
HAL Id: hal-04227367
https://hal.science/hal-04227367

Submitted on 3 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Unified Architecture Framework supporting SoSs
Development: Case of the Aircraft Emergency Response

System-of-Systems
Charaf Eddine Dridi, Zakaria Benzadri, Faiza Belala

To cite this version:
Charaf Eddine Dridi, Zakaria Benzadri, Faiza Belala. A Unified Architecture Framework support-
ing SoSs Development: Case of the Aircraft Emergency Response System-of-Systems. International
Journal of Organizational and Collective Intelligence (IJOCI), 2023. �hal-04227367�

https://hal.science/hal-04227367
https://hal.archives-ouvertes.fr


A Unified Architecture Framework supporting
SoSs Development: Case of the Aircraft
Emergency Response System-of-Systems

Charaf Eddine Dridi1[0000−0001−5724−8187], Zakaria
Benzadri1[0000−0002−9199−0657], and Faiza Belala1[0000−0002−4563−4061]

Constantine2 - Abdelhamid Mehri University LIRE Laboratory, Constantine, Algeria
{charafeddine.dridi, benzadri.zakaria, faiza.belala}@univ-constantine2.dz

Abstract. One of the major challenges in large-scale systems is the ef-
fective architectural design of complex constituents employing rigorous
modeling methodologies. The engineering of Systems-of-Systems (SoSs)
constitutes another critical issue that requires the definition of multiple
viewpoints that are dedicated to various concerns of stakeholders. To ad-
dress this challenge, this paper contributes to the definition of a reusable
framework handling the design of SoSs’ architectures by adopting a con-
ceptual model of architecture framework “ISO/IEC 42010:2011 standard
for Systems and Software Engineering-Architecture Description”. The
proposed framework extends this standard by using well-defined soft-
ware development processes, to identify and implement the different ar-
chitectural viewpoints. Besides, these processes are used in a way to take
advantage to manage and document a set of diagrams given by a UML
profile, and then, to verify that the parts of the architecture form a
consistent whole. In this context, we define four main viewpoints dedi-
cated to the various stakeholders and which are essential to allow them
to describe and implement different SoSs. To guide the control and co-
ordination of the development tasks, this framework provides again a
development processes model that allows the stakeholders to explicitly
design the viewpoint they want using an SoS-UML profile. This latter is
a design tool that implements these viewpoints in a modeling environ-
ment together with the corresponding dedicated development processes.
The results we get on the concrete design of the case study we considered
are encouraging and go beyond the results of existing frameworks.

Keywords: SoS · SoSE process · Multi-Viewpoints Architecture Frame-
work· SoS-UML Profile · IEEE 42010

1 Introduction

In recent years, SoSs have experienced an increasing evolution and interest from
the computer science community. SoSs are not designed in a top-down way,
they have been designed to integrate multiple independent functional systems
into a larger system in several important application domains. However, these



2 .

Constituent-Systems (CSs) are becoming larger, more complex, and difficult to
develop as well. Examples of these large-scale systems can be found in sev-
eral fields such as Robotics, Avionics, Military, Intelligent systems (Smart-Grids,
Smart-Cities, Smart-Homes, etc.). An SoS is characterized by offering new func-
tionalities to users that cannot be offered by its CSs, but emerging from their
combination. The CSs making up an SoS are independent, geographically dis-
tributed, developed with different technologies and intended for several plat-
forms.

As SoSs get more and more complex, engineers need to pay a lot of atten-
tion to early-stage design decisions rather than focusing on implementation and
writing code. This will facilitate the process of developing such large-scale sys-
tems. Additionally, Architecture Frameworks are a recent discipline in Software
Engineering (SE) that consider Architectural Viewpoints as first-class entities
in software development. The viewpoints have become the major paradigm in
which the SE will be able to open a door to the development representation
and provide a new way of designing systems. In the context of SoSs, we argue
that our architecture framework encompassing the knowledge on how to design
SoSs would ease the application of this process and, consequently, produce an
SoS of higher quality. A single comprehensive viewpoint of an SoS’ architecture
is often too complex to be understood and communicated in its most detailed
form, showing all the relationships between the various business, structural and
behavioral aspects. Therefore, we are seeking to represent by means of one or
more architecture viewpoints that together can provide a unified AF of SoS’
architecture.

1.1 Context and Problematic

The field of SoSs comes up against constraints during the engineering process.
The difficulty of modeling SoSs lies in the complexity resulting from the inter-
action, cooperation and collaboration of their heterogeneous CSs, which each
have specific goals to accomplish, different roles to play, and they are not easily
interoperable. Independent evolution and dynamic changes can cause these CSs
to behave differently. These changes can affect their interactions and communi-
cations within the SoS and consequently, it can derail the overall mission of the
SoS. Architecting an SoS helps to understand how it works, as well as to master
its complexity before its implementation. This offers considerable advantages
to the designers of such systems. Besides, it can be seen as the separation of
different functional and non-functional needs which are related to SoSs charac-
teristics, SoSs quality attributes, management and oversight, SoSs architecture,
design and implementation.

In this new perspective, SoSs development does not follow the normal system
development process. As SoSs’ capabilities are based on the contributions of the
individual CSs, their interdependences make a document-centric development
impractical as an exorbitant effort. The development processes refer to activities
that can guide an SoS’ lifecycles from the system requirements level down to



AF-SoS 3

the software implementation level, and naturally, by coordinating the various
processes for the development of a new system [1].

From a SE perspective, design decisions made at the architectural level have
a direct impact on the fulfillment of functional and quality requirements of SoSs
development. At this stage, the SoS’ Stakeholders identify functional and non-
functional characteristics through the use of their own theoretical backgrounds,
notations and environments. In addition, the SoSs’ architectures are still created
without the support of a systematic processes and traditional design approaches
do not adequately support the creation of these types of systems due to their
composed nature, their large-scale, their decentralized control mechanism, their
evolving environments, and their large number of stakeholders [1].

1.2 Motivation and Objectives

To get a handle on this complexity, it is necessary to maintain consistency and
coherence between the different viewpoints of different stakeholders, as well as
the ability to reconcile and include all their viewpoints before proceeding to the
various processes in the SoSE lifecycle. In this context, the paper introduces
a Multi-viewpoints approach-based Architecture Framework, that is associated
with a set of SoSE development processes and a UML profile dedicated to the
SoSs that can facilitate and improve the design of SoSs’ architectures. The pur-
pose of this work is to present an AF that intends to foster the systematic
development of SoSs’ architectures. The main contributions of this paper are
manifold:

– The proposal of an AF that encompasses the concepts proposed by “ISO/IEC/IEEE
42010:2011 Systems and Software Engineering-Architecture description” to
manage the complexity of SoSs’ architectures following a multi-viewpoint ap-
proach. However, the standard is a general Meta-Model, therefore we have
had to specialize according to SoSE’s context. Consequently, our specializa-
tion aims at specifying a set of SoSE processes necessary to have a semantic
consistency between the different parts of the SoS’ architecture specified in
the different viewpoints.

– Improving the potential of the AF by integrating systematic processes of de-
veloping SoSs’ architectures which can have a positive impact on the overall
quality of the framework. The design of these processes is based on a consol-
idated Model-Based SoSE in which the involved processes can be seen as a
sequence of connected and dependent activities. It should be noted that to
our knowledge, there is no available SoSE process in the literature to support
the design of IEEE 42010 standard.

– Defining an SoS-UML Profile to model a set of SoSs’ processes. The ad-
vantage of this profile is to provide a large number of models to separately
capture, describe and organize each of the processes of different viewpoints.
The proposed profile is a package of new stereotypes’ notations that are ex-
tended from existing UML2.0 elements. These new notations will complete
the list of standard UML notations by modeling explicitly and appropriately
all structural and behavioral aspects of SoSs.



4 .

– Demonstration of the work by designing an SoSs’ architecture of an “Aircraft
Emergency Response System-of-Systems” (AERSoS). It is therefore the aim
of the paper to show that a unified AF for SoSs’ architectures abstractions
are needed.

1.3 Paper structure

The remainder of this paper is organized as follows: in Section 2, we provide some
prerequisites and backgrounds on SoSs and our related works. In section 3, we
discuss different approaches adopted to design and analyze these systems. Section
4 gives a top view model of our approach. In Section 5, we show the detailed
description of the Multi-viewpoint-based architecture framework. In Section 6,
we introduce a UML extension mechanism for modeling the SoS’s architectures,
conducted by an illustrative case study. Finally, Section 6 concludes the paper
and discusses possible future works.

2 Prerequisites

SoSs are an emerging vision for the next-generation systems that are built by
interconnecting existing legacy systems. The existing literature provides a rich
set of definitions of an SoS. However, there is no an official agreed definition for
what is an SoS or what are its main characteristics. In general, the definition
of an SoS is mainly based on the properties and application domains. Based on
existing works [2–6], we define an SoS as a set of distributed and complex CSs
that interact in a network structure to create a large-scale system and perform
a unified capability that cannot be provided by any of the CSs.

Moreover, the authors of [2, 5] and others, highlight the five common char-
acteristics which are: (1) operational independence of CSs, (2) managerial inde-
pendence of CSs, (3) geographic distribution, (4) emergent behavior and (5) evo-
lutionary development. These characteristics are the main distinguishing prop-
erties between SoSs and other types of systems. A system that does not have
these characteristics cannot be considered an SoS [1].

In addition, an SoS can take four different types. These types are primarily
based on the governance, management complexity and the relationships among
the CSs in the SoS. Therefore, every SoS can be recognized, treated and clas-
sified following one of the following four types of SoSs: Virtual, Collaborative,
Acknowledged or Directed.

On the other hand, there is no doubt that today’s SoSs can be found every-
where, and it is easy to see that their applications are increasingly covering a
variety of domains. A wide range of studies has already addressed these domains:
Transportation [7–10], Healthcare [11, 8], Military Defense [12, 13], Smart City
[15, 14], Smart Energy Grids [8, 14], Emergency Management and Response [8].
For more details about SoS’ characteristics, types and application domains, see
[16, 1].



AF-SoS 5

To validate our approach, an example of Aircraft Emergency Response System-
of-Systems, abbreviated AERSoS, will be considered in order to clarify and con-
cretize the basic elements and the contributions made by SoS-AF methodology.
This case study was illustrated in [16] to introduce the notion of Meta-Modeling
in the SoSs context. We will adopt it here to encapsulate all the necessary notions
in the SoS-AF.

As an illustrative example of an SoS, consider a collection of autonomous
and interacted CSs tasked with the prevention of the aircraft from any acci-
dent or system failures. To achieve this Goal, AERSoS must be designed in
such a way that the CSs can interact and perform a unique capability that can-
not be provided by any of the CSs. Examples of the AERSoS’ CSs include an
AircraftEmergenciesSoS, EmergencyResponseSoS, WarningSoS, EvacuationCS,
TowerControlCS, EnginesProtectionCS, LandingCS, etc. see Figure 1.

Fig. 1. Aircraft Emergency Response System-of-Systems (AERSoS) from [16]).

Each CS of the AERSoS is a system that is specified by a set of entities,
which are divided into three types. The first set represents the Roles describing
the ideal behavior of CSs through the gathering of the required Capabilities
to accomplish the AERSoS global-Goals, the second represents the Capabilities
describing the functions provided by each CS in specific Roles to the wider needs
of the AERSoS, and finally, the Goals, describing instances of the AERSoS’
Roles, that represents sub-Goals of each CS and Global-Goal of AERSoS.

In our previous work[1], we have introduced a Meta-Model called MeM-
SoS (see Figure 2). We have presented the main notions, concepts and entities
constituting an SoS. MeMSoS emphasizes a vision-oriented on the hierarchical
composition of CSs and highlights the importance of CS, Roles, Capabilities,
Goals and Interactions, etc. (for further details, readers are encouraged to refer



6 .

to [16] and [1]). The MeMSoS is based on the EMF “Eclipse Modelling Frame-
work”, we used Ecore Modelling Language to specify the abstract syntax of the
Meta-Model and carried out within Eclipse Sirius tool.

Fig. 2. Overview of the MeMSoS, from [16]).

In addition, MeMSoS supports a Platform-Independent Model (PIM) level.
Therefore, it allows the designers to successively refine the PIM in terms of SoSs
aspects. In this work, we consider the MeMSoS as our reference of concepts
since it specifies the necessary concepts for SoSs description, identifies relations
between their CSs and defines vocabulary to be mapped to SoS-UML Profile.

3 Related Works

Nowadays, there is a growing consensus that the SoS concept is an effective so-
lution to implement and analyze large, complex, autonomous and heterogeneous
distributed systems named CS. Systems of systems are collectively interacting
to achieve a higher global target that would not be possible to accomplish in-
dividually. Their complexity arises from the uncertainty of the behavior: (1) to
preserve their performance, (2) to complete the required functions and (3) most
importantly to anticipate potential defects.

Actually, SoS engineering (SoSE) has been considered by many researchers
and practitioners a fundamental asset in SoS development and deployment, since
their applications included numerous modern society solutions. SoSE standard-
ization represents the process of designing, organizing, deploying, and integrating
the capabilities of a mix of existing and complex systems to produce desirable
results into an SoS. A large number of modeling approaches that address SoS



AF-SoS 7

architectural aspects were identified by recent works and the seven main classes
are [1]: MDA, MD, SOA, Ontology, ADL, Bigraph and Hybrid. The following
presented works in this section describe a review of the contributions in SoS,
SoSE and related subjects. Most of these points are collected from [1]:

– (Model-Driven Architecture) MDA-based approaches: the aim of
[21] was to define an abstract view with all the possible information in the
configuration and deployment processes. A meta-model that represents sev-
eral possible configurations was also produced. The authors of [22] have
adopted an MDE approach to define a DSML that was used to model SoS
security architectures. The authors of [23] have defined an SoS profile that ex-
tends on the SysML reference meta-model with specific language constructs.
They have also introduced an extension of this work in [24]. In the same
direction, in our previous paper [1], we have provided an MDA method that
simplifies SoSs complexity by increasing their abstraction level.

– (Model-Driven) MD-based approaches: authors of [25] have proposed a
formalism for relating basic SoS concepts by means of a UML class diagram.
They have identified a set of basic concepts to describe a modelling approach
for collaborative SoSs. The goal of [26] was to show how SysML models can
be used to support a set of needs that are essential for a SoS. In [27], the
authors have investigated through a case study in the construction domain
the interplay between SoS and CS architectures. The paper [28] has provided
an approach to support design activities in the SoS development process.

– (Services-Oriented Architecture) SOA-based approaches: the au-
thors of [29] have proposed an approach to assist the SE community during
the integration among CSs of a SoS and to use it as a basis for the com-
position of Directed SoS. The authors of [30] have proposed a service-based
architecture, which they named MV-SoSA, that serves as a basis when com-
posing new Mixed-type SoSs. The authors of [31] have realized a modular
reconfigurable SoS based on a platform of reusable distributed CSs integrated
within a SOA.

– Ontology-based approaches: the authors of [32], have described a SE
methodology using a UML-like representation of SoS. UML has assisted the
authors to develop the required elements of SoS ontologies. The aim of this
paper [33], was to provide a method for approaching the first two levels
“Needs and boundary conditions” and “SoS Capabilities” of the SoS-process
and generating a SoS design space using ontology. The authors [34] have
proposed an approach to build an SoS conceptual model and a foundational
ontology adapted from DOLCE to depict SoS interoperability context [35].
The authors of [36] have proposed an SoS cyber effects ontology that outlines
the requirements for a series of ontologies necessary to model the SoS effects
of cyber-attacks.

– (Architecture Description Language) ADL-based approaches: this
approach [37] suggests a Maude-based formal and executable model where
communications and relationships architecture is well-defined. The authors
of [38] have presented SosADL, an ADL based on a -Calculus with Concur-



8 .

rent Constraints specially designed for describing SoS architectures. The ex-
tended work [39] enables the description of evolutionary architectures, which
maintain emergent behavior supporting dynamic reconfigurations. And in
[40], they have focused on the description of SoS architecture to support
automated verification.

– Bigraph-based approaches: in [41], the authors have proposed a novel
methodology based on the formal technique of BRS with an inspiring vision
from multi-scale modeling. The authors of [42] and [43] have demonstrated
how bigraph-based approaches can engage with SoS through abstract re-
lationships that allow for dynamic interaction. In [44], the authors have
presented a tool for bigraph matching and transformation. They have im-
plemented a solution based on an investigation of formal approach reaction
rules that have been used to rewrite bigraphs for modeling and simulation
of SoS.

– Hybrid approaches: in [45] where the authors have exploited different
models and in particular executable models from SysML specifications. This
work [46] has focused on developing a conceptual meta-model called M2SoS
that represents SoS ontologies. The authors of [47] have presented a hybrid
modeling method based on service-oriented and ontology-based modeling.
The authors of [48], have presented an MDA for service-oriented SoS archi-
tecting, modeling and simulation. The authors of [49], have used a hybrid
approach with both Colored Petri Nets and Object Process Method modeling
languages to create executable architecture models for SoSs.

In the same context [50], the authors have proposed a method to adapt the
standard proposed by "ISO 42010 for the software industry" to be adequate
to describe the software architectures of SoSs. To this end, the authors have
changed the concept of ‘System of Interest’ by ‘CS’ and added an element entitled
‘System-of-Systems (SoS)’. Then, they proposed to add a relationshihip link
between them labeled ‘participates on’.

Based on the previously mentioned approaches, we note that various model-
ing methods were adopted in the development lifecycle of SoSs; from the system,
requirements level down to the software implementation level. The majority of
the approaches have some advantages and disadvantages .i.e. all of them are only
limited to dealing with some SoS concepts; namely, by taking into account the
high-Level SoS requirements, understanding the CSs and their relationships and
inter-dependencies, effective mission capability, etc.

Additionally, the adopted modeling methods come from a wide range of back-
grounds, ranging from conceptual models to formal methods, hybrid methods,
etc. The adopted modeling methods face several challenges: (1) some focus on
describing the SoS as a whole, addressing structural organizations, ignoring how
the CSs interaction; (2) others express the SoS at different levels of abstraction
which is broad enough to cover the different aspects of SoS; (3) more still tar-
get the reasoning focusing less on detecting CSs behavior and how the goals
and requirements change at runtime; (4) finally, and most importantly these
approaches are not to mention a complete SoSE process. In fact, SoSE adopts



AF-SoS 9

a structured, main three-process engineering (Conceptual design and CSs selec-
tion, Architectural Design, and Integration and deployment) to develop projects
from Analysis through Implementation that permits releasing an efficiently fin-
ished SoS, satisfying stakeholders and performs as required.

One possible solution for describing an SoSE and SoS architecture is to rely on
standards such as ISO/IEC/IEEE 42010 [17]. However, in practice it is much too
complicated to understand such standards, as they are considered too high-level
to be used in practice, and also too complex to be easily understandable by the
SoS designers. The proposal within this paper is to specify a framework named
AF-SoS to satisfy the level of architectural maturity using ISO/IEC/IEEE 42010
as context.

4 Methodology and principles of the solution

The shortage of academic interest in the architectural standards of SoSs’ domain
and the lack of a single unified consensus of processes involved in the SoSE lead
to the absence of consolidated AF of these types of systems [1]. Besides, Creating
and managing a coherent SoS architecture framework is clearly a complex task.
Therefore, the main purpose of this work is to follow the roadmap that we
previously have suggested in [1] and define a Model-Based SoSE methodology,
allowing decision-makers to design informed architectural solutions for the most
well-known SoSs challenges. To this end, an Architecture Framework called SoS-
AF that describes this methodology is introduced in this paper, it supports the
SoSs development and resolves the common issues encountered in the SoSE.

Figure 3 below summarizes the framework, it can depict four different phases:

1. Initiation phase: describes the initiation methods and the architectural
principles required to create our AF; namely, ISO Standard 42010, Model-
Driven Approach (MDA), Unified Modeling Langage (UML) profile and
SoSE process model. This combination covers and connects different pro-
cesses in a global framework. As well as it contains both the tools and the
methods for constructing and managing SoSs architectures.

2. Extension phase: permits to use an MDA-based Meta-Model that we de-
veloped in the previous work as a reference to obtain extended UML models.
In particular, it proposes a UML Profile-based modeling tool for SoSs called
SoS-UML Profile. The latter provides a generic extension mechanism for
building UML models in SoSs domain, and offer a way that reflects and
refines the specifications of the new framework.

3. Adaptation phase: permits obtaining global AF viewpoints of the SoS by
incorporating the first two phases. On the one hand, It is essentially based
on the adaptation of “ISO/IEC/IEEE42010 standard: Systems and Software
Engineering-Architecture Description”[17] to make it suitable to a Model-
Based SoS Engineering context. And on the other hand, it highlights the
adoption of SoSE processes and demonstrates how SoS-UML Profile can be
leveraged to lead the production of SoSs architectures and to govern the



10 .

Fig. 3. Multi-Viewpoints Framework for SoSs’ Architectures.

involved stakeholders. The strength of this methodology lies in migrating
SoSE processes from one architecture viewpoint to another and at the same
time mitigating common concerns.

4. Illustration phase: involves a set of examples to validate some of SoS-
AF related properties. It demonstrates that this work can offer a consistent
AF for an SoS’ case study (e.g. AERSoS). i.e. it represents a complete and
more generic AERSoS-AF that is conducted throughout an orderly SoSE
development processes.

The proposed SoS-AF will enable various stakeholders to separately design
each process from different viewpoints. i.e, it gives a generic methodology to
ensure that the resulting SoSs architecture models will also yield the desired
expectations. Moreover, we argue that with this methodology and the SoS-UML
profile-based model kind it provides, will offer a map to guide stakeholders to-
wards achieving a unified SoS’ AF.



AF-SoS 11

5 A Multi-Viewpoints approach for the SoS Engineering

Architecture frameworks are mechanisms widely used in architecting. They es-
tablish a common practice for creating, interpreting, analyzing and using ar-
chitecture descriptions within a particular domain of application or stakeholder
community. As a result, their uses include, but are not limited to [18]:

– Creating architecture descriptions.
– Developing architecture modeling tools and architecting methods.
– Establishing processes to facilitate communication, commitments and inter-

operation across multiple projects and/or organizations.

The idea is that an AF is a knowledge prefabricated structure that stake-
holders can use to organize an architecture description into complementary
views [19]. The specification of an AF is one area of the standardization in
ISO/IEC/IEEE42010:2011. This standard proposes a conceptual model to de-
scribe the terms and concepts pertaining to systems and architecture description.
This standard specifies an AF as a composition of multiple Viewpoints (VPs),
each VP can be used to address specific concerns of different Stakeholders [17].

We aim to extend this standard to offer a comprehensive guideline to define
an SoS-AF. It is specified by enhancing the concepts of the AF description
represented in the international standard with the essential processes that an
SoS’ AF should encompass, as well as an SoS-UML Profile that identifies a set
of Model Kind as a way to guide the SoS-AF construction (red rectangles in
Figure 4).

Fig. 4. An extended conceptual model of the SoS-AF.

The proposed SoS-AF conforms to the standard IEEE 42010:2011 and its
description is motivated by the different concerns commonly shared by SoSs’



12 .

stakeholders across various development processes. Therefore, to form a collec-
tion of architecture VPs that constitutes the body of our SoS-AF description,
we provide a comprehensive UML profile-based modeling basis for the notion of
SoSs that can guide the development of SoSE processes pertaining to the shared
concerns of each involved Stakeholder.

Consequently, our SoS-AF model is introduced as a composition of a set of
VPs, each VP is created through an aggregation of one or more SoSE processes. A
SoSE process is governed by a set of Model Kind appropriate to specific concerns
to be addressed by different Stakeholders. These Model kinds are specified by
SoS UML Profile. i.e. SoS-UML profile defines a modeling tool that we develop
to describe the associated Model kind that governs different SoSE processes
and their underlying relations and dependencies. In the following, the SoS-AF,
Concerns, Stakeholders, SoSE Process, VPs and Model Kinds are described.

5.1 Concerns

Concerns arise throughout the development life-cycle of SoSs, from the CSs
knowledge level down to design and implementation level. A concern may ap-
pear in many forms, such as stakeholder relationships, SoSs’ global objectives,
Capabilities, requirements, modeling constraints, CSs’ interdependencies, Qual-
ity Attributes, design decisions or other issues that pertain to any influence
on SoS in its environment. Through our previous studies [16, 1], we were able
to extract these concerns by exploring multiple aspects related to SoSE; those
concerns are framed in this study according to five SoSE processes as follows.

5.2 SoSE processes

SoSE processes have a major stake in the SoS-AF and strong influence in its
implementation. Our contribution consists in inspiring from the SoSE processes
provided by [20] to guide the SoSs lifecycle processes from CSs knowledge, to
design and implementation. We propose to take inspiration from this work by
modifying some elements to adapt it to our previous works.

Fig. 5. The proposed SoSE development processes (Adapted from [20]).



AF-SoS 13

SoSE processes express the activities engaged under SoSE from the perspec-
tive of one or more Stakeholders to frame specific Concerns, using the conven-
tions established by its models. Each SoSE process will be identified by one or
more governing Model Kind that adheres to the conventions of SoS UML Profile.
However, as shown in Figure 5, the main SoS development processes involved in
our SoS-AF are:

– SoS Knowledge: addresses high-Level SoS requirements and investigates ex-
isting CSs that can participate in the SoS.

– CSs Selection: this process consists of choosing a set of CSs and distinguish-
ing their relevant Capabilities and Goals.

– Conceptual Design: the design involves creating a global vision of an SoS,
defining the essential relationships and identifying mission capability assess-
ment.

– Architectural Design: represents a global architecture for the SoS’ constituents
and their possible Roles. It could be developed in parallel with the CSs Se-
lection process.

– Interaction: the different CSs involved in an SoS usually have different Ca-
pabilities. Therefore, a large part of the software engineering effort in the
SoSE is to design interactions so that the CSs can interoperate.

– Integration & deployment: this process implies that the different CSs in-
volved in the SoS work together and interact through the assigned Roles.
Deployment of the system consists of setting up the CSs interactions in the
organizations concerned and making it operational.

5.3 Viewpoints

A viewpoint in SoS-AF is a selection of relevant aspects of the SoSE processes
(and their Stakeholders’ concerns); and the representation of that part of an
architecture that is expressed in different Model Kind. It is claimed that the
SoSE processes form a necessary and sufficient set to meet the needs of SoS-AF.
Four main VPs are identified in our proposed SoS-AF:

– Business viewpoint: the VP of Business includes the knowledge and require-
ment of CSs, and the creation of a rough draft of the SoS requirements
including identification of the possible Capabilities, which could be derived
from the existing CSs of the application domain.

– Analysis viewpoint: aims to analyze the problem and the addressed solu-
tion, it starts by selecting the appropriate CSs involved in providing the
required SoS capabilities and then by building the conceptual design model,
which will offer a global understanding of CSs, their relationships and inter-
dependencies as part of the SoS.

– Design viewpoint: supports architects and designers in the design processes
from initial sketch to detailed design. It can deal with the fundamental pro-
cesses of an SoS development and the discipline of designing such architec-
tures, CSs, Roles, and their collaborations.



14 .

– Deployment viewpoint: is a process of merging two or more diverse Roles
that are designed to define, control, and monitor complex interactions that
extend across SoS and CSs boundaries.

5.4 Stakeholder

Stakeholders are inherently heterogeneous due to multiple users, their VPs, engi-
neering processes, platforms, environments. . . etc. Stakeholders are individuals,
groups or organizations holding Concerns for an SoS. They use SoS-AF Descrip-
tion to understand, analyze and compare SoS’ architectures. Each SoSs’ concern
could be managed by one or more stakeholders; four main stakeholders have
been identified in this framework:

– SoS Experts: a group of persons responsible for the Business VP establish-
ment, with strong theoretical knowledge in an SoS application domain and
they have the ability to understand the practical implications of the existing
CSs that can participate in SoS and can translate SoS Capability Objectives
into High-Level SoS Requirements.

– Architects and Designers: their role is vital to the success of both Analysis
and Design VPS, they translate the requirements into a demand for CSs
Capabilities. i.e. they look at business plans and requirements provided by
SoS Experts, analyze the Goals and the Capabilities of the selected CSs, and
propose recommendations on the right selection of CSs to achieve the SoS’
Global Goal.

– Collaboration Specialists: they are also Analysis and Design experts; they
are responsible for understanding CSs and their Capabilities’ collaboration.
They also look at integrations with existing CSs, interfaces with people and
other systems.

– Interactions Engineers: persons responsible for the Deployment VP and they
are responsible for specifying communication and interactions between dif-
ferent Roles. They oversee the CSs’ Capabilities and their Roles’ interactions
to facilitate the interaction modeling within an SoS application.

5.5 Model kinds

The proposed SoS-AF must support the modeling of all the concepts and rela-
tionships of the SoSs entities, with their different static and dynamic aspects.
Thus, we propose an “SoS-UML Profile for SoS-AF”. In Figure 6, we summarize
the needed diagrams for each VP. The SoS-UML profile introduces a graphical
construct to represent the requirements diagram and relate it to other Static
and/or Behavior diagrams. The static diagrams include the Goals diagram, Do-
main model diagram and Constituent diagrams. The SoS behavior diagrams are
represented by the Capabilities diagrams, Roles Interaction diagrams, Capabili-
ties Collaboration diagrams and Roles Interfaces diagram.

The concrete syntax of SoS-UML profile is formulated to graphically repre-
sent a set of Model Kind using UML notation for each SoS aspect. This SoS-UML



AF-SoS 15

Fig. 6. SoS-UML Profile’s diagrams.

profile, its diagrams and all their associated concepts will be detailed in the next
section.

6 SoS-UML Profile: UML Extensions for Modeling
SoS-AF

SoS-AF is our proposed architecture framework to support the entire develop-
ment of SoSs’ lifecycles, including its various processes from the requirements’
specification process, design, to the implementation process. Hence, the need for
a tool allowing the definition of the overall architecture of SoSs, and also the
definition of specific models for each involved process (such as UML models)
is essential. For this reason, we present a UML2.0 extension tool, denoted SoS-
UML profile, for the management of SoS’ architectures following the approach
proposed in SoS-AF.

A key engineering problem then is to construct an Architecture Framework
of the AERSoS (AERSoS-AF) based on the proposed AF-SoS, and this requires
to :

– Create different VPs matching the VPs of SoS-AF at high-level abstraction,
– Take advantage of SoSE processes that can be used to manage the AERSoS,
– Use the SoS-UML Profile to abstract their analysis and design from im-

plementation technologies, increase the automation of the development of
AERSoS and allow VPs modeling.

To be able to specialize the UML for the SoSs domain, we needed to extend
the MeMSoS to integrate new entities and constructions adapted to treat SoSs.
Figure 7 shows the new version of MeMSoS (black rectangles: unchanged entities,
green rectangle: updated entities and red rectangle: new entities). Consequently,
MeMSoS’ will represent the definition of SoS-UML Profile below, and defines
the available building elements and how they can be assembled.

The new version of MeMSoS offers better support of different VPs modeling,
frames Stakeholders concerns and introduces new features. This new version



16 .

provides all the mapping information required to automatically generate the
SoS-UML profile with all the semantic expressiveness and precision. With the
new extended abstract and corresponding concrete syntaxes of SoS-UML Profile,
we are able to successfully reach high-level specification of aspects and address
the cross-cutting concerns that depend on the Stakeholders’ VPs.

Fig. 7. Overview of the new version of MeMSoS.

The proposed SoS-UML profile is a Meta-Model extension mechanism that al-
lows stakeholders to add new elements of the MeMSoS Meta-Model, better suited
to model particular systems as SoSs. Every existing element will be specialized
by a stereotype and semantically equivalent to a new class of the MeMSoS which
will bear the same name as the stereotype. In the following, we introduce new
elements enriching UML 2.0 diagrams. These elements will make it possible to
frame the main processes, aspects characterizing the notion of SoSs. As well as,
we give a brief representation of the abstract syntax for the proposed profile.

The main purpose of this section is to present some UML extensions that
define the Meta-Modeling aspects for our SoS-UML Profile. We have used the
“IBM Rational Software Architect 9.0” tool for the realization of this profile.



AF-SoS 17

As well as, we work on an instance of Eclipse which loads the plugins that we
generate previously, in order to be able to design a set of examples of our models.

This section presents the abstract/concrete syntaxes of the SoS-UML profile,
which is structured into packages labeled by the SoSE development processes’
names to make groupings of different aspects, and thus better manage the com-
plexity of each process. Figure 8.(a) shows a screenshot of the different pack-
ages in IBM RSA tool that make up the Profile’s Meta-Model, it involves six
packages namely: SoS_Knowledge_Package, CS_Selection_Package, Concep-
tual_Design_Package, Architectural_Design_Package, Interaction_Package and
Integration_Deployment_Package. Additionally, Figure 8.(b) shows their rele-
vant interdependencies as mentioned in the SoSE processes model. In the fol-
lowing, we will demonstrate how we use each package of them as a model kind
to design the main concepts of each process in the SoSE development.

Fig. 8. SoS-UML profile packages.

6.1 SoS_Knowledge_Package

The SoS_Knowledge_Package describes the basic elements needed to describe
the SoS Knowledge. The deliverable contained in this package will guide the de-
scription of the SoS’ Goals and support the identification of its Capabilities dur-
ing the next process. Particularly, the two stereotypes Requirement and System
are the central concepts in this model, and they represent a unit SoS Knowledge
process. The latter starts with understanding the desired Requirement and sug-
gesting a set of Systems as various options for achieving that Requirement. It is
used for the representation of the Requirement Diagram’s Model. The package
contents are shown in the next Figure 9.



18 .

Fig. 9. The structure of the SoS_Knowledge_Package.

The Requirements Model represents the functionalities or the conditions that
an SoS must fulfill based on the contributions of the collaborative CSs. As shown
in the package figure, it contains different stereotypes for describing the knowl-
edge and requirement of an SoS, and how they can be related to the necessary
entities to gather, organize, analyze and decompose the different existing sys-
tems that can participate in an SoS. A part of this diagram, describing the most
important stereotypes and the extended meta-classes is shown in Table 1.

Table 1. Stereotypes of the SoS_Knowledge_Package.

Process Model Kind UML
Diagram Stereotypes Description Meta-class

SoS
knowledge

Requirement
Diagram

Class
Diagram Requirement Capability or Goal that must

(or should) be performed Class

System Systems, SoS, CS. . . etc

Refine Clarifies the requirement’s
meaning or context ElementImport

Depend A requirement uses or
depends on other ones

Derive Impose additional sub-
requirements

Need Express required systems
for a requirement Message

Verify Relate a requirement with
a system that verifies it

Satisfy Relate a requirement with
a system that satisfies it

Take the AERSoS case study, requirements can be organized as an ordered
tree hierarchical structure. A typical structure may include a top-level require-
ment for all sub-requirements. By using different relationships, each requirement



AF-SoS 19

within the top-level one may be associated with different systems (SoSs or CS,
component, etc.) to describe its scope; for example (see Figure 10), the «Re-
quirement»HandleAbnormalSituation wich is derived from «Requirement» En-
sureAircraftSafety can be satisfied by «CS»AircraftEmergencySystem using the
two relatioships «Derive» and «Satisfy» respetively.

Fig. 10. Requirements diagram for AERSoS.

6.2 CSs_Selection_Package

The Selection of CSs requires the characterization of the Capabilities in which the
CSs will perform to fulfill their Goal, and thus, the SoS’ global Goal. Therefore,
the main Systems that can participate in the SoS must be defined, described,
and documented using the CSs_Selection_Package. As shown in the structure of
this package that is depicted in Figure 11, the extensions proposed here comprise
stereotypes that reflect the entities that constitute the basis for the specifica-
tion of Systems’ Goals (CS_Goal and SoS_Goal) and the identification of their
relevant Capabilities (CS_Capability and SoS_Capability).

The CS_Selection_Package uses the output artifacts of the SoS Knowledge
process (Requirements) to describe the SoS in terms of Goals and Capabilities.
Thus, the notions of CS_Goal and SoS_Goal are the central concepts in the
Goals Model, representing a unit of the local goals of CSs as well as the SoS
global goal in which high-level Goals may be realized through the combination
of lower-level Goals. As well as, the Capabilities Model contains the concepts
enabling the description of Capabilities which the selected CSs should perform



20 .

Fig. 11. The structure of the CSs_Selection_Package.

Table 2. Stereotypes of the CS_Selection_Package.

Process Model Kind UML
Diagram Stereotypes Description Meta-class

CSs Selection Goals
Diagram

Class
Diagram Goal Represents objectives of

a system Class

CS_Goal Represents objectives of a CS
SoS_Goal Represents objectives of an SoS
Include Split a goal into several sub ones ElementImport

Contain Expresses the capability of
having sub-goals

Capabilities
Diagram

Use Case
Diagram System Could be any type of System

providing a Capability Package

SoS SoS providing the Capability Class
CS CS providing the Capability

Capability Refers to functions provided
by any system Use Case

CS_ Capability Refers to functions provided
by any system

SoS_ Capability Refers to functions provided
by an SoS

to achieve the predefined Goals. The concepts in this package are divided into
two diagrams, Goals Diagram and Capabilities Diagram (listed in Table 2).

The first diagram in this package is Goals Diagram where different Goals
can be organized as a tree structure in which a high level Goal that repre-
sents «SoS_Goal» may be realized through the combination of lower level Goals
«CS_Goal» of CSs. In addition, relations between them denote sharing of the
same common Goals; for example, Figure 12, the «SoS_Goal»Aircraft Safety has
three sub-goals, «CS_Goal» Safe Landing, «CS_Goal»Safe Flight and «CS_Goal»
Accident Report. For the second diagram (Capabilities Diagram), it can be
viewed as a mechanism to capture the SoS Capabilities in terms of the Capabili-
ties of the pre-selected CSs which specify the expected behavior (what), and not
the exact method of making it behave (how) of an SoS and thus, it represents a
black-box view of the SoS; it is therefore well suited to serve later in Interactions



AF-SoS 21

and Architectural Design Diagrams. Figure 13. represents the AERSoS capa-
bilities, where a set of sub-capabilities (e.g.«CS_Capability»GeneratingPower,
«SoS_Capability»InsultingReactors) for different CSs are required to perform
the global-Capibility «SoS_Capability» ControllingSituation.

Fig. 12. Goals Diagram for AERSoS.

Fig. 13. Capabilities diagram for AERSoS.

6.3 Conceptual_Design_Package

This package captures the main blocks for designing the Conceptual Design
process, the design allows creating a global vision of an SoS, defining the essential



22 .

relationships and identifying mission capabilities. The main concepts in this
model are Systems, Roles, Capabilities and different relationships types that
can offer a global understanding of CSs, their Roles and their interdependencies
as part of an SoS. A general structure of the package is depicted in Figure 14.

Fig. 14. The structure of the Conceptual_Design_Package.

Table 3. Stereotypes of the Conceptual_Design_Package.

Process Model
Kind

UML
Diagram Stereotypes Description Meta-class

Conceptual
Design

Domain
Model

Class
Diagram System Represents the involved

System Class

SoS Represents the involved SoS
CS Represents the involved CS

Role Ideal behavior of any
type of System

CS_Role Ideal behavior of a CS
SoS_Role Ideal behavior of an SoS

Capability Represents Capabilities
of a System in specific Role Operation

CS_ Capability Represents Capabilities of a
CS in specific Role

SoS_ Capability Represents Capabilities of
an SoS in specific Role

Own Expresses authority of one
system to another Usage

Lead Expresses control or guidance
of one system to another

Play Associates systems with
the required Roles



AF-SoS 23

The stereotyped concepts in this model can be used to provide a global struc-
ture of an SoS to enhance the interaction of its CSs. Consequently, they can be
used to describe the CSs, the Capabilities they have to accomplish Goals and the
Roles they play within an SoS. In Addition, the Conceptual_Design_Package
defines to which a Sub-System has access to and which Role it can play to solve
missions. The concepts of this package are introduces one single diagram called
Dmain Model as showed in the Table 3.

At this stage, the Domain Model Diagram is used by stakeholders to de-
sign the SoS’ characteristics in terms of its structural CSs, behavioral Roles,
the internal Capabilities and relationships between the CSs. An example of
PowerUnitsSoS as it is depicted in Figure 15, the stakeholders can display var-
ious kinds of CSs and SoSs that constitute the top-level entities, e.g. «SoS»
PowerUnitsSoS, «CS»ReactorsProtectionCS, etc. their corresponding Roles, e.g.
«SoS_Role» PowerGenerator «CS_Role»OxiginProvider, etc. and relationships
among them «Play» «Lead», etc.

Fig. 15. Domain Model for the PowerUnitsSoS.

6.4 Architectural_Design_Package

This package which is depicted in Figure 16 presents the concepts to support
the Architectural Design decision in every CS’ architectures. This is required
to propagate the CS’ architectural characteristics in the next processes in the
lifecycle of an SoS. They manifest the structure of every CS by characterizing
which Roles are part and which functions are used by the different stakeholders.

The Constituent Model has the ability to describe the internal structure
of every autonomous entity cooperating within the SoS and how the opera-
tional and managerial independence can be defined. Additionally, the Architec-
tural_Design_Package defines which CSs’ stakeholders have access to and which
functions they can perform. Detailed stereotypes are summarized in the Table 4.



24 .

Fig. 16. The structure of the Architectural_Design_Package.

Table 4. Stereotypes of the Architectural_Design_Package.

Process Model
Kind

UML
Diagram Stereotypes Description Meta-class

Architectural
Design

Constituent
Diagram

Component
Diagram System Refers to system’s class Class

CS Refers to a CS’ class
SoS Refers to an SoS’ class
I_Operation Independent operations
I_Management Independent management
Function Represents a service
Role Roles of a system Component
CS_Role Roles of a CS
SoS_Role Roles of an SoS
Stakeholder Intervening persons Property

Figure 17 shows an example of a Constituent Diagram used to model the
decomposition of the EvacuationCS and its internal entities such as functions
(e.g. «Function» extinguish, «Function» manage) which are associated to one
of the main independence classes: the management class with the stereotype
«I_Management» CSManagement and the operation class with stereotype «I_Operation»
CSOperation, as well as, each function involves the corresponding stakeholders
as attribute, e.g. «Stakeholder» Manager and «Stakeholder» FireFighter, respec-
tively.

6.5 Interaction_Package

The Interaction_Package contains the concepts to describe how flexible col-
laboration and cooperation take place between different CSs in an SoS. This
package’s model supports the Interactions process by focusing on the quality of
the interaction architecture and, as a consequence. We define two major Mod-
els: The Capabilities Collaboration Model and the Roles Interactions Model.
Both determining the types of Collaborations among Collaborative Capabilities



AF-SoS 25

Fig. 17. Constituent diagram for EvacuationCS.

and the interactive Roles. The package’s stereotyped concepts are represented
in Figure 18.

font=small

Fig. 18. The structure of the Interaction_Package.

In the Capabilities Collaboration diagram, we define the stereotypes to de-
scribe the internal behavior of different CSs used for fulfilling predefined Goals.
The global-Goals of an SoS can be achieved in terms of combining simple Capa-
bilities of its participating CSs. Additionally, the Roles Interactions diagram cov-
ers the abstract representations of the collaborative Capabilities of different CSs
within an SoS. Moreover, the Role package provides the different relationships
that can be used to connect CSs among each other. The identified stereotypes
are summarized in Table 5.



26 .

Process Model Kind UML
Diagram Stereotypes Description Meta-class

Interactions CapabilitiesCollaboration
Activity
Diagram System System performing Capabilities ActivityPartition

CS CS performing Capabilities
SoS SoS performing Capabilities
Capability functions provided by a System ActivityNode
CS_ Capability functions provided by a CS
SoS_ Capability functions provided by an SoS

Roles
Interactions

Sequence
Diagram Role Interactive Role of a System Lifeline

CS_Role Interactive Role of a CS
SoS_Role Interactive Role of an SoS
Capability Refers to a Capability of a System Activation
CS_ Capability Refers to a Capability of a CS
SoS_ Capability Refers to a Capability of an SoS
Create_role Initiating a new Role Message
Destroy_role Finishing a Role
Activate_role Starting a Role
Deactivate_role Interrupting a Role
Cancel_role Omitting a Role
Change_role Replacing a Role
Commit_role Performing a Role

Table 5. Stereotypes of the Interaction_Package.

The Figure 19 shows an example of Capabilities Collaboration diagram which
describes “AssessingRisks” Capability of «SoS»WarningSoS collaborating with
other CSs’ Capabilities («CS_Capability»CO_sensing and «CS_Capability»IR_radiation
of «CS»FireDetectionCS ) and («CS_Capability»Transducer_probe of «CS»IceDetectionCS ).
This diagram particularly offers a good method to express the flow of capabilities
of the «SoS»WarningSoS and how its CSs can collaborate.

We can use the Roles Interactions diagram Figure 20, to show how the dif-
ferent Roles interact within the «SoS»AERSoS when fulfilling the global goal
«SoS_Goal»SafeLanding in case of critical situations in the aircraft. This dia-
gram depicts a collection of interactions between external Roles of different CSs
«SoS_Role»LandingManager, «CS_Role»EmergencyLandingController, etc. In
this case, the Roles represent the specification of a sequence of Capabilities
(«CS_Capability»first_aid, «SoS_Capability»landing . . . etc.), that an SoS (or
CS) can perform. In addition, the roles represent a path or flows of a sequence of
interactions (e.g. «Change_role»Unplanned_Landing, «Create_role»pilot . . . etc.)
that occurs during the execution to accomplish the SafeLanding goal.



AF-SoS 27

Fig. 19. Capabilities Collaboration diagram for WarningSoS.

Fig. 20. Roles Interactions diagram for SafeLandingCS’ Roles.



28 .

6.6 Integration_Deployment_Package

The Integration_Deployment_Package (Figure 21) contains the concepts to de-
scribe the process of Deployment, including instances of Roles and the corre-
sponding Interfaces. This model contains the stereotypes of CS’ interfaces de-
fined by their Roles and the necessary provided or/and required Interfaces (RUIs
for Relied Upon Interfaces).

Fig. 21. The structure of the Integration and deployment package.

The different stereotypes in Table 6 included in this diagram describe the
aspect of Integration of an SoS itself. In this case, the Integration and deploy-
ment diagram describes the physical deployment of different interfaces required
or provided by CSs. The interfaces extend the meta-class port to specify the
interaction points among CSs supporting the integration of behavior and struc-
ture.

Process Model
Kind

UML
Diagram Stereotypes Description Meta-class

Integration
and
Deployment

Roles
Interfaces

Component
Diagram System Integrated System Component

CS Integrated CS
SoS Integrated SoS
RUI Relied Upon Interface Port
RUMI Relied Upon Message Interface
RUPI Relied Upon Physical Interface
Role_Provider Role providing a RUI ElementImport
Role_Consumer Role consuming a RUI Dependency

Table 6. Stereotypes of the Integration_Deployment_Package.



AF-SoS 29

The Figure 22 shows an example of this diagram of PowerUnitsSoS. the stake-
holders assemble a set of Relied Upon Message or/ and Physical Interfaces (e.g.
«RUMI»I_OP and «RUPI»I_RP1 ) and their associations (e.g. «Role_Provider»
control_Engines and «Role_Consumer»provide_O2 ) that constitute the basic
elements to define how the CSs of one SoS can collaborate among each other to
realize the integration of structure and/or behavior of the SoS.

Fig. 22. Roles Interfaces diagram of PowerUnitsSoS.

7 Conclusion

In this paper, we presented a multi-viewpoint Architecture Framework called
SoS-AF which is understandable and easily manipulated by different stakehold-
ers. This methodology aims to offer the audience of SoSs’ Stakeholders the tools
to facilitate the task of developing a multi-viewpoint architecture that is man-
aged by a new SoSE processes and documented through the SoS-UML profile’s
models.

Besides, this approach conforms to a very widespread standard in software
architectures community “IEEE 42010” which was designed in order to standard-
ize the definition of Systems and Software Engineering-Architecture description.
Specifically, SoS-AF inherits the definitions of the main elements which are part
of this standard, and extends them by the two elements “SoSE process” and
“SoS-UML Profile”. It is based around the construction of multi-viewpoint SoSs’
architectures, through the definition of several viewpoints for a given SoS ar-
chitecture, which is in our example we used an Aircraft Emergency Response
System-of-Systems (AERSoS) as a case study.

The first extension of the standard is to integrate the notions contained in
the SoSE process. This adoption allows the SoS-AF to pass through several pro-
cesses. At the end of each process, each one of the involved stakeholders must



30 .

raise the level of concretization of his architecture by creating a set of models
that better meet his essential concerns. The stakeholders can benefit from the
SoS-UML Profile to support the design of all the concepts and relationships of an
SoS’ CSs. This tool defines structural diagrams: Goals diagram, Domain model
diagram and Constituents diagrams. In addition, to behavioral diagrams which
aim to represent the dynamic aspects of an SoS: Capabilities diagrams, Roles
Interaction diagrams, Capabilities Collaboration diagrams and Roles Interfaces
diagrams. The visual syntax allows using diagrams to manage the SoSE develop-
ment processes by its audience of stakeholders within the SoS-AF’s Viewpoints.

To the best of our knowledge, this is the first paper supporting the modeling
of SoSs’ multi-viewpoints architectures using a SoS-UML Profile to manage the
development lifecycle. However, there can be a need for enhancing the SoS-AF
by considering some non-functional requirements to provide more comprehensive
support. In addition, the proposed SoS-AF, can treat Cyber-Physical Systems
(CPS) implicitly as SoSs. Therefore, and as a future enhancement, the SoS-AF
also needs to be extended to other instances such as CPSs.

References

1. Dridi, C. E., Benzadri, Z., & Belala, F. (2020, November). System of Systems Mod-
elling: Recent work Review and a Path Forward. In 2020 International Conference
on Advanced Aspects of Software Engineering (ICAASE) (pp. 1-8). IEEE.

2. Maier, M. W. (1998). Architecting principles for systems–of –systems. Systems En-
gineering: The Journal of the International Council on Systems Engineering, 1(4),
267-284.

3. ISO/IEC/IEEE 15288, Systems and software engineering - System lifecycle pro-
cesses.

4. Department of Defense (DoD), 2004, Defense Acquisition GuidebookCh. 4.2.6. “Sys-
tem of Systems Engineering,” Washington, DC: Pen-tagon, October 14.

5. Cocks, D. (2006, July). How Should We Use the Term “System of Systems” and
Why Should We Care?. In INCOSE International Symposium (Vol. 16, No. 1, pp.
427-438).

6. Kotov, V. (1997). Systems of systems as communicating structures (Vol.119). HP
Labs.

7. DeLaurentis, D. (2005, January). Understanding transportation as a system-of-
systems design problem. In 43rd AIAA Aerospace Sciences Meeting and Exhibit
(p. 123).

8. Gunes, V., Peter, S., Givargis, T., & Vahid, F. (2014). A survey on concepts, appli-
cations, and challenges in cyber-physical systems. KSII Transactions on Internet &
Information Systems, 8(12).

9. Nielsen, C. B., Larsen, P. G., Fitzgerald, J., Woodcock, J., & Peleska, J. (2015). Sys-
tems of systems engineering: basic concepts, model-based techniques, and research
directions. ACM Computing Surveys (CSUR), 48(2), 1-41.

10. Jamshidi, M. (2008, December). System of systems-innovations for 21st century.
In 2008 IEEE Region 10 and the Third international Conference on Industrial and
Information Systems (pp. 6-7). IEEE.

11. Wickramasinghe, N., Chalasani, S., Boppana, R. V., & Madni, A. M. (2007, April).
Healthcare system of systems. In 2007 IEEE International Conference on System of
Systems Engineering (pp. 1-6). IEEE.



AF-SoS 31

12. Lane, J. A., & Epstein, D. (2013). What is a System of Systems and why should I
care?. University of Southern California.

13. Dahmann, J. S. (2015). Systems of systems characterization and types. Systems of
Systems Engineering for NATO Defence Applications (STO-EN-SCI-276), 1-14.

14. Assaad, M. A., Talj, R., & Charara, A. (2016, July). A view on Systems of Systems
(SoS). In 20th World Congress of the International Federation of Automatic Control
(IFAC WC 2017) –special session.

15. Aljohani, T. M. (2018). Analysis of the Smart Grid as a System of Systems. arXiv
preprint arXiv:1810.11453.

16. Dridi, C. E., Benzadri, Z., & Belala, F. (2020, June). System of Systems Engineer-
ing: Meta-Modelling Perspective. In 2020 IEEE 15th International Conference of
System of Systems Engineering (SoSE) (pp. 000135-000144). IEEE.

17. ISO/IEC/IEEE42010, Systems and software engineering — Architecture descrip-
tion, ISO, December 2011.

18. May, I. S. O. (2011). Systems and software engineering–architecture description.
Technical report, ISO/IEC/IEEE 42010, 2011.

19. Emery, D., & Hilliard, R. (2009, September). Every architecture description needs a
framework: Expressing architecture frameworks using ISO/IEC 42010. In 2009 Joint
Working IEEE/IFIP Conference on Software Architecture & European Conference
on Software Architecture (pp. 31-40). IEEE.

20. Arass, M. E., Ouazzani-Touhami, K., & Souissi, N. (2019). The system of systems
paradigm to reduce the complexity of data lifecycle management. Case of the secu-
rity information and event management. International Journal of System of Systems
Engineering, 9(4), 331-361.

21. Barbi, E., Cantone, G., Falessi, D., Morciano, F., Rizzuto, M., Sabbatino, V., &
Scarrone, S. (2012, July). A model-driven approach for configuring and deploying
systems of systems. In 2012 7th International Conference on System of Systems
Engineering (SoSE) (pp. 214-218). IEEE.

22. El Hachem, J., Pang, Z. Y., Chiprianov, V., Babar, A., & Aniorte, P. (2016, De-
cember). Model driven software security architecture of systems-of-systems. In 2016
23rd Asia-Pacific Software Engineering Conference (APSEC) (pp. 89-96). IEEE.

23. Mori, M., Ceccarelli, A., Lollini, P., Bondavalli, A., & Frömel, B. (2016, January). A
holistic viewpoint-based SysML profile to design systems-of-systems. In 2016 IEEE
17th International Symposium on High Assurance Systems Engineering (HASE)
(pp. 276-283). IEEE.

24. Mori, M., Ceccarelli, A., Lollini, P., Frömel, B., Brancati, F., & Bondavalli, A.
(2018). Systems-of-systems modeling using a comprehensive viewpoint-based SysML
profile. Journal of Software: Evolution and Process, 30(3), e1878.

25. Gezgin, T., Etzien, C., Henkler, S., & Rettberg, A. (2012, April). Towards a rig-
orous modeling formalism for systems of systems. In 2012 IEEE 15th International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Com-
puting Workshops (pp. 204-211). IEEE.

26. Lane, J. A., & Bohn, T. (2013). Using SysML modeling to understand and evolve
systems of systems. Systems Engineering, 16(1), 87-98.

27. Axelsson, J., Fröberg, J., & Eriksson, P. (2019). Architecting systems-of-systems
and their constituents: A case study applying Industry 4.0 in the construction do-
main. Systems Engineering, 22(6), 455-470.

28. Cherfa, I., Sadou, S., Belloir, N., Fleurquin, R., & Bennouar, D. (2018, June).
Involving the application domain expert in the construction of systems of systems.
In 2018 13th Annual Conference on System of Systems Engineering (SoSE) (pp.
335-342). IEEE.



32 .

29. Vargas, I. G., Gottardi, T., & Braga, R. T. V. (2018, September). An approach to
integrate systems towards a directed system-of-systems. In Proceedings of the 12th
European Conference on Software Architecture: Companion Proceedings (pp. 1-7).

30. Braga, R. T. V., Vargas, I. G., & Gottardi, T. (2016). A service-based architecture
for virtual and collaborative system of systems. In X Workshop em Desenvolvimento
Distribud de Software, Ecossistemas de Software e Sistemas-de-Sistemas (WDES),
CBSoft Proceedings (pp. 51-60).

31. Kaur, N., McLeod, C. S., Jain, A., Harrison, R., Ahmad, B., Colombo, A. W., &
Delsing, J. (2013, February). Design and simulation of a SOA-based system of sys-
tems for automation in the residential sector. In 2013 IEEE International Conference
on Industrial Technology (ICIT) (pp. 1976-1981). IEEE.

32. Osmundson, J. S., Huynh, T. V., & Shaw, P. (2006). Developing Ontologies for
Interoperability of Systems of Systems. In Conference on Systems Engineering Re-
search.

33. Franzén, L. K., Staack, I., Jouannet, C., & Krus, P. (2019, October). An On-
tological Approach to System of Systems Engineering in Product Development. In
FT2019. Proceedings of the 10th Aerospace Technology Congress, October 8-9, 2019,
Stockholm, Sweden (No. 162, pp. 35-44). Linköping University Electronic Press.

34. Benali, H., Saoud, N. B. B., & Ahmed, M. B. (2014, November). Context-based
ontology to describe system-of-systems interoperability. In 2014 IEEE/ACS 11th
International Conference on Computer Systems and Applications (AICCSA) (pp.
64-71). IEEE.

35. Yang, L., Cormican, K., & Yu, M. (2019). Ontology-based systems engineering: A
state-of-the-art review. Computers in Industry, 111, 148-171.

36. Ormrod, D., Turnbull, B., & O’Sullivan, K. (2015, December). System of systems
cyber effects simulation ontology. In 2015 Winter Simulation Conference (WSC)
(pp. 2475-2486). IEEE.

37. Seghiri, A., Belala, F., Benzadri, Z., & Hameurlain, N. (2018, June). A maude
based specification for sos architecture. In 2018 13th Annual Conference on System
of Systems Engineering (SoSE) (pp. 45-52). IEEE.

38. Oquendo, F. (2016, June). Formally describing the software architecture of
systems-of-systems with SosADL. In 2016 11th system of systems engineering con-
ference (SoSE) (pp. 1-6). IEEE.

39. Oquendo, F. (2016, November). Formally describing the architectural behavior
of software-intensive systems-of-systems with SosADL. In 2016 21st International
Conference on Engineering of Complex Computer Systems (ICECCS) (pp. 13-22).
IEEE.

40. Oquendo, F. (2016, June). Pi-Calculus for SoS: A foundation for formally describ-
ing software-intensive systems-of-systems. In 2016 11th System of Systems Engi-
neering Conference (SoSE) (pp. 1-6). IEEE.

41. Gassara, A., Rodriguez, I. B., Jmaiel, M., & Drira, K. (2017). A bigraphical multi-
scale modeling methodology for system of systems. Computers & Electrical Engi-
neering, 58, 113-125.

42. Stary, C., & Wachholder, D. (2016). System-of-systems support—A bigraph ap-
proach to interoperability and emergent behavior. Data & Knowledge Engineering,
105, 155-172.

43. Wachholder, D., & Stary, C. (2014, October). Bigraph-ensured interoperability for
system (-of-systems) emergence. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems" (pp. 241-254). Springer, Berlin, Hei-
delberg.



AF-SoS 33

44. Gassara, A., Bouassida, I., & Jmaiel, M. (2017, April). A tool for modeling sos ar-
chitectures using bigraphs. In Proceedings of the Symposium on Applied Computing
(pp. 1787-1792).

45. Rao, M., Ramakrishnan, S., & Dagli, C. (2008). Modeling and simulation of net
centric system of systems using systems modeling language and colored Petri-nets:
A demonstration using the global earth observation system of systems. Systems
Engineering, 11(3), 203-220.

46. Baek, Y. M., Song, J., Shin, Y. J., Park, S., & Bae, D. H. (2018, May). A meta-
model for representing system-of-systems ontologies. In 2018 IEEE/ACM 6th Inter-
national Workshop on Software Engineering for Systems-of-Systems (SESoS) (pp.
1-7). IEEE.

47. Zhang, Y., Liu, X., Wang, Z., & Chen, L. (2012). A Service-Oriented Method
for System-of-Systems Requirements Analysis and Architecture Design. JSW, 7(2),
358-365.

48. Hu, J., Huang, L., Chang, X., & Cao, B. (2014, March). A model driven service
engineering approach to system of systems. In 2014 IEEE International Systems
Conference Proceedings (pp. 136-145). IEEE.

49. Wang, R., Agarwal, S., & Dagli, C. H. (2015, April). OPM & color petri nets based
executable system of systems architecting: A building block in FILA-SoS. In 2015
Annual IEEE Systems Conference (SysCon) Proceedings (pp. 554-561). IEEE.

50. Chaabane, M., Rodriguez, I. B., Colomo-Palacios, R., Gaaloul, W., & Jmaiel, M.
(2019). A modeling approach for Systems-of-Systems by adapting ISO/IEC/IEEE
42010 Standard evaluated by Goal-Question-Metric. Science of Computer Program-
ming, 184, 102305.


