 0 (see, for instance, Figure 1). Note that this is also the main difference between

6 Our preference model is different from cumulative prospect theory and rank-dependent expected utility theory in two main aspects. First, we do not assume probability weighting; second, our model accounts for both consumption smoothing motive and loss-gain trade-offs relative to a given reference point, while the other two models only consider either of the two motives. For studies on optimal insurance under cumulative prospect theory and rank-dependent expected utility theory, one can refer to [START_REF] Schmidt | Insurance demand under prospect theory: A graphical analysis[END_REF] and [START_REF] Ghossoub | Optimal insurance under rank-dependent expected utility[END_REF]. For illustration, we take g

+ (x) = 1 -exp(-x) and g -(x) = 2 -2exp(-x) for x ≥ 0.
our model and that of [START_REF] Zheng | Optimal insurance design under narrow framing[END_REF] which assumes that function g is concave everywhere.

Moreover, we take into account possible loss aversion that losses loom larger than gains or mathematically, lim ∆→0 + g -(∆) > lim ∆→0 + g + (∆).7 Under S-shaped narrow framing, buying insurance may not be deemed unfavorable from a completely narrow framer's perspective (i.e., k → ∞). This is because she has an appetite to the risk on the net insurance payoff in the loss domain. As a result, whether she buys any insurance depends on the trade-off between the risk seeking motive in the loss domain and the risk avoidance motive in the gain domain. In the following section, we study this in detail when only coinsurance policy is offered.

Demand for coinsurance and skewness of the risk

In this paper, we say there is overinsurance (or underinsurance) if the policyholder with the risk preference given by (2.3) and (2.4) and with a positive degree of narrow framing (i.e., k > 0) purchases more (or less) insurance than her EUT counterpart whose degree of narrow framing is zero. So we take the insurance demand under EUT as a benchmark in our analysis. Hereafter, we show that S-shaped narrow framing can help explaining both overinsurance and underinsurance puzzles. We deliberately choose to work with coinsurance since it allows for a nice separation of the risk to the net insurance payoff into two parts that are linear in the loss distribution.

When offered proportional insurance (or coinsurance), the policyholder can insure a fraction α of her loss with 0 ≤ α ≤ 1. When a loss x occurs, the policyholder will receive an indemnity of αx. Denote the expected loss and the full insurance premium as µ := E[X] and π := (1 + τ )µ. To avoid the trivial discussion, we assume that M > π.

Under linear transaction costs (see Equation (2.2)), the insurance premium is thus given by απ. Given the chosen fraction α, the final wealth of the policyholder becomes

W (α, X) = W 0 -(1 -α)X -απ. (3.1)
And the net payoff of the purchased coinsurance policy is as follows

H(α, X) = α(X -π). (3.2)
The policyholder chooses the optimal fraction α * such that her objective function specified in (2.3) and (2.4) is maximized. That is,

α * = arg max α∈[0,1] V (α) = arg max α∈[0,1] U (α) + k • G(α) , (3.3)
where

U (α) := E u W (α, X) = M 0 u W 0 -(1 -α)x -απ dF (x), (3.4) G(α) := E g H(α, X) = - π 0 g -(απ -αx)dF (x) + M π g + (αx -απ)dF (x).
(3.5) For notational convenience, we define

A + := E (X -π) 1 X>π > 0 and A -:= -E (X -π) 1 X≤π > 0.

It is easy to check that A

+ -A -= -τ µ ≤ 0. Due to the concavity of g -(•) and g + (•), we have 0 ≥ -E g -(απ -αX) 1 X≤π ≥ -g -(αA -), (3.6) g + (αA + )] ≥ E g + (αX -απ) 1 X>π ≥ 0. (3.7)
Combining (3.6) and (3.7) gives us

g + (αA + ) ≥ G(α) ≥ -g -(αA -).
Therefore, the sign of G(α) for a given coinsurance rate α is indeterminate without imposing further restrictions. This also implies that for a completely narrow framer (i.e., k → ∞), purchasing insurance under an S-shaped local utility function g(•) can be either beneficial or detrimental. Note, however, that in Zheng (2020) a completely narrow framer always purchases zero insurance due to aversion to risk on the net insurance payoff, i.e.,

g(•) is concave in R.
We hereafter define a Lambda measure as

Λ(π) := B + B - ,
where

B -:= E[(X -π) 2 1 X<π ] > 0 and B + := E[(X -π) 2 1 X>π ] > 0.
This moment ratio is close to a portfolio performance index that is well known in the quantitative finance literature as the Omega measure, i.e., Ω(r) = E[(X -r) + ]/E[(X -r) -] (see, e.g., [START_REF] Bernard | Static portfolio choice under cumulative prospect theory[END_REF][START_REF] Bertrand | Omega performance measure and portfolio insurance[END_REF][START_REF] He | Portfolio choice under cumulative prospect theory: An analytical treatment[END_REF], where (x) + := max{x, 0}. 8 The Lambda measure is a measure of the relative riskiness of the net insurance payoff in the gain domain and in the loss domain. Note that the value of the Lambda measure depends crucially on the skewness of the loss distribution. In the special case where the loading factor τ is zero and the probability density distribution of loss is symmetric, the Lambda measure is equal to 1. Moreover, the more positively skewed the probability density distribution of loss (or the more negatively skewed the risk of loss) is, the higher the Lambda measure becomes. As we shall see, the Lambda measure plays a key role in determining the optimal coinsurance rate under S-shaped narrow framing.

Let us denote the optimal coinsurance rate under EUT (i.e., k = 0 in Equation (2.3)) as α * EU . The following proposition presents the sufficient conditions on the Lambda measure so that the policyholder with a positive degree of narrow framing will choose a lower coinsurance rate.

Proposition 1. Suppose a coinsurance policy is offered. If g -(•) and g + (•) are not impru-dent (i.e., g -(•) ≥ 0 and g + (•) ≥ 0) and Λ(π) ≥ g -(0)/g + (Mπ), then the policyholder with a positive degree of narrow framing (i.e., k > 0) will purchase less insurance than the policyholder without narrow framing, i.e., α * < α * EU if α * EU > 0 or α * = 0 if α * EU = 0. Moreover, the optimal coinsurance rate α * is decreasing in k.

Proof. See Appendix A.

Basically, the conditions presented in Proposition 1 ensure that the risk avoidance motive in the gain domain is stronger than the risk seeking motive in the loss domain.

They imply that buying insurance is unfavorable from the viewpoint of a completely narrow framer. Moreover, from the inequality condition (i.e., Λ(π

) ≥ g -(0)/g + (M -π),
where the term g -(0)/g + (Mπ) is the maximum ratio of local utility concavity, that is

g -(0)/g + (M -π) = max x∈[-π,0),y∈(0,M -π] g -(-x)/g + (y),
by linking any two points in the domain [-π, M -π].) and under the assumption that local utility functions are not imprudent,9 we see that more negatively skewed risks of loss such as disaster risks are more likely to be underinsured. This is in line with what empirical studies have found (see, e.g., [START_REF] Kunreuther | Disaster insurance protection: Public policy lessons[END_REF]. Now we show that S-shaped narrow framing can also explain the over-insuring puzzle. This result is summarized in the following proposition.

Proposition 2. Suppose a coinsurance policy is offered. If g -(•) and g + (•) are not imprudent, Λ(π) ≤ g -(π)/g + (0), and G(α * EU ) > 0, then the policyholder with a positive degree of narrow framing will purchase more insurance than the policyholder without narrow framing, i.e., α

* > α * EU if α * EU < 1 or α * = 1 if α * EU = 1. Moreover, the optimal coinsurance rate α * is increasing in k. Proof. See Appendix A. It can be easily shown that g -(π)/g + (0) ≤ g -(0)/g + (M -π), that is equivalent to g + (M -π)g -(π) ≤ g + (0)g -(0)
, where we use the facts that g + (0) ≤ g + (Mπ) ≤ 0 and g -(0) ≤ g -(π) ≤ 0. Therefore, the two inequality conditions in Propositions 1 and 2 are mutually exclusive.

The inequality condition in Proposition 2 (i.e., Λ(π) ≤ g -(π)/g + (0), where the term g -(π)/g + (0) is the minimum ratio of local utility concavity, that is

g -(π)/g + (0) = min x∈[-π,0),y∈(0,M -π] g -(-x)/g + (y),
by linking any two points in the domain [-π, M -π].) ensures that insurance is favorable in the viewpoint of a completely narrow framer, while the complementary condition that G(α * EU ) > 0 is to guarantee that the optimal coinsurance rate is indeed larger than α * EU . It is worth noting that the inequality condition in Proposition 2 is more likely to hold for less negatively skewed risks of loss because the Lambda measure of those risks is smaller. Proposition 2 therefore suggests that less negatively skewed risks are more likely to be overinsured. Indeed, in the auto-insurance market or markets for extended warranties where existing studies have documented overinsurance (see, e.g., Sydnor, 2010; [START_REF] Barseghyan | The nature of risk preferences: Evidence from insurance choices[END_REF], risks are generally not very negatively skewed.

To highlight the results above, we use a simple binary loss example with X = {0, 1p; M, p} and τ > 0. In this case, π = (1 + τ )pM . We assume that (1 + τ )p < 1; otherwise, it is obvious that no insurance is optimal. We examine the effect of loss probability p on explaining overinsurance and underinsurance. In the case of underinsurance, the inequality condition in Proposition 1, i.e., Λ(π) ≥ g -(0)/g + (Mπ), is equivalent to

g + M -(1 + τ )pM B + -g -(0)B -≤ 0, (3.8) 
where

B + = M 2 [1 -(1 + τ )p] 2 p and B -= M 2 [0 -(1 + τ )p] 2 (1 -p).
Dividing both sides by a positive constant M 2 p, we rewrite condition (3.8) as

H 1 (p) := g + M -(1 + τ )pM (1 -(1 + τ )p) 2 -g -(0)(1 + τ ) 2 p(1 -p) ≤ 0.
It is easy to check that H 1 (0+) < 0 and H 1 ((1/1+τ )-) > 0. Therefore, when p is smaller, i.e., the loss distribution is more negatively skewed, condition (3.8) is more likely to hold;

when p is larger, condition (3.8) is more unlikely to hold. In the case of overinsurance, the inequality condition in Proposition 2, i.e., Λ(π) ≤ g -(π)/g + (0), is equivalent to

g + (0)B + -g -(1 + τ )pM B -≥ 0. (3.9)
Dividing both sides by a positive constant M 2 p, we rewrite condition (3.9)

H 2 (p) := g + (0)(1 -(1 + τ )p) 2 -g -((1 + τ )pM )(1 + τ ) 2 p(1 -p) ≥ 0.
It is obvious that H 2 (0+) < 0 and H 2 (( 1 1+τ )-) > 0. Therefore, when p is larger, i.e., the loss distribution is less negatively skewed, condition (3.9) is more likely to hold; when p is smaller, condition (3.9) is more unlikely to hold.

The following numerical example illustrates these results obtained in the binary loss situation.

Example 1. Assume that W 0 = 10, M = 2.5, τ = 0.05, u(x) = 1 -exp(-3x), g + (x) = 1 -exp(-0.5x), and g -(x) = 1.05g + (x). When p < 0.2492, we have H 1 (p) ≤ 0, which implies condition (3.8) holds. When p > 0.6221, we have H 2 (p) ≥ 0, which implies condition (3.9) holds. Furthermore, when p ∈ (0.6417, 0.8446), both condition (3.9) and G(α * EU ) > 0 hold.

Optimal insurance design under S-shaped narrow framing

In this section, we derive the optimal insurance scheme under S-shaped narrow framing.

The problem of the policyholder with the preference specified in (2.3) and (2.4) is to select a feasible contract to maximize her ex-ante welfare max

{I(•),P } E u W 0 -X + I(X) -P + k • g I(X) -P ) (4.1)
subject to the constraints (2.1) and (2.2).

Denote the optimal ceded loss function that solves Problem (4.1) as I * (x) and its corresponding premium as P * . We can easily prove the following proposition.

Proposition 3. The optimal insurance contract I * (x) must be either zero insurance or an insurance contract with the highest indemnity more than the insurance premium, i.e., I * (M ) > P * .

Proof. We prove by contradiction. Suppose that I * (M ) ≤ P * , then we must have

E u W 0 -X + I * (X) -P * -k • g -P * -I * (X) ≤E u(W 0 -X) ,
which implies that no insurance is better than I * (x). The proof is thus completed.

If the insurance premium is larger than the highest indemnity the policyholder can receive, buying insurance only generates losses in wealth. In that case, it is better for the policyholder to be uninsured at all. Before solving the optimal insurance design problem, it is useful to introduce the following lemma due to [START_REF] Ohlin | On a class of measures of dispersion with application to optimal reinsurance[END_REF], 10 which we will mainly use to prove our later results.

Lemma 1. Let Y be a random variable and {h i (y) : i = 1, 2} be two increasing functions

with E[h 1 (Y )] = E[h 2 (Y )]. If h 1 up-crosses 11 h 2 , then h 2 (Y ) ≤ cx h 1 (Y ), i.e., E[Q(h 2 (Y ))] ≤ E[Q(h 1 (Y ))]
for any convex function Q such that the expectations exist.

The following proposition shows that if the optimal solution to Problem (4.1) is nonzero, it must contain a straight deductible in the loss domain. Proof. See Appendix A.

From Proposition 4, we know that [START_REF] Arrow | Essays in the theory of risk-bearing[END_REF][START_REF] Arrow | Optimal insurance and generalized deductibles[END_REF]'s results hold at least for small losses that are indemnified less than the insurance premium. The intuition behind this result is straightforward. In the loss domain, the policyholder has an appetite to risk on 10 See also Lemma 4.3 of Asmussen and Albrecher (2010).

11 A function g 1 (x) is said to up-cross a function g 2 (x) if there exists a z 0 ∈ R such that

g 1 (x) ≤ g 2 (x), x ≤ z 0 ; g 1 (x) ≥ g 2 (x), x > z 0 .
the net insurance payoff. Among all eligible contracts, straight deductibles are the only ones that permit maximum risk taking. According to [START_REF] Arrow | Essays in the theory of risk-bearing[END_REF][START_REF] Arrow | Optimal insurance and generalized deductibles[END_REF] and [START_REF] Gollier | Arrow's theorem on the optimality of deductibles: A stochastic dominance approach[END_REF], we know that straight deductibles are optimal in maximizing expected wealth utility, too. Therefore, the optimal insurance contract must involve a straight deductible in the loss domain. However, as indemnity increases beyond the insurance premium, the policyholder becomes averse to risk on the net insurance payoff and the optimality of straight deductible cannot hold anymore.

Now we examine the optimal insurance scheme in the gain domain, namely, when the indemnity is larger than the insurance premium. In particular, to find the optimal contract, we only need to look at these contracts containing a straight deductible when the indemnity is lower than the insurance premium (i.e., Ĩ(x) = (x -D) + , ∀ x < D + P for some D ≥ 0, where P = (1 + τ )E[ Ĩ(X)]). Therefore, fixing P and D, we define

P o -:= E[ I(X) 1 X<D+P ] and P o + := E[ I(X) 1 X≥D+P ],
which represents the expected paid indemnity in the (strict) loss domain and in the gain domain. Note also that (1 + τ )

• (P o -+ P o + ) = P .
In what follows, we will further modify I(x) for x ≥ D + P to find a better I * (x). Our modified optimization problem to Problem (4.1) becomes max

I(x)∈I V + I(X) := E u W 0 -X + I(X) -P + k • g + I(X) -P 1 X≥D+P (4.2) s.t. I(x) = (x -D) + , ∀x < D + P ; P o + = E[I(X) 1 X≥D+P ].
Introducing a Lagrangian multiplier λ ∈ R to Problem (4.2), we obtain the following auxiliary problem: max

I(x)∈I Ψ(λ, I) := V + I(X) + λ P o + -E[I(X) 1 X≥D+P ] (4.3) s.t. I(x) = (x -D) + , ∀x < D + P.
The above objective function motivates the definition of the following function:

ψ x,λ (y) := u(W 0 -x + y -P ) + k • g + (y -P ) -λy, ∀y ∈ [P, x -D] (4.4)
for any x ≥ D + P and λ ∈ R. Notably, the assumptions of u (•) < 0 and g + (•) < 0 imply that ψ x,λ (y) is strictly concave in y with the derivative

ψ x,λ (y) = u (W 0 -x + y -P ) + k • g + (y -P ) -λ. (4.5)
Therefore, the equation ψ x,λ (y) = 0 has at most one solution.

To present the optimal solution to Problem (4.2), we denote

               λ 1 := u (W 0 -M ) + k • g + (0); λ 2 := u (W 0 -D -P ) + k • g + (0); λ 3 := u (W 0 -D -P ) + k • g + (M -D -P ), (4.6)
with λ 1 > λ 2 > λ 3 . Assume that I λ 2 (x) is the solution that solves ψ x,λ 2 (y) = 0 in y for any x ≥ D + P . It is easy to see that I λ 2 (D + P ) = P and I λ 2 (x) satisfies

I λ 2 (x) = u (W 0 -x + I λ 2 (x) -P ) u (W 0 -x + I λ 2 (x) -P ) + k • g + ( I λ 2 (x) -P ) ∈ (0, 1]. (4.7)
We present the optimal solution Ĩ * (x) to Problem (4.2) in the following proposition.

Proposition 5.

(i)

If P o + ∈ E[P 1 X≥D+P ], E[ I λ 2 (X) 1 X≥D+P ]
, then the optimal solution to Problem (4.2) is given by

I * (x) :=              (x -D) + ,
x < D + P ;

P, D + P ≤ x < x 1 ; I λ (x), x 1 ≤ x, (4.8)
where

I λ (x) satisfies ψ x,λ (y) = 0 in y with λ ∈ [λ 2 , λ 1 ], λ and x 1 ∈ [D + P, M ] are jointly determined by E[ I * (X) 1 X≥D+P ] = P o + and u (W 0 -x 1 ) + k • g + (0) = λ (4.9) (ii) If P o + ∈ E[ I λ 2 (X) 1 X≥D+P ], E[(X -D) 1 X≥D+P ]
, then the optimal solution to Prob-lem (4.2) is given by

I * (x) :=              (x -D) + , x < D + P ;
x -D, D + P ≤ x < x 2 ; (4.10) where I λ (x) satisfies ψ x,λ (y) = 0 in y with λ ∈ [λ 3 , λ 2 ), λ and x 2 ∈ (D + P, M ] are jointly determined by

I λ (x), x 2 ≤ x,
E[ I * (X) 1 X≥D+P ] = P o + and u (W 0 -D -P ) + k • g + (x 2 -D -P ) = λ. (4.11)
In whatever the case, we have

I λ (x) = u (W 0 -x + I λ (x) -P ) u (W 0 -x + I λ (x) -P ) + k • g + ( I λ (x) -P ) ∈ (0, 1]. (4.12)
Proof. See Appendix A.

Equation (4.9) (or Equation (4.11)) means that the expected indemnity of optimal insurance in the gain domain should be equal to P o + and the overall marginal utility at the change point x i should be equal to λ. Equation (4.5) indicates that total marginal utility in the gain domain contains two parts: marginal wealth utility and marginal utility from the net insurance payoff. Note that at the optimum, total marginal utility must be equalized in all states of tail losses; otherwise, we can increase total expected utility by simply moving a small amount of indemnity from a state with low marginal utility to a state with high marginal utility while keeping the insurance premium unchanged. Because of diminishing sensitivity to wealth, marginal wealth utility is higher at a larger loss. It is therefore optimal to indemnify the insured more when she faces a larger loss. However, as the indemnity increases, the marginal utility from the net payoff of insurance becomes smaller due to the concavity of the local utility function. It implies that we should increase the indemnity relatively less compared to loss (see Equation (4.12)) in order to maintain the total marginal utility constant.

Note that both our model and that of [START_REF] Raviv | The design of an optimal insurance policy[END_REF] show that partial insurance can be optimal (see Equation (4.12)). But the driving force behind this result is quite different.

In [START_REF] Raviv | The design of an optimal insurance policy[END_REF], the optimality of partial insurance is due to risk-sharing between two risk averse agents, i.e., the insured and the insurer. In our model, the optimality of partial insurance is completely up to the behavioral consideration of the insured, i.e., minimizing the risks of the final wealth and the net insurance payoff in the gain domain. It is worth noting that risk preferences over wealth in our model are the same as those under EUT, namely, -u (w)/u (w). However, the insured under S-shaped narrow framing is also sensitive to any departure from the status-quo (i.e., W 0 -X), captured by the local utility g. In particular, the insured is averse to the risk over the net insurance payoff when it is positive. We can rewrite Equation (4.12) as 1/(1+kg ( Ĩλ (x)-P )/u (W 0 -x+ Ĩλ (x)-P )).

The ratio g /u > 0 could be interpreted as a measure for the relative strength of different motives, namely, minimizing the risk over the net insurance payoff and reducing the risk over wealth.

Overall, Propositions 3, 4 and 5 demonstrate that the optimal solution to Problem (4.1) is either no insurance or a straight deductible in the strict loss domain and partial insurance in the gain domain (see Equations (4.8) or (4.10)). More specifically, when the premium paid in the gain domain (i.e., P o + ) is small, the policyholder can only choose the fixed premium P for intermediate losses (i.e., D + P ≤ x < x 1 ) and the insurance scheme in Equation (4.8) is optimal. In contrast, when P o + is large, the policyholder can select the maximum compensation for intermediate losses (i.e., D + P ≤ x < x 2 ) and the insurance scheme in Equation (4.10) is optimal. An interesting feature of the optimal contract in Equation (4.8) is that the policyholder needs to pay all losses after the amount D + P until the amount x 1 is achieved. This finding captures the famous "donut hole" or "coverage gap" in medical drug insurance and other reimbursement models such as organ transplants (see, e.g., [START_REF] Einav | The response of drug expenditure to nonlinear contract design: Evidence from Medicare Part D[END_REF][START_REF] Bajari | Estimating price sensitivity of economic agents using discontinuity in nonlinear contracts[END_REF]. Our results therefore suggest that S-shaped narrow framing may explain such a contract feature in insurance theory and practice.12 Based on Proposition 5, we can further provide a numerical algorithm to derive the optimal ceded loss function in Problem (4.2). For the ease of presentation, we only present the corresponding algorithm for Proposition 5(i) as that for Proposition 5(ii) can be similarly deduced.

Step 1: Fix x 1 ∈ [D +P, M ] and determine λ via the equation u (W 0 -x 1 )+k •g + (0) = λ;

Step 2: Derive I λ (x) from the equation ψ x,λ (y) = 0;

Step 3: Check whether

E[P 1 D+P ≤X<x 1 ] + E[ I λ (X) 1 x 1 ≤X ] = P o + ;
Step 4: If yes, I * (x) is an optimal solution; If not and E[P

1 D+P ≤X<x 1 ] + E[ I λ (X) 1 x 1 ≤X ]
> (or <)P o + , choose another larger (or smaller) x 1 ∈ [D + P, M ] and go back to Step 1 until the suitable x 1 is achieved. We now present a numerical example to illustrate the results in Proposition 5 by using the above algorithm.

Example 2. Assume that the random loss X follows a truncated and shifted Pareto distribution with probability density function and E[ I λ 2 (X) 1 X≥D+P ] = 0.1450, which corresponds to Proposition 5(i) since

f X (x) = 24 7 10 3 (x + 10) 3+1 I {x∈[0,10]} . Moreover, we let W 0 = 11, τ = 0.05, k = 2, u(x) = x 0.5 , g + (x) = 1 -exp(-0.5x), and g -(x) = 1.05g + (x).
P o + ∈ E[P 1 X≥D+P ], E[ I λ 2 (X) 1 X≥D+P ]
. By using the results in Proposition 5(i), the improved insurance strategy, which is depicted in Figure 2, has the following marginal indemnity

I * (x) =                    0, x < 1.2945; 1, 1.2945 ≤ x < 1.4445; 0, 1.4445 ≤ x < 1.8812; ∈ (0, 1), 1.8812 ≤ x.
(4.13)

Second, we aim to improve an insurance strategy I(x) = 0.5x. We numerically obtain that D = 0.6521, P = 1.5, λ 2 = 1.1681,

P o + = 1.2173, E[ I λ 2 (X) 1 X≥D+P ] = 0.7860, and E[(X -D) 1 X≥D+P ] = 2.0608, which corresponds to Proposition 5(ii) since P o + ∈ E[ I λ 2 (X) 1 X≥D+P ] , E[(X -D) 1 X≥D+P ]
. By using the results in Proposition 5(ii), the improved insurance strategy, which is displayed in Figure 3, has the following marginal indemnity

I * (x) =              0, x < 0.6521; 1, 0.6521 ≤ x < 3.1759;
∈ (0, 1), 3.1759 ≤ x.

(4.14)

Especially for actuarially fair pricing, we further show that the optimal deductible can Proposition 6. If insurance is fairly priced, the optimal deductible can be zero.

Proof. See Appendix A.

Alternatively speaking, when insurance is fairly priced, all small losses should be fully insured. Note that the same conclusion has been made under EUT [START_REF] Arrow | Essays in the theory of risk-bearing[END_REF][START_REF] Arrow | Optimal insurance and generalized deductibles[END_REF].

Moreover, Arrow showed that when insurance premium is actuarially unfair, it is not optimal to insure people in all states of losses. The following proposition obtains a similar result under S-shaped narrow framing when the probability of nonzero loss is large enough.

Proposition 7. When insurance is unfairly priced, the optimal deductible must be positive if the probability of nonzero loss is large enough, i.e., (1 + τ )P(X > 0) > 1.

Proof. See Appendix A.

Note that the probability condition in Proposition 7 is not needed in [START_REF] Zheng | Optimal insurance design under narrow framing[END_REF] to

show that there must be a positive deductible when insurance is unfairly priced. One may wonder whether a positive deductible still exists if (1 + τ )P(X > 0) ≤ 1. (4.16)

I D 1 ,D 2 (x) :=      (x -D 1 ) + , x < D 2 ; D 2 -D 1 , x ≥ D 2 ,
where 0 ≤ D 1 < D 2 ≤ M .
With the help of Proposition 8, solving Problem (4.15) boils down to solving a twodimentional optimization problem. We provide a numerical example to demonstrate that the positive deductible may not exist for Problem (4.15) under the condition (1+τ )P(X > 0) ≤ 1.

Example 3. Suppose that τ = 0.05, M = 10, g + (x) = (x + 0.01) 0.5 -0.01 0.5 , g -(x) = 1.05g + (x), P(X = 0) = 0.15 > τ /(1 + τ ) = 0.0476, and f X (t) = 0.85 • exp(-t)/(1exp(-10)) for t ∈ (0, 10]. In this case, we can numerically derive that D 1 = 0 and D 2 = 0.2878, which means full insurance for small losses.

We know from [START_REF] Mossin | Aspects of rational insurance purchasing[END_REF] that when insurance is fairly priced, full insurance is optimal under EUT. Both Propositions 3 and 5 imply that either no insurance or partial insurance for tail losses will be optimal under S-shaped narrow framing. So our model can help explain the underinsurance. Conversely, when insurance is actuarially unfair, it is well-known from [START_REF] Arrow | Uncertainty and the welfare economics of medical care[END_REF] that the optimal contract contains a straight deductible under EUT. Although we derive the optimal scheme under S-shaped narrow framing by combining the techniques of stochastic dominance and Lagrangian dual method, it is very challenging to solve for the optimal premium and the corresponding insurance contract. Therefore, we cannot compare optimal insurance solutions under S-shaped narrow framing and EUT as Section 3 does. To make meaningful comparisons, we have to find some common ground, that is, the same insurance premium. In this case, it is easy to see that the optimal contract under EUT must up-cross the optimal contract under S-shaped narrow framing and the cross point is larger than the fixed premium. In other words, compared with EUT, S-shaped narrow framer exhibits the overinsurance in the loss domain and the underinsurance in the gain domain.

Conclusion

Given ample evidence showing that individuals are risk seeking towards negative deviations from the status quo (see, e.g., [START_REF] Kahneman | Prospect theory: An analysis of decision under risk[END_REF][START_REF] Tversky | Advances in prospect theory: Cumulative representation of uncertainty[END_REF], we have demonstrated that when only coinsurance policy is considered, S-shaped narrow framing can explain why people underinsure or overinsure certain types of risks as observed in various insurance markets. The key driver of insurance demand under S-shaped narrow framing is skewness of the risks to be insured. We have shown that less (or more) negatively skewed risks are more likely to be overinsured (or underinsured).

Our results seem in line with what empirical studies have documented. For instance, catastrophic risks are quite negatively skewed and underinsured (see, e.g., [START_REF] Kunreuther | Disaster insurance protection: Public policy lessons[END_REF][START_REF] Volkman-Wise | Representativeness and managing catastrophe risk[END_REF]. But risks associated with warranties are often less negatively skewed and people tend to insure them more in these cases. Admittedly, to validate our theoretical predictions, a clean test controlling for other factors across insurance markets such as information asymmetry and deadweight loads is required. Future empirical research may go in those directions.

We have also derived the optimal insurance scheme under S-shaped narrow framing.

The structure of optimal insurance under S-shaped narrow framing combines a straight deductible and partial insurance. In the loss domain where the net insurance payoff is negative, the policyholder's gambling motive and hedging motive are aligned. Among all eligible contracts, straight deductibles permit maximum risk taking in the net insurance payoff and maximize expected wealth utility. As a result, straight deductibles remain optimal for losses which are indemnified less than the insurance premium. So at least for those loss states, Arrow's classical result on the optimality of straight deductibles still holds. However, as indemnity increases beyond the insurance premium, the policyholder's objective to hedge risk on wealth conflicts with her aversion to risk on the net insurance payoff. Partial insurance in the gain domain turns out to be the best compromise between the hedging motive and the gambling motive.

which implies that G(α) is globally concave in α. Note that

G (0) = π 0 g -(0)(x -π)dF (x) + M π g + (0)(x -π)dF (x) = π 0 g -(0) -g + (0) (x -π)dF (x) + M 0 g + (0)(x -π)dF (x) <0 -g + (0)τ µ ≤ 0.
This, together with the concavity of G(α), can imply G (α) < 0 for any α ∈ [0, 1], and

thus U (α * EU ) + k • G(α * EU ) ≥ U (α) + k • G(α) for any α ∈ [α * EU , 1]. Therefore, if α * EU = 0, then α * must be zero. Otherwise, if α * EU > 0, due to the strict concavity of U (α) and U (1) = -u (W 0 -π)τ µ ≤ 0, we can deduce U (α * EU ) = 0. It then follows that α * < α * EU as a result of U (α * EU ) + k • G (α * EU ) < 0 for k > 0.
For any two positive degrees of narrow framing k 1 < k 2 , we denote the corresponding optimal coinsurance rate as α * k 1 and α * k 2 respectively. Since

U (α * k 1 ) -U (α) ≥ k 1 • (G(α) -G(α * k 1 )) ≥ k 2 • (G(α) -G(α * k 1 )) for any α ∈ [α * k 1 , 1], we must have α * k 1 ≥ α * k 2 .
The proof is thus completed.

Proof of Proposition 2

For any α ∈ [0, 1], we have

G (α) = - π 0 g -απ -αx (x -π) 2 dF (x) + M π g + αx -απ (x -π) 2 dF (x) ≥ - π 0 g -π (x -π) 2 dF (x) + M π g + (0)(x -π) 2 dF (x) =g + (0)B + -g -(π)B -≥ 0, which implies that G(α) is globally convex in α ∈ [0, 1]. The fact G (0) < 0, together with G(α * EU ) > 0 = G(0), can imply that α * EU > 0, G (α * EU ) > 0 and U (α * EU ) + k • G(α * EU ) ≥ U (α) + k • G(α) for any α ∈ [0, α * EU ]
. Therefore, if α * EU = 1, we can obtain α * = 1. A similar proof as in that of Proposition 1 can further show that α * > α * EU if α * EU < 1 and the optimal coinsurance rate α * is increasing in k. We complete the proof.

Proof of Proposition 4

We prove that for any eligible ceded loss function I(x) with an insurance premium P ∈ [0, π] and P < I(M ), there exists a better insurance contract I(x) which also costs P and contains a straight deductible for any loss to which the indemnity is less than the insurance premium.

Note first that there must exist an x 0 such that I(x 0 ) = P as a result of the fact that I ∈ I. Accordingly, we define

I(x) :=              (x -D) + , x < D + P ; P, D + P ≤ x < x 0 ; I(x), x ≥ x 0 , (A.1)
where

D ≥ 0 is such that P = (1+τ )E[ I(X)] or equivalently, E[ I(X) 1 X<x 0 ] = E[I(X) 1 X<x 0 ].
By construction, we have I(x 0 ) = I(x 0 ) = P , which implies that I(x) up-crosses I(x) and that x -I(x) up-crosses x -I(x) over [0, x 0 ]. Therefore, it follows from Lemma 1 that

       E u W 0 -I(X) + X -P 1 X≤x 0 ≤ E u W 0 -I(X) + X -P 1 X≤x 0 ; E g -P -I(X) 1 X≤x 0 ≤ E g -P -I(X) 1 X≤x 0 .
Therefore, we can deduce that

E u W 0 -X + I(X) -P -k • g -P -I(X) 1 X≤x 0 ≤E u W 0 -X + I(X) -P -k • g -P -I(X) 1 X≤x 0 .
This, together with I(x) = I(x) for any x ≥ x 0 , would imply that I(x) is better than I(x), i.e., V (I(X), P ) ≤ V ( I(X), P ). Therefore, the optimal solution I * (x) to Problem (4.1) must contain a straight deductible D * for any loss x such that I * (x) < P * ; otherwise it will be dominated by another contract.

Proof of Proposition 5

We analyze the optimal solution to Problem (4.3) in four cases depending on the relative value of λ.

Case (i): λ ≥ λ 1 . In this situation, we must have ψ x,λ (x-D) ≤ ψ x,λ (P ) < 0 for any x ≥ D+P.

As a result, y * (x) that maximizes ψ x,λ (y) in Equation (4.4) should be y * (x) = P for any x ≥ D + P.

Case (ii): λ 1 > λ ≥ λ 2 . In this situation, there must exist an x 1 ∈ [D + P, M ) such that u (W 0 -x 1 ) + k • g + (0) = λ. Therefore, on the one hand, when x ≤ x 1 , we have ψ x,λ (x -D) ≤ ψ x,λ (P ) < 0, which in turn implies that y * (x) = P for any x ∈ [D + P, x 1 ]. On the other hand, when x > x 1 , we deduce ψ x,λ (x -D) < 0 < ψ x,λ (P ).

Thus, y * (x) that maximizes ψ x,λ (y) should satisfy ψ x,λ (y * (x)) = 0 for any x > x 1 .

Notably, taking the derivative of y * (x) with respect to x yields ∂y * (x) ∂x = u (W 0 -x + y * (x) -P ) u (W 0 -x + y * (x) -P ) + k • g + (y * (x) -P ) ∈ (0, 1].

Case (iii): λ 2 > λ > λ 3 . In this case, there must exist an x 2 ∈ (D + P, M ) such that

u (W 0 -D -P ) + k • g + (x 2 -D -P ) = λ.
As a result, for any x ≤ x 2 , it must hold that 0 ≤ ψ x,λ (x -D) ≤ ψ x,λ (P ), which in turn implies that y * (x) = x -D for any x ∈ [D + P, x 2 ]. Moreover, for any x > x 2 , we can easily show that ψ x,λ (x -D) < 0 < ψ x,λ (P ), which yields that y * (x) is the solution to ψ x,λ (y) = 0. Moreover, it can be further shown that ∂y * (x)/∂x ∈ (0, 1].

Case (iv): λ ≤ λ 3 . In this situation, we can deduce 0 < ψ x,λ (x -D) ≤ ψ x,λ (P ) for any

x ≥ D + P. This leads to y * (x) = x -D for any x ≥ D + P.

Notice that, when P o + = E I λ 2 (X) 1 X≥D+P , we can easily see that the optimal solution to Problem (4.2) is

I * (x) =      (x -D) + ,
x < D + P ;

I λ 2 (x), D + P ≤ x,
where I λ 2 (x) solves ψ x,λ 2 (y) = 0 in y. Moreover, it is obvious that E[ I λ (X) 1 X≥D+P ] is continuous in λ, where I λ (x) solves Problem (4.3) under λ. Therefore, we only need to

show the monotone property of E[ I λ (X) 1 X≥D+P ] with respect to λ. To this end, let λ 1 and λ 2 be two constants with λ 1 > λ 2 . Moreover, we assume that I λ i solves Problem (4.3) with λ i for i = 1, 2. By the optimality of I λ 1 , we obtain Ψ(λ 1 , I λ 1 ) ≥ Ψ(λ 1 , I λ 2 ), i.e.,

V + ( I λ 1 (X)) + λ 1 P o + -E[ I λ 1 (X) 1 X≥D+P ] ≥ V + ( I λ 2 (X)) + λ 1 P o + -E[ I λ 2 (X) 1 X≥D+P ] ,
up-crosses x -Î(x) + P , which together with Lemma 1 implies

              
E u W 0 -X + I(X) -P ≤ E u W 0 -X + Î(X) -P ;

E g + (I(X) -P ) + = E g + ( Î(X) -P ) + ; E -g -(P -I(X)) + ≤ E -g -( P -Î(X)) + .

Therefore, we can conclude that Î(x) is better than I(x). Thus, at optimum, D * can be zero.

Proof of Proposition 7

Let I * (x) be an optimal solution with the insurance premium P * = (1 + τ )E[I * (X)].

According to Proposition 5, we have I * 
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 4 Whenever the optimal solution I * (x) to Problem (4.1) is non-zero, it must contain a straight deductible D * for any loss x such that I * (x) < P * , i.e., I * (x) = (x -D * ) + for any x ∈ [0, D * + P * ).
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 2 FIGURE 2. The improved insurance strategy for I(x) = 0.05x.
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  (x) = (x -D) + for x < D + P * . We prove by contradiction. Suppose that D = 0. The insured's final wealth becomesW (I * (X)) :=W 0 -X + I * (X) -(1 + τ )E[I * (X)] =W 0 -X + (I * (X) -) + -(1 + τ )E[(I * (X) -) + ] + I * (X) ∧ -(1 + τ )E[I * (X) ∧ ]for any > 0 where x ∧ y := min{x, y}. Note that, for any sufficiently small > 0, we can deduce(1 + τ )E[I * (X) ∧ ] -I * (X) ∧ =(1 + τ ) 0 P(X > y)dy -X ∧ ≥(1 + τ ) 0 P(X > y)dy -. If (1 + τ )P(X > 0) > 1, it follows that (1 + τ )E[I * (X) ∧ 0 ] -I * (X) ∧ 0 > 0 for some 0 > 0, which implies that W (I * (X)) < W ((I * (X) -0 ) + ). Also, we have I * (X) -P * =(I * (X) -0 ) + -(1 + τ )E[(I * (X) -0 ) + ] + I * (X) ∧ 0 -(1 + τ )E[I * (X) ∧ 0 ] <(I * (X) -0 ) + -(1 + τ )E[(I * (X) -0 ) + ],and similarly, P * -I * (X) > (1 + τ )E[(I * (X) -0 ) + ] -(I * (X) -0 ) + .

The United States has a long history of generous health insurance tax subsidies. Remarkably, the health insurance premiums that employers contribute to are not subject to individual income taxes. As noted in[START_REF] Wiener | Federal and state initiatives to jump start the market for private long-term care insurance[END_REF], a 1996 federal tax reform entitled employer-provided long-term care insurance to be exempt from employee taxable income.

Our choice of coinsurance policy in the paper is for simplifying the interpretations of our results.

See, for instance,[START_REF] Brown | Why don't people insure late-life consumption? A framing explanation of the under-annuitization puzzle[END_REF],[START_REF] Gottlieb | Lapse-based insurance[END_REF] and[START_REF] Gottlieb | Narrow framing and long-term care insurance[END_REF].

In the literature, there are also other attempts to explain both underinsurance and overinsurance puzzles. For instance,[START_REF] Braun | The impact of regret on the demand for insurance[END_REF] find that the deadweight load is crucial in determining whether certain risks would be overinsured or underinsured under regret theory.

It is worthwhile mentioning that this condition is also referred to as the no-sabotage condition in[START_REF] Carlier | Pareto efficient insurance contracts when the insurer's cost function is discontinuous[END_REF].

We refer to[START_REF] Köbberling | An index of loss aversion[END_REF] for more details on the index of loss aversion.

[START_REF] Bernard | Static portfolio choice under cumulative prospect theory[END_REF], and[START_REF] He | Portfolio choice under cumulative prospect theory: An analytical treatment[END_REF] employ the Omega measure to study portfolio choice under cumulative prospect theory.

This assumption is commonly satisfied by hyperbolic absolute risk aversion (HARA) utility functions including exponential, logarithmic, power, and quadratic utility functions, which are widely adopted in economics.

[START_REF] Xu | Optimal insurance under rank-dependent utility and incentive compatibility[END_REF] argue that rank-dependent utility may also serve as a rationale to explain the donut hole.
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Appendix A: Proofs Proof of Proposition 1

For any α ∈ [0, 1] and assuming that g -(•) and g + (•) are not imprudent, we have

Similarly, by the optimality of I λ 2 (X), we get

which implies

as a result of λ 1 > λ 2 . The proof is thus completed.

Proof of Proposition 6

We show that if insurance is fairly priced, for a contract 

Moreover, it is easy to check that Î(x) -P up-crosses I(x) -P and that x -I(x)

which contradicts the optimality of I * (x). Therefore, the deductible D * must be positive if (1 + τ )P(X > 0) > 1. The proof is thus completed.