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Abstract:  

Systems-of-Systems (SoSs) are increasingly used to integrate and execute a large 

number of Constituent-Systems (CSs) to offer new functionalities that cannot be 

offered by its individual CSs. However, designing well-tuned directed SoS to deal with 

a variety of control issues such as resources management and temporal constraints 

violations while providing high-level assurance about their specified behavior is very 

challenging. Thus, due to the lack of explicit models for their resources allocations and 

quantitative features, SoSs executions are becoming more complex and cannot be 

effectively controlled. To solve these problems, a generic metamodel is proposed in 

this paper to control resources and behavioral features. The proposed approach deals 

with different resources of SoSs and provides control actions in order to manage their 

structural, temporal and behavioral aspects. The latter are grouped in a single model 

holding SoSs executions according to specific quantitative needs. One step further, the 

specifications of the proposed metamodel are encoded using Maude language that 

makes it possible to analyze various requirements needed by CSs, and enables an 

autonomic executability of their dynamic behaviors. 

Keywords. SoS, Missions, Resources Allocation, Dynamic Behavior, Metamodeling, 

Maude. 

1 Introduction 
In the last decade, Systems-of-Systems (SoSs) appeared as new software technologies 

that integrate a set of various subsystems from different subfields, and which offer a 

reliable and more natural alternative to build an emerging vision for the next generation 

of large-scale systems [1] [2]. These systems are designed to integrate multiple 

independent and functional Constituent-Systems (CSs) into a larger system in several 

important application domains. Consequently, an SoS has the ability to offer new 

functionalities to users that cannot be offered by its individual CSs, but emerge from 

their combination.  

Nowadays,  critical and emergency SoSs, require the missions of various CSs to be 

accomplished in real-time and within specific amounts of time. Therefore, temporal 

properties are significant in such systems, where a violated constraint can result in a 

disaster. When referring to the period needed to execute a mission, duration is 

considered as a simple temporal constraint between the mission starting (resp. ending) 
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instants. Since we consider the duration of missions as a generalization of almost all 

other constraints[3][4][5], the challenge here is that the time constraints applied on 

missions can be implicitly affected by the physical environmental features of different 

constituents. These features are strongly related to resource properties. The resources 

that SoS requires at run-time, are sometimes limited, unlimited, renewable or not 

renewable [14][15][16]. As a solution, we use a set of features that specify different 

resources for local and global CSs. These features are the basis of developing a 

dependencies-based approach that has sets of attributes describing the status of the 

resources that the CSs may use concerning availability, consumption, (non)shareability, 

disruption, renewability, and withdrawal. Furthermore, these challenges are not easy to 

manage, i.e. independent evolution and dynamic resources allocation may cause these 

CSs to behave differently, for instance, they may affect the missions executions, the 

CSs interactions and communications within the SoS, and then they can cause the 

overall mission failure of the SoS.  

In this paper, we provide a formal modeling approach that reduces the complexity 

of designing SoS temporal, resources and interaction behavior. We adopt an MDA-

based approach to provide a metamodel for specifying resources properties, and 

temporal aspects of SoSs. We focus on defining the logical structure and behavior of 

qualitative and quantitative features involved in the SoS definition, which allows 

describing all the SoS features at the same high level of abstraction. Hence, to create 

this generic model, we have to consider a set of concepts, aspects, and features, i.e. 

hierarchical composition of CSs, missions organization, roles interactions, temporal 

variations, resources allocation, etc. Employing such a metamodel is a promising mean 

to show its ability to initiate our model into a wide range of specific technologies, and 

to provide more holistic solutions in SoSs applications.  

To instantiate our metamodel, our choice was oriented towards the Maude language, 

thanks to its expressivity, it can execute, and validate all the relevant specifications of 

our proposed metamodel without losing information and features. Its executable 

semantics support and boolean expressions are relevant to design the states predicates 

of each CS. The language offers more accurate modeling of SoSs whose behavior 

depends on Missions quantitative time/resources. It uses the equations of rewriting 

theory to specify the data types of all components. It also offers a model-checker engine 

that provides a symbolic state-based verification of SoS properties. The proposed 

Maude-based SoS modeling approach is one of the effective solutions that enable the 

conditional rewriting rules to describe the unexpected behavior of SoSs. In this 

specification, we present a way to combine different Maude Modules at different 

entities levels to produce global knowledge about the entire SoS design.  

2 Related Work 
We represent in this section some relevant studies that analyze different SoSs aspects. 

Adopting a SysML visual modeling language, the authors of [6] [7] have proposed a 

semi-formal SoS conceptual model which serves as a domain-independent vocabulary 

for SoSs. However, their proposal does not provide a quantitative analysis method to 

exploit quantitative properties such as temporal constraints and resource allocation. 

Besides, no formal design to control roles (or missions) dynamic behavior is provided. 
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The authors of [8] [9] have introduced a formal approach based on Architectural 

Description Language, that inspires its syntax notation from Bigraphs to model 

hierarchical structures of CSs and their roles. They have focused on modeling the 

potential cooperation between CSs by offering a syntax-based description that manages 

a set of constrained events and roles links affecting the global mission of an SoS.   

Nevertheless, no attention is paid to qualitative aspects related to the execution time of 

missions accomplished by playing different roles, neither they considered the need of 

CSs for a global resources control to execute these missions. Besides, no execution 

control is presented to describe a logic that governs the execution of submissions. 

The authors of [10] have proposed B3MS for SoSs modeling based on the formal 

technique of Bigraphical reactive systems with an inspiring vision from multi-scale 

modeling. They have given a method to address the dynamic aspect of SoS by providing 

model-based rules of basic reconfigurations. They have relied on bigraphical reaction 

rules to only express the different scales of configurations at the levels of composition, 

communications nodes, etc. and they have not paid attention to providing a resource 

controlling support nor a time-based qualitative evaluation of the introduced behaviors. 

In [11], the authors have investigated the interplay between SoS and CSs 

architectures. The approach includes both the design of an SoS architecture that 

considers the architecture of an existing CS, and the architecting of CSs so that they 

can later become constituents of an SoS. However, they lacked concrete features that 

can govern CSs operating in an autonomic manner in a constrained environment. In 

addition, no formal executable support for their solution is provided as well.  

The work presented in [12] have focused on developing a metamodel that represents 

SoS ontologies. It can be used for both modeling activities and ontology definitions. 

Even so, to support complete and systematic analysis and design of an SoS. However, 

the authors did not provide executable support to simulate and verify their proposed 

model. Additionally, no control of behavioral constraints is provided in their work. 

The authors of [13] have presented a hybrid modeling method based on service-

oriented and ontology-based requirements for SoSs modeling. Initially, they introduced 

an SOA conceptual model, then, rigorous modeling semantics through defining 

multiple ontologies which is important for domain knowledge reuse is defined. 

However, their model does not include supplement repositories to improve the 

efficiency of temporal behaviors e.g. services durations, and temporal constraints, and 

a validation method to ensure dynamic consistency with the needed resources. 

We take advantage of some interesting coordination models presented in [14] [15] 

and [16] to build up our generic model for SoSs. The latter addresses the issue of 

conflicts over different types of resources and categorization during their consumption 

by missions or production by SoS roles. However, our proposed model is governed by 

a set of behavioral constraints controlling the execution. SoSs may evolve using 

transition systems, by using specific actions which are conditioned by specific 

predicates stating whether the application of the action is allowed or not. The 

metamodel semantic is implemented using Maude language, offering enough 

expressiveness and simulation with its executable rewriting logic. 
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3 A Metamodeling Approach for SoSs Architecture Description 

In this section, we provide a generic integration model that introduces different features. 

3.1 Principle: a generic metamodel for SoSs architecture 

An SoS consists of a set of CSs that are playing different roles in an organizational and 

technical environment. These roles jointly realize a common goal. More precisely, an 

SoS model is composed of several missions or goals that execute together, to offer one 

global mission. These missions may need resources for execution such as humans, 

machines, services, etc. Moreover, SoSs can take four different types [2], Directed 

(with a central managed purpose and central ownership of all CSs), Virtual (lack of 

central purpose and central alignment), Collaborative (with voluntary interactions of 

CSs to achieve a goal), and Acknowledged (independent ownership of the CSs). 

Subsequently, the proposed definition is introduced based on the key consideration that 

SoSs are more than simply a set of connected CSs sharing data and offering missions, 

but, it defines the logical structure and behavior of qualitative/quantitative features 

involved in Directed SoSs. Therefore, the aim is to define a generic metamodel that will 

be used as a basis for the modeling and designing of these specific types, whose CSs 

can have their operational/managerial independence but their emergent behavior is 

subordinated to a specific mission and Central Controller of all CSs.  

In this context, we are interested in modeling and specifying public resources 

(PubRes) which are shareable and consumed by missions within the SoS, and private 

resources (PrvRes) which are not shareable and consumed by missions within the CS. 

They could also be characterized by some other properties, i.e. limited, unlimited, 

renewable, and not renewable, as well as whether they are logical or physical resources. 

Therefore, Resources Management Controller consists of specifying the behavior to be 

adopted to manage the consumption and the production techniques in the SoS. It 

consists of a set of actions that are triggered in case the specified triggering conditions 

are fulfilled. The consumption relationships between missions and resources (resp. 

production relationships between roles and resources) in our specification are based on 

specific features that they have. We consider it as an SoS-specific refinement of model 

property-based resource consumption cycles introduced in[14][15], the proposed 

controller supports the consumption/production by the matching of specific 

Missions/Roles states with the features of the different resources. Other important 

characteristics that we should take into account are: Mission duration, Roles 

interactions, Desired/ Unwanted behavior, Composition, and CSs configuration [17].  

The reason of proposing this metamodel is the need to cope with the variety of the 

features, and to offer a comprehensive specification to design any SoS architecture. 

Thus, the proposed metamodel is specified by enhancing the concepts with the essential 

quantitative features that an SoS should have. Therefore, we need to provide a generic 

metamodel for SoS design, to be able to show the ability of the metamodeling approach 

in instantiating architectural models of such systems and to explicitly represent all 

features. The specification level (see the five classes on top, red rectangle in Figure 1) 

concerns concepts related to the definition of behavior controllers (ResMangCtrl and 

SoSCtrl) that can manage the different states of Resources, Missions and CSs. Their 
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Precondition Predicate associations represent the states conditions that must hold 

before and be fulfilled after a transition Action of a Resource, a Mission, or a CS. 

Fig. 1. General components of SoS metamodel. 

3.2 Motivating example 

An example of EmergencyIncidentManagementSoS [18], abbreviated EIMSoS, will be 

considered to concretize the basic contributions made by our approach. As an 

illustrative example of a critical SoS, consider a collection of autonomous and 

interacted CSs tasked with transporting and evacuating trauma patients and persons 

injured in emergencies. To accomplish this Mission, the considered EIMSoS must be 

designed in such a way that the CSs can perform some missions that cannot be provided 

by any CS. The visual representation of the EIMSoS elements is shown in Figure 2. A 

general idea of this SoS is that, after receiving an emergency call, the 

CallCenterSoS(CCSoS) which provides the ComputerAidedDispatch(CAD) as a public 

resource containing all the necessary information and the data of the incident, directly 

interacts with its two sub-call centers CSs i.e. AmbulanceStation(ASCS) and the 

RetrievalServices (RSCS). The three systems have access to shared resource CAD and 

then, they start switching between different roles (e.g. Receiver and/or Dispatcher) to 

accomplish a set of local missions, i.e. they discuss the available decisions and 

determine the optimal response after the emergency’s call. If the decision is made to 

dispatch a helicopter and/or an ambulance, the Dispatcher will activate the role Aero-

Transport and/or GroundEmergency of AeroMedical-EmergencyCS (AMECS) and 

GroundEmergencyCS (GECS) to start performing the corresponding missions, i.e. 

preparing the medical teams, flight, departure, first aid, and evacuating, etc. At this 

stage the ambulance and the helicopter are considered as private (PrvRes) and limited 

resources provided by AMECS and GECS, respectively. Upon arrival at the hospital, 

the HospitalSoS(HSoS) will interject and hands-over to the corresponding wards (e.g. 

LabCS, RadioCS, etc.) that can accomplish the necessary missions (e.g. triage 

assessment, diagnosis, lab tests, etc.) and take care of the patient. 



C, E Dridi et al. 

 
Fig. 2. BPMN Model for Emergency Incident Management SoS (EIMSoS). 

4 An executable Maude-based specification of SoSs Metamodel 
 

We have chosen the class diagram notation to represent graphically the proposed 

metamodel. UML Classes, aggregations, inheritance, etc. are used to represent elements 

and entities of this metamodel. In this section, we give an overview of our proposed 

object-oriented modules, and how they enable the implementation of the different 

entities and concepts mentioned in the previous metamodel; and how to model and 

control their emergent behavior. On the one hand, implementing these entities enables 

the designers to easily understand the SoSs architectures, including reasoning about 

their features by providing a high-level model of their structures. On the other hand, it 

enables them to instantiate it by specifying several mappings or transformations to 

deduce various executable models. To this end, we use Maude as a logical basis that 

can provide a clear definition of the object-oriented semantics and makes it a good 

choice for the formal specification in the form of a transition system.  

The following subsections introduce the encoding of our metamodel in Maude. The 

latter is chosen as a formal specification language and verification platform, because it 

is expressive enough for specifying all the concepts, aspects  and features of the 

metamodel. On the one hand, it gives a clear specification of the object-oriented 

notations classes in the metamodel (e.g. SoS, CS, Mission, Roles, Ressource classes, 

etc.), and describes all the relevant specifications without losing information and 

features. And on the other hand, it also offers several rewriting-based theories that are 

adequate for simulating the interdependencies (i.e. the Predicate and Action 

associations) between these classes by controlling the states of each Mission, Resource 

and CS, and offering more accurate modeling of SoSs whose behavior depends on 

Missions quantitative time/resources properties. 
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4.1 Motivating the use of Maude 

The declarative language Maude [19] is a very expressive equational and rewriting 

logic language, as well as one of the most powerful languages in programming, 

executable formal specification, and formal analysis and verification. Its computation 

consists of a logical deduction by concurrent rewriting modulo the equational structural 

axioms of each theory. Maude is an object-oriented modeling language for the 

specification of distributed systems. Our specification is structured using two types of 

combined Maude modules, i.e. Real-Time and Object-Oriented ones. Each module 

consists of one specific class with a set of attributes, and it can import other 

specifications using that can provide the basic data types like objects, and 

configurations. What interests us is that Maude employs asynchronous message passing 

and, thus, the rewrite rules specify the possible transitions that may happen in different 

entities in SoSs. We specify the behavioral transitions using the following rewrite 

rules[19][20]: 

crl[R] : {t} => {t’} in time u if (condition) 
The triggering conditions of these rules “R” are state predicates of different entities 

in the metamodel and their triggered actions are encoded as Maude functional 

computation. These rules describe how to trigger an action, and how the corresponding 

control states are transited from one to another. It rewrites the left-hand term “t” of the 

rule into its right-hand term “t’” on which an action or a transition is applied. A 

conditional rewrite rule is triggered when its specified (condition) is satisfied. The idea 

is that in concurrent CSs forming an SoS, the concurrent states, which are called a 

configuration, consist of a multiset of objects and messages. Rewrite rules then define 

transitions between such configurations. These transitions represent the different 

actions that may occur in CSs. In our case, we present rules modeling the effects of 

time and resources on missions or the solicitations requests between roles. 

4.2 SoS Global Structures and behaviors Modeling 

In this section, we present Maude specification modules and classes that encode the 

different concepts mentioned in the metamodel (Mission, Resource, Role, etc.) 

including the necessary information to describe their Predicates, Action, States, and the 

overall behavior emerging from their relationships, structures and features.  

4.2.1 Modeling Missions and their durations:  

Structure encoding: the Mission specification structure, the checking predicates, the 

temporal constraints and their violations signals are specified in the system module 

MissionSpec. The latter contains all the necessary declarations defining the class 

Mission, which has seven attributes, namely, the starting sm and the ending em instants 

of a Mission instance m, the allowed completion duration of the mission expressed as 

an interval dn, dx, the mission state during st, whether its temporal constraints are 

respected or not sg, and the required resources rs to finish the execution.  

class Mission | sm : Nat, em : Nat, dn : Nat, dx : Nat, st : Stt, sg : Sig, rs : Rs  

States and temporal constraints predicates encoding: we use (sort Sig) to model 

three signal events that are triggered to represent and check the duration constraints i.e. 

isTCR(M) is triggered to inform that there are no duration violations, isMnV(M) and  

isMxV(M) to indicate that minimum duration is violated (resp. maximum duration). 

Additionally, Stt attribute in class Mission is employed to specify different states of the 



C, E Dridi et al. 

Mission instance (see Fig. 3). For convenience and simplicity, note that in this Fig. 3. 

and the upcoming statecharts, all transitions have a set of Predicates that are denoted 

by letters before the “/”, and Actions that are denoted by numbers after it. Thus, we 

encode in Maude a set of predicates PMis() that represent the conditions (left table) 

which must be true to trigger the transitions. These predicates will be employed by the 

Resources Controller to enable (or disable) the different actions AMis()(right table) in a 

given mission instance. One simple example of how this transition system works: 

consider a mission M waiting in WaitConsResp state for an authorization from the 

controller to consume R, (i.e. it has already sent to the controller a Consumption 

Request using the action (1) AMis). If the controller accepts the request, the predicate  

(c) PMis = isConsReqAccepted (M, R) becomes true and it will trigger the action              

(3) AMis = execute(M) to move the M from WaitConsResp state to Executing to state. 

 
Fig. 3: Mission transition system. 

Afterward, we use a set of Maude conditioned rules in combination with different 

monitoring and TC predicates to control and manage the current mission states, as well 

as its consumption requirements. These rules are reactive and take the form:  

crl [name] : action (AMis) < Mid : Mission | state : S > =>  < Mid : Mission | state : S’ > if (PMis) 

4.2.2 Modeling Resources Types 

Structure encoding: using Maude specification, the resource specification in terms of 

structure, transitions predicates, and features are specified in the module ResourceSpec, 

it contains all the necessary declarations defining the class Resource. The latter has four  

attributes, namely, prp, resSt, resT and resC to keep track of, respectively, the resource 

property prp and its actual state rSt, whether it is a public or private resource via rT 

attribute and their category, i.e. (logical or physical). 

class Resource | prp : Prop, resSt : ResSt, resT : ResT, resC : ResC. 
States predicates encoding: we use (sorts Prop ResSt ResT) to express their 

properties (ul: unlimited, lim : limited and lr : limited but renewable), their states (see 

Fig. 4.), if they were PubRes or PrvRes, and their categories. We identify a set of 

predicates PRes() and actions ARes() to specify the states and transitions of each resource 

in Maude. E.g. consider a resource R, available and holding in NotConsumed,  the 
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controller will fire the transition “b && c / 2” and perform the action (2) 

ARes=consume(R) to move to Consumed state whenever the two predicates (b)PRes and 

(c)PRes become true. These later indicate that there is a consumption approval and R is 

public. In case R is private the transition system will fire “d / 3”, i.e. if 

(d)PRes=isPrvRes(R) execute (3) ARes=lock(R) and move to state Locked.   

The Maude rules will be employed along with the Controller rules to manage the 

resource logical and physical behavior. These rules take the following form: 

crl [name] : action (ARes) < Rid : Resource| resStt : S > => < Rid : Resource| resStt : S’ > if (PRes) 

 

 
Fig. 4: Resource transition system. 

4.2.3 Modeling Roles structures and behaviors 

Structure encoding: the Role specification structure, states and transitions are 

specified in the system module RoleSpec. The latter contains all the necessary 

declarations defining the class Role. 
class Role | rlSt : RlSt, rclck : Time, mrt : TimeInf, timer : TimeInf . 

This class highlights the current state rlSt, local clock (rclck), the time value needed 

to receive the response message from the role whose (mrt) value is interested, and a 

timer (timer); four kinds of actions involving roles actReq(R, R’), actRep(R, R’), etc. 

On the one hand, to specify the resources production behavior provided by different 

Roles, we encode in Maude a set of predicates PRol() and actions ARol() in a given Role.  
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Fig. 5: Role transition system. 

On the other hand, we provide in the same module, an RT object-oriented 

specification with a protocol for specifying roles Active/Inactive actions times. To 

manage the unwanted behavior related to missions-based conflicts using rewrite rules 

([!Synch-missions], [!after-missions], [!before-missions]), e.g. the rule [!Synch-

missions] offers to the concerned Role the ability to prevent simultaneous access of two 

missions M1 and M2 to a non-shared private resource, by executing the mission with 

the shortest execution duration and leaving the second waiting.  
rl[!Synch-missions]: notSynch(M1, M2) < M1 : Mission | sm : T1, em : T’1, dn : Dn1, dx : Dx1, st : 
WaitResp, sg : Sig, rs : PrvR, rC : RC > < M2 : Mission | sm : T2, em : T’2, dn : Dn2, dx : Dx2, st : 
WaitResp, sg : Sig, rs : PrvR, rC : RC > =>  < M1 : Mission | sm : T1, em : T’1, dn : Dn1, dx : Dx1, st : 
changeSt(WaitResp, Dx1 - Dn1, Dx2 - Dn2), rs : PrvR, rC : RC > < M2 : Mission | sm : T2, em : T’2, 
dn : Dn2, dx : Dx2, st : changeSt(WaitResp, Dx1 - Dn1, Dx2 - Dn2), rs : PrvR, rC : RC > 

4.3 SoS Controller Behavior Modeling 

In this section, we present our controller which supports the Resources Management, 

dynamic roles interactions, and Systems behavior states.  

4.3.1 Modeling Resources Management Controller 

The consumption via the combination of Missions and Resources states and the 

production is supported by matching the states of Roles and Resources. The goal is to 

decide whether to accept or not Missions consumption (resp. Role production) requests. 

More specifically, this is accomplished by managing different predicated actions to 

decide to either change or not the different states of Missions, Roles, and Resources. 

Structure encoding:  to simulate the controller decisions, we present the module 

ManagementCtrlSpec for allocation/production control. We describe these 

specifications in terms of structure, consumption/production predicates, and actions. 

Missions may have access to resources, and Roles may affect their availability during 

the production process. These relationships are represented by the following class. 

class ResManagementCtrl | mission : Oid, role : Oid, resource : Oid resMangS : ResMangStt.  

Resources Management behavior: in the same module, we use the previous 

predicates (resp. actions), those related to Missions PMis(), Roles PRol() and Resources 
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PRes(), (resp. AMis(), ARol() and ARes()) to formalize the new ones PRC() (resp. ARC()) that 

manage the consumption/production of Resources (Fig. 6.). To illustrate how this 

controller RC works, consider that RC is holding in AnalyseConReq,  the transition 

system will fire the transition “b / 2” and perform the action (2) ARC to move to 

ConsReqAccepted state whenever the predicate (b)PRC becomes true. The latter is 

composed of five predicates (see table in Fig.6), namely, (a)PMis=a consumption request 

of M is sent, (b)PMis = its temporal constraints are respected, (a)PRes = resource R is 

available, (b)PRes = consumption is approved, and (c)PRes = R is public see table in Fig. 

3 and Fig. 4, respectively. Whenever these predicates become true, the action (2) ARC 

in turn will trigger two actions(2) ARes = Consume R and (3) AMis = execute M. 

 
Fig. 6: Resources Management Controller transition system. 

We encode allocation actions as conditional rewrite rules, i.e. their triggering 

conditions are the state predicates encoded above and their triggered actions are 

encoded as Maude computation. The different actions express atomic controlling 

behaviors for resource consumption/production, missions and roles. The conditional 

rewrite rules in this case will be as follow: 
crl [rewrite-rule-name] : action (ARC) < Rid : Resource| resStt : RS > <: Mission | state : MS, res 
: Rid > < RCid : ResManagementCtrl |mission : Mid, resource : Rid,  state : RCS >  =>    < Rid : 
Resource| resStt : RS’ > <: Mission | state : MS, res : Rid’ >   < RCid : ResManagementCtrl 
|mission : Mid, resource : Rid,  state : RCS’ >     If (PRC)   

So as not to go into too much detail, we give a simplified example of the rule[lock-

resource]: If Rid is PrvRes, or renewable, the controller sends a lock(Rid) message to 

Rid and moves to the Lock state. 
crl[lock-resource]: lock(Rid) < Rid: Resource | resSt : PrvRes > < Mid : Mission | st : WaitResp, 
rs : Rid >  < ACid : AllocationCtrl | Mid, Rid, resSt : AnalyseConsReq >  =>  < Rid: Resource 
|resSt : Locked, rT : PrvRes > < Mid : Mission |st : Executing, rs : Rid >  < ACid : AllocationCtrl 
| Mid, Rid, resSt : ResLock > if (isLock(Rid) && isPubRes(Rid) && Sig  =TCR)|| (isLimited(Rid) 
&& isRenwable(Rid) && isAvailable(Rid) && Sig  =TCR)            

4.3.2 Systems behavior specification 

To control the desired behaviors and prevent the unwanted ones, it is necessary to study 

the global state of the system that could be affected by various factors which are related 

to the different states of roles, missions, and resource consumption/production. For this 

aim, the module SoSSpec provides the rewriting logic mean that can specify and check 

the global configurations of SoS design, and then, ensure the correctness of the evolved 

SoS substructures. 
class SoS| csL : CSL, ml : ML, rl : RL, resl : ResL, csst : CSSt . 

Structure encoding: the SoS Maude-based specification in terms of organizational 

composition (e.g. ownership, dependency, etc), transitions, and states are defined in 
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class SoS. The latter has five attributes, namely, mL, rL, resL and CSL, for CSs, 

missions, roles, and resources lists, and CSSt to describe the CS state (ignored, joined, 

active, etc.). This class describes the global state of the system according to its CSs.  

Systems global behavior: we take advantage of the specified states of missions, 

resources, and roles to describe the behavior of the participating CSs. We give rewrite 

rules that express guarded configuration implementing the desired behavior of CSs 

playing Roles (the rules [to-ignore], [to-prepare]… are well detailed in section 4.2).  

5 Simulation and Analysis: case study ‘EIMSoS’ 
The SoSs features depend on different states, which are expressed in terms of the 

relationship between Missions and Resources considering the temporal features. Then, 

we will specify the dynamic global behavior that emerges from the SoS. 

5.1 Maude-based modeling of the Resource Management  

We show the use of the Resource Controller by applying a sequence of rules (module 

ResourceCtrlSpec) on a configuration of the EIMSoS specified in Section 2.3. Given 

object identifiers, H1, Dep, and AMECSctrl, the following term may represent a 

configuration with a private and limited resource which is a Helicopter, a mission 

Departure, a resource controller for AeroMedicalEmergencyCS, respectively, and an 

access(Dep, H1) message from Dep to AMECSctrl to enable the allocation process. 
< Dep : Mission | 5000, 450, 550, Idle, TCR > < H1 : Resource | lim, NotCns, PrvRes > < 
AMECSctrl : AllocationCtrl | Dep , H1 > 

The execution of this controller is modeled with a set of rewriting rules. For a given 

scenario, when the mission Dep needs to consume/use the resource H1 the request-

analysis rule, will send the controller an access request and it will wait at WaitResp 

state for a response. If ever H1 is not available (state notAv), the controller will send a 

rejection (sendRej(H1, Dep)) replying to the mission, and the latter will back to state 

Idle in request-rejection rule.  
crl [request-analysis] : < Dep : Mission | 500, 450, 550, Idle, TCR >  <H1: Resource | lim, resSt, 
prvRes > accesReq(Dep, H1) =>  < Dep : Mission | 5000, 450, 550, WaitResp, TCR > < H1: 
Resource | lim, resSt, prvRes > < AMECSctrl : AllocationCtrl | Dep, H1> sendRej(H1, Dep) if 
resSt (H1) = notAv .  
crl [request-rejection] : isReqRej(Dep) < Dep : Mission | 500, 450, 550, WaitResp, TCR >  =>   < 
Dep : Mission | 500, 450, 550, Idle, TCR > 

Contrarily, if the mission receives an ok message (isRespOK (H1, Dep)), it will start 

the execution (State Exec), and the controller sends a ResLock(H1) message to H1 and 

moves to the ResLock state. 
crl [request-accept] : < Dep : Mission | 500, 450, 550, Idle, TCR > <H1: Resource | lim, resSt, 
prvRes >  accesReq(Dep, H1)  =>  < Dep : Mission | 5000, 450, 550, Exec, TCR >  < H1: Resource 
|lim, lckd, prvRes > < AMECSctrl : AllocationCtrl | Dep, H1> ResLock(M, R) if canBeCons(H1) && 
isTCR(Dep)) || (isLimButRnwable(H1) && isAv(H1) && isTCR(Dep)) (lock(H1) && isPubRes(H1) 
&& canBeConsumed(H1) && isTCR(Dep)) || (isLimButRnwable(H1) && isAv(H1) && isTCR(Dep))  

If the mission is taking longer than expected, a signal event MxV(Dep) is transferred 

to inform the SoS that the duration constraint is violated. 
crl [request-TCViolated] : < Dep : Mission | ET, 450, 550, Exec, TCR >  <H1: Resource | lim, resSt, 
prvRes>  accesReq(Dep, H1) =>  < Dep : Mission | ET, 450, 550, Exec, MxV > < H1: Resource | 
lim, lckd, prvRes > < AMECSctrl : AllocationCtrl | Dep, H1> if ET > 550 . 
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5.2 Maude-based modeling of the SoS states configuration 

According to the SoS class, each CSs state has a relation with the list of roles RL that 

he plays and the relevant list of missions ML as well. Based on these two lists, several 

states and transitions naturally emerge within a CS that is relevant to the SoS:  

- IgnoredCS: a CS which has neither the relevant ML to accomplish, neither the roles 

to play [to-ignore], because RL and ML lists are empty.  

- PreparedCS: a CS which has the relevant requirements of the SoS, but their states are 

not triggered yet. Notice that the system RSCS is rewritten to move to the state 

ignoredCS. This is due to the mission Dep state is still idled.  

- PassiveCS: a CS that has joined the SoS but none of its roles as activated i.e. waiting 

for activation requests. Notice that the system RSCS is rewritten to move to the state 

PassiveCS. This is due to the mission Dep waiting WaitResp for a response to start 

execution and the role Rec is not activated yet. 

- ActiveCS: a CS that is participating in a constellation of the SoS once he activates one 

or more role from the RL. This time the RSCS is rewritten to move to the state 

ActiveCS. Because mission Dep state is not idled and the role Rec is activated. 
rl [to-ignore] : < RSCS : SoS | ML, RL, csst : CSSt > ignoreCS (RSCS, RL, ML) => < RSCS : SoS | ML, 
RL, IgnoredCS : CSSt >   crl [to-prepare] : < RSCS : SoS | M[Dep : Mission | eT, 450, 550, Idle, 
TCR], RL, csst : CSSt > prepareCS (RSCS, RL, ML) =>  < RSCS : SoS | M[Dep : Mission | eT, 450, 
550, MSt, TCR], RL, PreparedCS : CSSt >  if MSt = Idled . 

 crl [to-passive] : < RSCS : SoS | M[Dep : Mission | eT, 450, 550, WaitResp, TCR],  R[Rec : Role | 
clck : 0,     timer : INF, rid : R, mrt : INF], csst : CSSt > ignoreCS (RSCS, RL, ML) => < RSCS : SoS | 
M[Dep : Mission | eT, 450, 550, MSt, TCR],  R[Rec : Role | clck : 0, timer : INF, rid : R, mrt : 
INF], PassiceCS : CSSt >  if MSt = WaitResp && isRoleAct(Rec) = false. 
crl [to-prepare] : < RSCS : SoS | M[Dep : Mission | eT, 450, 550, WaitResp, TCR], R[Rec : Role | 
clck : 0, timer : INF, rid : R, mrt : INF],  csst : CSSt > ignoreCS (RSCS, RL, ML) => < RSCS : SoS | 
M[Dep : Mission | eT, 450, 550, MSt, TCR],  R[Rec : Role | clck : 0, timer : INF, rid : R, mrt : INF], 
ActiveCS : CSSt >  if MSt = WaitResp && isRoleAct(Rec) = true . 

6 Conclusion 
The main contributions of this paper are threefold, we first proposed a generic 

metamodel that emphasizes different aspects oriented towards a set of qualitative and 

quantitative features. Then, we proposed a formal approach for the modeling and 

specification of SoSs structures and behaviors based on temporal and resources 

features. Finally, we provided an execution and verification solution of the defined 

behaviors, using the rewriting-logic-based Maude system, and we validated it using an 

Emergency Incident Management SoS as a case study. For future work, we plan to 

formally verify the controller's properties with a symbolic state-based model-checking 

technique relying on (LTL) as a temporal logic to consider symbolic high-level system 

states. In addition, we seek to extend the work in progress by considering new strategies 

of coordination related to temporal modeling, analysis, and verification.  
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