

IEEE Nuclear Science Symposium and Medical Imaging Conference October 18th – 23rd, 2021

Proof of concept for a scintillator powder calorimeter

<u>G. Hull¹</u>, J. Lefrançois¹, N. Semkiv², A. Kotenko², S. Barsuk¹, M.-H. Schune¹, D. Breton¹, A. Cabrera¹

¹ Université Paris-Saclay, CNRS/IN2p3, IJCLab, 91405 Orsay, France ² Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine

Outline

The LiquidO detection technique ★ Powder calorimeter The proof of concept Simulation results Experimental results **†** Future work

The LiquidO technology

LiquidO is a new detection technique making use of opaque liquid scintillator read-out by means of WLS fibers

Transparent Medium

10

Opaque Medium

100

LiquidO concept: TPC-like detector with « light drfiting »

The LiquidO technology

LiquidO is a new detection technique making use of opaque liquid scintillator read-out by means of WLS fibers

Excellent PID is expected

Possible application for:

- Neutrino physics
- Medical imaging
- High energy physics

- A. Cabrera et al. LiquidO First Publication [arXiv1908.02859] C. Buck et al. LiquidO First Opaque Scintillator [arXiv:1908.03334]
- S. Wagner et al. Micro-Crystal Opaque Scintillators [arXiv:1908.03334]

· ...

Detectors for e+e- colliders

For future e+e- colliders: EM calorimeters based on sampling technique (CALICE, Dual Read-out Calorimeter)

- Good granularity at limited cost 3
- Rather poor photon energy resolution S
 - ⇒ at small energies: R ~ 10%/sqrt(E)

Proof of concept for a next-generation calorimeter with extremely fine sampling: PowderO

→ For improved photon energy resolution while maintaining a good jet energy resolution

The PowderO concept

Scintillator powder calorimeter

Shashlyk Calorimeter: alternate layers of scintillators and absorbers

- High granularity
- Modest energy resolution

PowderO: mix of scintillator and absorber grains in the same volume

- High granularity
- Good energy resolution

Proof of concept: simulation and experiment

Simulation for 1 GeV photons

Geant4 MC simulation: shower produced by a 1 GeV photon in a conventional Shashlyk and in a PowderO calorimeter

- Shashlyk: alternate plates of Pb and CH
 Some geographic as I I Chi 150×150×1
 - Same geometry as LHCb: $150 \times 150 \times 2 \text{ mm}^3$ plates **PowderO:** ZnWO₄ grains + CH₂I₂ distributed with two different geometries
 - Alternating cubes
 - Randomly distributed cubes

2 and 3 mm-side cubes 150×150 mm² lateral dimension

Total length: 25 X_0 in the absorber material (127 in Pb and 201 in CH_2I_2)

Simulation results

- Total energy deposit in the absorber: E_{abs}
- Total energy deposit in the scintillator: E_{scint}

Energy deposit in the scintillator

Simulation results

The experimental set-up

- WaveCatcher digitizer @ 3.2GS/s
- 60-cm long Saint Gobain BCF9929A WLS fiber
- Blue LED
- Clear fiber unpolished on 2 cm

The experimental set-up

For the proof of principle we used kitchen salt

Injection of the light with a clear fiber and comparison of the signals acquired by the WFS fibers located and increasing distance from the light injection, in three different conditions:

- In air
- In salt (grain size ~ 0.5 mm)
- In salt + isopropanol

Salt

Glass grains

Glass spheres

For each configuration we acquired 10k signals and we estimated the mean WF

Results

1. With salt we collect more light than in air

Results

2. If we add isopropanol to salt, the signal amplitude decreases next to the light injection but increases at 6 and 8 mm from it

Results

3. The time difference between the signals acquired in air and salt is is always bigger than the time difference in air and salt+isopropanol
→ with isopropanol there is less light scattering
→ the light has to travel less to be collected on the WLS fiber
At 6 mm: Δt_s ~ 1.4 ns → Δl_s ~ 28 cm

 $\Delta t_m \sim 0.6 \text{ ns} \rightarrow \Delta l_m \sim 12 \text{ cm}$

Conclusion and future work

We demonstrated the feasibility of PowderO

- Geant4 shower simulation predicts an energy resolution of about 1.5%/sqrt(E) for 0.5 mm size ZnWO₄ grains + CH₂I₂
- Powder (kitchen salt) = Light confinement
- Mix = Powder + liquid (isopropanol) = higher total density and better optical coupling
- From salt to inorganic crystal grains: possible collaboration with ISMA (Ukraina) to produce 1 kg of ZnWO₄
- Test of a 16-fibers device to study of the uniformity response of the detector
- Characterization of a full length and fully equipped 16-fibers prototype
- Development of a 14 cm x 14 cm demonstrator

Thank you!