
HAL Id: hal-04227362
https://hal.science/hal-04227362

Submitted on 22 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Maude-based Rewriting Approach to Model and
Control System-of-Systems’ Resources Allocation

Charaf Eddine Dridi, Nabil Hameurlain, Faiza Belala

To cite this version:
Charaf Eddine Dridi, Nabil Hameurlain, Faiza Belala. A Maude-based Rewriting Approach to Model
and Control System-of-Systems’ Resources Allocation. moDdeling, vErification and Testing of dE-
pendable Critical systems DETECT2022, 2020, �10.4018/ijsi.2020010103�. �hal-04227362�

https://hal.science/hal-04227362
https://hal.archives-ouvertes.fr

A Maude-based Rewriting Approach to Model and

Control System-of-Systems’ Resources Allocation

Charaf Eddine DRIDI1,2, Nabil HAMEURLAIN1, Faiza BELALA2

1LIUPPA Laboratory, University of Pau, Pau, France
{charaf-eddine.dridi, nabil.hameurlain}@univ-pau.fr

2LIRE Laboratory, Constantine 2 University – Abdelhamid Mehri, Constantine, Algeria

{charafeddine.dridi, faiza.belala}@univ-constantine2.dz

Abstract:

Systems-of-Systems (SoSs) are increasingly used to integrate and execute a large

number of Constituent-Systems (CSs) to offer new functionalities that cannot be

offered by its individual CSs. However, designing well-tuned directed SoS to deal with

a variety of control issues such as resources management and temporal constraints

violations while providing high-level assurance about their specified behavior is very

challenging. Thus, due to the lack of explicit models for their resources allocations and

quantitative features, SoSs executions are becoming more complex and cannot be

effectively controlled. To solve these problems, a generic metamodel is proposed in

this paper to control resources and behavioral features. The proposed approach deals

with different resources of SoSs and provides control actions in order to manage their

structural, temporal and behavioral aspects. The latter are grouped in a single model

holding SoSs executions according to specific quantitative needs. One step further, the

specifications of the proposed metamodel are encoded using Maude language that

makes it possible to analyze various requirements needed by CSs, and enables an

autonomic executability of their dynamic behaviors.

Keywords. SoS, Missions, Resources Allocation, Dynamic Behavior, Metamodeling,

Maude.

1 Introduction
In the last decade, Systems-of-Systems (SoSs) appeared as new software technologies

that integrate a set of various subsystems from different subfields, and which offer a

reliable and more natural alternative to build an emerging vision for the next generation

of large-scale systems [1] [2]. These systems are designed to integrate multiple

independent and functional Constituent-Systems (CSs) into a larger system in several

important application domains. Consequently, an SoS has the ability to offer new

functionalities to users that cannot be offered by its individual CSs, but emerge from

their combination.

Nowadays, critical and emergency SoSs, require the missions of various CSs to be

accomplished in real-time and within specific amounts of time. Therefore, temporal

properties are significant in such systems, where a violated constraint can result in a

disaster. When referring to the period needed to execute a mission, duration is

considered as a simple temporal constraint between the mission starting (resp. ending)

mailto:nabil.hameurlain%7d@univ-pau.fr

C, E Dridi et al.

instants. Since we consider the duration of missions as a generalization of almost all

other constraints[3][4][5], the challenge here is that the time constraints applied on

missions can be implicitly affected by the physical environmental features of different

constituents. These features are strongly related to resource properties. The resources

that SoS requires at run-time, are sometimes limited, unlimited, renewable or not

renewable [14][15][16]. As a solution, we use a set of features that specify different

resources for local and global CSs. These features are the basis of developing a

dependencies-based approach that has sets of attributes describing the status of the

resources that the CSs may use concerning availability, consumption, (non)shareability,

disruption, renewability, and withdrawal. Furthermore, these challenges are not easy to

manage, i.e. independent evolution and dynamic resources allocation may cause these

CSs to behave differently, for instance, they may affect the missions executions, the

CSs interactions and communications within the SoS, and then they can cause the

overall mission failure of the SoS.

In this paper, we provide a formal modeling approach that reduces the complexity

of designing SoS temporal, resources and interaction behavior. We adopt an MDA-

based approach to provide a metamodel for specifying resources properties, and

temporal aspects of SoSs. We focus on defining the logical structure and behavior of

qualitative and quantitative features involved in the SoS definition, which allows

describing all the SoS features at the same high level of abstraction. Hence, to create

this generic model, we have to consider a set of concepts, aspects, and features, i.e.

hierarchical composition of CSs, missions organization, roles interactions, temporal

variations, resources allocation, etc. Employing such a metamodel is a promising mean

to show its ability to initiate our model into a wide range of specific technologies, and

to provide more holistic solutions in SoSs applications.

To instantiate our metamodel, our choice was oriented towards the Maude language,

thanks to its expressivity, it can execute, and validate all the relevant specifications of

our proposed metamodel without losing information and features. Its executable

semantics support and boolean expressions are relevant to design the states predicates

of each CS. The language offers more accurate modeling of SoSs whose behavior

depends on Missions quantitative time/resources. It uses the equations of rewriting

theory to specify the data types of all components. It also offers a model-checker engine

that provides a symbolic state-based verification of SoS properties. The proposed

Maude-based SoS modeling approach is one of the effective solutions that enable the

conditional rewriting rules to describe the unexpected behavior of SoSs. In this

specification, we present a way to combine different Maude Modules at different

entities levels to produce global knowledge about the entire SoS design.

2 Related Work
We represent in this section some relevant studies that analyze different SoSs aspects.

Adopting a SysML visual modeling language, the authors of [6] [7] have proposed a

semi-formal SoS conceptual model which serves as a domain-independent vocabulary

for SoSs. However, their proposal does not provide a quantitative analysis method to

exploit quantitative properties such as temporal constraints and resource allocation.

Besides, no formal design to control roles (or missions) dynamic behavior is provided.

An Approach to Model and Control SoSs’ Resources

The authors of [8] [9] have introduced a formal approach based on Architectural

Description Language, that inspires its syntax notation from Bigraphs to model

hierarchical structures of CSs and their roles. They have focused on modeling the

potential cooperation between CSs by offering a syntax-based description that manages

a set of constrained events and roles links affecting the global mission of an SoS.

Nevertheless, no attention is paid to qualitative aspects related to the execution time of

missions accomplished by playing different roles, neither they considered the need of

CSs for a global resources control to execute these missions. Besides, no execution

control is presented to describe a logic that governs the execution of submissions.

The authors of [10] have proposed B3MS for SoSs modeling based on the formal

technique of Bigraphical reactive systems with an inspiring vision from multi-scale

modeling. They have given a method to address the dynamic aspect of SoS by providing

model-based rules of basic reconfigurations. They have relied on bigraphical reaction

rules to only express the different scales of configurations at the levels of composition,

communications nodes, etc. and they have not paid attention to providing a resource

controlling support nor a time-based qualitative evaluation of the introduced behaviors.

In [11], the authors have investigated the interplay between SoS and CSs

architectures. The approach includes both the design of an SoS architecture that

considers the architecture of an existing CS, and the architecting of CSs so that they

can later become constituents of an SoS. However, they lacked concrete features that

can govern CSs operating in an autonomic manner in a constrained environment. In

addition, no formal executable support for their solution is provided as well.

The work presented in [12] have focused on developing a metamodel that represents

SoS ontologies. It can be used for both modeling activities and ontology definitions.

Even so, to support complete and systematic analysis and design of an SoS. However,

the authors did not provide executable support to simulate and verify their proposed

model. Additionally, no control of behavioral constraints is provided in their work.

The authors of [13] have presented a hybrid modeling method based on service-

oriented and ontology-based requirements for SoSs modeling. Initially, they introduced

an SOA conceptual model, then, rigorous modeling semantics through defining

multiple ontologies which is important for domain knowledge reuse is defined.

However, their model does not include supplement repositories to improve the

efficiency of temporal behaviors e.g. services durations, and temporal constraints, and

a validation method to ensure dynamic consistency with the needed resources.

We take advantage of some interesting coordination models presented in [14] [15]

and [16] to build up our generic model for SoSs. The latter addresses the issue of

conflicts over different types of resources and categorization during their consumption

by missions or production by SoS roles. However, our proposed model is governed by

a set of behavioral constraints controlling the execution. SoSs may evolve using

transition systems, by using specific actions which are conditioned by specific

predicates stating whether the application of the action is allowed or not. The

metamodel semantic is implemented using Maude language, offering enough

expressiveness and simulation with its executable rewriting logic.

C, E Dridi et al.

3 A Metamodeling Approach for SoSs Architecture Description

In this section, we provide a generic integration model that introduces different features.

3.1 Principle: a generic metamodel for SoSs architecture

An SoS consists of a set of CSs that are playing different roles in an organizational and

technical environment. These roles jointly realize a common goal. More precisely, an

SoS model is composed of several missions or goals that execute together, to offer one

global mission. These missions may need resources for execution such as humans,

machines, services, etc. Moreover, SoSs can take four different types [2], Directed

(with a central managed purpose and central ownership of all CSs), Virtual (lack of

central purpose and central alignment), Collaborative (with voluntary interactions of

CSs to achieve a goal), and Acknowledged (independent ownership of the CSs).

Subsequently, the proposed definition is introduced based on the key consideration that

SoSs are more than simply a set of connected CSs sharing data and offering missions,

but, it defines the logical structure and behavior of qualitative/quantitative features

involved in Directed SoSs. Therefore, the aim is to define a generic metamodel that will

be used as a basis for the modeling and designing of these specific types, whose CSs

can have their operational/managerial independence but their emergent behavior is

subordinated to a specific mission and Central Controller of all CSs.

In this context, we are interested in modeling and specifying public resources

(PubRes) which are shareable and consumed by missions within the SoS, and private

resources (PrvRes) which are not shareable and consumed by missions within the CS.

They could also be characterized by some other properties, i.e. limited, unlimited,

renewable, and not renewable, as well as whether they are logical or physical resources.

Therefore, Resources Management Controller consists of specifying the behavior to be

adopted to manage the consumption and the production techniques in the SoS. It

consists of a set of actions that are triggered in case the specified triggering conditions

are fulfilled. The consumption relationships between missions and resources (resp.

production relationships between roles and resources) in our specification are based on

specific features that they have. We consider it as an SoS-specific refinement of model

property-based resource consumption cycles introduced in[14][15], the proposed

controller supports the consumption/production by the matching of specific

Missions/Roles states with the features of the different resources. Other important

characteristics that we should take into account are: Mission duration, Roles

interactions, Desired/ Unwanted behavior, Composition, and CSs configuration [17].

The reason of proposing this metamodel is the need to cope with the variety of the

features, and to offer a comprehensive specification to design any SoS architecture.

Thus, the proposed metamodel is specified by enhancing the concepts with the essential

quantitative features that an SoS should have. Therefore, we need to provide a generic

metamodel for SoS design, to be able to show the ability of the metamodeling approach

in instantiating architectural models of such systems and to explicitly represent all

features. The specification level (see the five classes on top, red rectangle in Figure 1)

concerns concepts related to the definition of behavior controllers (ResMangCtrl and

SoSCtrl) that can manage the different states of Resources, Missions and CSs. Their

An Approach to Model and Control SoSs’ Resources

Precondition Predicate associations represent the states conditions that must hold

before and be fulfilled after a transition Action of a Resource, a Mission, or a CS.

Fig. 1. General components of SoS metamodel.

3.2 Motivating example

An example of EmergencyIncidentManagementSoS [18], abbreviated EIMSoS, will be

considered to concretize the basic contributions made by our approach. As an

illustrative example of a critical SoS, consider a collection of autonomous and

interacted CSs tasked with transporting and evacuating trauma patients and persons

injured in emergencies. To accomplish this Mission, the considered EIMSoS must be

designed in such a way that the CSs can perform some missions that cannot be provided

by any CS. The visual representation of the EIMSoS elements is shown in Figure 2. A

general idea of this SoS is that, after receiving an emergency call, the

CallCenterSoS(CCSoS) which provides the ComputerAidedDispatch(CAD) as a public

resource containing all the necessary information and the data of the incident, directly

interacts with its two sub-call centers CSs i.e. AmbulanceStation(ASCS) and the

RetrievalServices (RSCS). The three systems have access to shared resource CAD and

then, they start switching between different roles (e.g. Receiver and/or Dispatcher) to

accomplish a set of local missions, i.e. they discuss the available decisions and

determine the optimal response after the emergency’s call. If the decision is made to

dispatch a helicopter and/or an ambulance, the Dispatcher will activate the role Aero-

Transport and/or GroundEmergency of AeroMedical-EmergencyCS (AMECS) and

GroundEmergencyCS (GECS) to start performing the corresponding missions, i.e.

preparing the medical teams, flight, departure, first aid, and evacuating, etc. At this

stage the ambulance and the helicopter are considered as private (PrvRes) and limited

resources provided by AMECS and GECS, respectively. Upon arrival at the hospital,

the HospitalSoS(HSoS) will interject and hands-over to the corresponding wards (e.g.

LabCS, RadioCS, etc.) that can accomplish the necessary missions (e.g. triage

assessment, diagnosis, lab tests, etc.) and take care of the patient.

C, E Dridi et al.

Fig. 2. BPMN Model for Emergency Incident Management SoS (EIMSoS).

4 An executable Maude-based specification of SoSs Metamodel

We have chosen the class diagram notation to represent graphically the proposed

metamodel. UML Classes, aggregations, inheritance, etc. are used to represent elements

and entities of this metamodel. In this section, we give an overview of our proposed

object-oriented modules, and how they enable the implementation of the different

entities and concepts mentioned in the previous metamodel; and how to model and

control their emergent behavior. On the one hand, implementing these entities enables

the designers to easily understand the SoSs architectures, including reasoning about

their features by providing a high-level model of their structures. On the other hand, it

enables them to instantiate it by specifying several mappings or transformations to

deduce various executable models. To this end, we use Maude as a logical basis that

can provide a clear definition of the object-oriented semantics and makes it a good

choice for the formal specification in the form of a transition system.

The following subsections introduce the encoding of our metamodel in Maude. The

latter is chosen as a formal specification language and verification platform, because it

is expressive enough for specifying all the concepts, aspects and features of the

metamodel. On the one hand, it gives a clear specification of the object-oriented

notations classes in the metamodel (e.g. SoS, CS, Mission, Roles, Ressource classes,

etc.), and describes all the relevant specifications without losing information and

features. And on the other hand, it also offers several rewriting-based theories that are

adequate for simulating the interdependencies (i.e. the Predicate and Action

associations) between these classes by controlling the states of each Mission, Resource

and CS, and offering more accurate modeling of SoSs whose behavior depends on

Missions quantitative time/resources properties.

An Approach to Model and Control SoSs’ Resources

4.1 Motivating the use of Maude

The declarative language Maude [19] is a very expressive equational and rewriting

logic language, as well as one of the most powerful languages in programming,

executable formal specification, and formal analysis and verification. Its computation

consists of a logical deduction by concurrent rewriting modulo the equational structural

axioms of each theory. Maude is an object-oriented modeling language for the

specification of distributed systems. Our specification is structured using two types of

combined Maude modules, i.e. Real-Time and Object-Oriented ones. Each module

consists of one specific class with a set of attributes, and it can import other

specifications using that can provide the basic data types like objects, and

configurations. What interests us is that Maude employs asynchronous message passing

and, thus, the rewrite rules specify the possible transitions that may happen in different

entities in SoSs. We specify the behavioral transitions using the following rewrite

rules[19][20]:

crl[R] : {t} => {t’} in time u if (condition)
The triggering conditions of these rules “R” are state predicates of different entities

in the metamodel and their triggered actions are encoded as Maude functional

computation. These rules describe how to trigger an action, and how the corresponding

control states are transited from one to another. It rewrites the left-hand term “t” of the

rule into its right-hand term “t’” on which an action or a transition is applied. A

conditional rewrite rule is triggered when its specified (condition) is satisfied. The idea

is that in concurrent CSs forming an SoS, the concurrent states, which are called a

configuration, consist of a multiset of objects and messages. Rewrite rules then define

transitions between such configurations. These transitions represent the different

actions that may occur in CSs. In our case, we present rules modeling the effects of

time and resources on missions or the solicitations requests between roles.

4.2 SoS Global Structures and behaviors Modeling

In this section, we present Maude specification modules and classes that encode the

different concepts mentioned in the metamodel (Mission, Resource, Role, etc.)

including the necessary information to describe their Predicates, Action, States, and the

overall behavior emerging from their relationships, structures and features.

4.2.1 Modeling Missions and their durations:

Structure encoding: the Mission specification structure, the checking predicates, the

temporal constraints and their violations signals are specified in the system module

MissionSpec. The latter contains all the necessary declarations defining the class

Mission, which has seven attributes, namely, the starting sm and the ending em instants

of a Mission instance m, the allowed completion duration of the mission expressed as

an interval dn, dx, the mission state during st, whether its temporal constraints are

respected or not sg, and the required resources rs to finish the execution.

class Mission | sm : Nat, em : Nat, dn : Nat, dx : Nat, st : Stt, sg : Sig, rs : Rs

States and temporal constraints predicates encoding: we use (sort Sig) to model

three signal events that are triggered to represent and check the duration constraints i.e.

isTCR(M) is triggered to inform that there are no duration violations, isMnV(M) and

isMxV(M) to indicate that minimum duration is violated (resp. maximum duration).

Additionally, Stt attribute in class Mission is employed to specify different states of the

C, E Dridi et al.

Mission instance (see Fig. 3). For convenience and simplicity, note that in this Fig. 3.

and the upcoming statecharts, all transitions have a set of Predicates that are denoted

by letters before the “/”, and Actions that are denoted by numbers after it. Thus, we

encode in Maude a set of predicates PMis() that represent the conditions (left table)

which must be true to trigger the transitions. These predicates will be employed by the

Resources Controller to enable (or disable) the different actions AMis()(right table) in a

given mission instance. One simple example of how this transition system works:

consider a mission M waiting in WaitConsResp state for an authorization from the

controller to consume R, (i.e. it has already sent to the controller a Consumption

Request using the action (1) AMis). If the controller accepts the request, the predicate

(c) PMis = isConsReqAccepted (M, R) becomes true and it will trigger the action

(3) AMis = execute(M) to move the M from WaitConsResp state to Executing to state.

Fig. 3: Mission transition system.

Afterward, we use a set of Maude conditioned rules in combination with different

monitoring and TC predicates to control and manage the current mission states, as well

as its consumption requirements. These rules are reactive and take the form:

crl [name] : action (AMis) < Mid : Mission | state : S > => < Mid : Mission | state : S’ > if (PMis)

4.2.2 Modeling Resources Types

Structure encoding: using Maude specification, the resource specification in terms of

structure, transitions predicates, and features are specified in the module ResourceSpec,

it contains all the necessary declarations defining the class Resource. The latter has four

attributes, namely, prp, resSt, resT and resC to keep track of, respectively, the resource

property prp and its actual state rSt, whether it is a public or private resource via rT

attribute and their category, i.e. (logical or physical).

class Resource | prp : Prop, resSt : ResSt, resT : ResT, resC : ResC.
States predicates encoding: we use (sorts Prop ResSt ResT) to express their

properties (ul: unlimited, lim : limited and lr : limited but renewable), their states (see

Fig. 4.), if they were PubRes or PrvRes, and their categories. We identify a set of

predicates PRes() and actions ARes() to specify the states and transitions of each resource

in Maude. E.g. consider a resource R, available and holding in NotConsumed, the

An Approach to Model and Control SoSs’ Resources

controller will fire the transition “b && c / 2” and perform the action (2)

ARes=consume(R) to move to Consumed state whenever the two predicates (b)PRes and

(c)PRes become true. These later indicate that there is a consumption approval and R is

public. In case R is private the transition system will fire “d / 3”, i.e. if

(d)PRes=isPrvRes(R) execute (3) ARes=lock(R) and move to state Locked.

The Maude rules will be employed along with the Controller rules to manage the

resource logical and physical behavior. These rules take the following form:

crl [name] : action (ARes) < Rid : Resource| resStt : S > => < Rid : Resource| resStt : S’ > if (PRes)

Fig. 4: Resource transition system.

4.2.3 Modeling Roles structures and behaviors

Structure encoding: the Role specification structure, states and transitions are

specified in the system module RoleSpec. The latter contains all the necessary

declarations defining the class Role.
class Role | rlSt : RlSt, rclck : Time, mrt : TimeInf, timer : TimeInf .

This class highlights the current state rlSt, local clock (rclck), the time value needed

to receive the response message from the role whose (mrt) value is interested, and a

timer (timer); four kinds of actions involving roles actReq(R, R’), actRep(R, R’), etc.

On the one hand, to specify the resources production behavior provided by different

Roles, we encode in Maude a set of predicates PRol() and actions ARol() in a given Role.

C, E Dridi et al.

Fig. 5: Role transition system.

On the other hand, we provide in the same module, an RT object-oriented

specification with a protocol for specifying roles Active/Inactive actions times. To

manage the unwanted behavior related to missions-based conflicts using rewrite rules

([!Synch-missions], [!after-missions], [!before-missions]), e.g. the rule [!Synch-

missions] offers to the concerned Role the ability to prevent simultaneous access of two

missions M1 and M2 to a non-shared private resource, by executing the mission with

the shortest execution duration and leaving the second waiting.
rl[!Synch-missions]: notSynch(M1, M2) < M1 : Mission | sm : T1, em : T’1, dn : Dn1, dx : Dx1, st :
WaitResp, sg : Sig, rs : PrvR, rC : RC > < M2 : Mission | sm : T2, em : T’2, dn : Dn2, dx : Dx2, st :
WaitResp, sg : Sig, rs : PrvR, rC : RC > => < M1 : Mission | sm : T1, em : T’1, dn : Dn1, dx : Dx1, st :
changeSt(WaitResp, Dx1 - Dn1, Dx2 - Dn2), rs : PrvR, rC : RC > < M2 : Mission | sm : T2, em : T’2,
dn : Dn2, dx : Dx2, st : changeSt(WaitResp, Dx1 - Dn1, Dx2 - Dn2), rs : PrvR, rC : RC >

4.3 SoS Controller Behavior Modeling

In this section, we present our controller which supports the Resources Management,

dynamic roles interactions, and Systems behavior states.

4.3.1 Modeling Resources Management Controller

The consumption via the combination of Missions and Resources states and the

production is supported by matching the states of Roles and Resources. The goal is to

decide whether to accept or not Missions consumption (resp. Role production) requests.

More specifically, this is accomplished by managing different predicated actions to

decide to either change or not the different states of Missions, Roles, and Resources.

Structure encoding: to simulate the controller decisions, we present the module

ManagementCtrlSpec for allocation/production control. We describe these

specifications in terms of structure, consumption/production predicates, and actions.

Missions may have access to resources, and Roles may affect their availability during

the production process. These relationships are represented by the following class.

class ResManagementCtrl | mission : Oid, role : Oid, resource : Oid resMangS : ResMangStt.

Resources Management behavior: in the same module, we use the previous

predicates (resp. actions), those related to Missions PMis(), Roles PRol() and Resources

An Approach to Model and Control SoSs’ Resources

PRes(), (resp. AMis(), ARol() and ARes()) to formalize the new ones PRC() (resp. ARC()) that

manage the consumption/production of Resources (Fig. 6.). To illustrate how this

controller RC works, consider that RC is holding in AnalyseConReq, the transition

system will fire the transition “b / 2” and perform the action (2) ARC to move to

ConsReqAccepted state whenever the predicate (b)PRC becomes true. The latter is

composed of five predicates (see table in Fig.6), namely, (a)PMis=a consumption request

of M is sent, (b)PMis = its temporal constraints are respected, (a)PRes = resource R is

available, (b)PRes = consumption is approved, and (c)PRes = R is public see table in Fig.

3 and Fig. 4, respectively. Whenever these predicates become true, the action (2) ARC

in turn will trigger two actions(2) ARes = Consume R and (3) AMis = execute M.

Fig. 6: Resources Management Controller transition system.

We encode allocation actions as conditional rewrite rules, i.e. their triggering

conditions are the state predicates encoded above and their triggered actions are

encoded as Maude computation. The different actions express atomic controlling

behaviors for resource consumption/production, missions and roles. The conditional

rewrite rules in this case will be as follow:
crl [rewrite-rule-name] : action (ARC) < Rid : Resource| resStt : RS > <: Mission | state : MS, res
: Rid > < RCid : ResManagementCtrl |mission : Mid, resource : Rid, state : RCS > => < Rid :
Resource| resStt : RS’ > <: Mission | state : MS, res : Rid’ > < RCid : ResManagementCtrl
|mission : Mid, resource : Rid, state : RCS’ > If (PRC)

So as not to go into too much detail, we give a simplified example of the rule[lock-

resource]: If Rid is PrvRes, or renewable, the controller sends a lock(Rid) message to

Rid and moves to the Lock state.
crl[lock-resource]: lock(Rid) < Rid: Resource | resSt : PrvRes > < Mid : Mission | st : WaitResp,
rs : Rid > < ACid : AllocationCtrl | Mid, Rid, resSt : AnalyseConsReq > => < Rid: Resource
|resSt : Locked, rT : PrvRes > < Mid : Mission |st : Executing, rs : Rid > < ACid : AllocationCtrl
| Mid, Rid, resSt : ResLock > if (isLock(Rid) && isPubRes(Rid) && Sig =TCR)|| (isLimited(Rid)
&& isRenwable(Rid) && isAvailable(Rid) && Sig =TCR)

4.3.2 Systems behavior specification

To control the desired behaviors and prevent the unwanted ones, it is necessary to study

the global state of the system that could be affected by various factors which are related

to the different states of roles, missions, and resource consumption/production. For this

aim, the module SoSSpec provides the rewriting logic mean that can specify and check

the global configurations of SoS design, and then, ensure the correctness of the evolved

SoS substructures.
class SoS| csL : CSL, ml : ML, rl : RL, resl : ResL, csst : CSSt .

Structure encoding: the SoS Maude-based specification in terms of organizational

composition (e.g. ownership, dependency, etc), transitions, and states are defined in

C, E Dridi et al.

class SoS. The latter has five attributes, namely, mL, rL, resL and CSL, for CSs,

missions, roles, and resources lists, and CSSt to describe the CS state (ignored, joined,

active, etc.). This class describes the global state of the system according to its CSs.

Systems global behavior: we take advantage of the specified states of missions,

resources, and roles to describe the behavior of the participating CSs. We give rewrite

rules that express guarded configuration implementing the desired behavior of CSs

playing Roles (the rules [to-ignore], [to-prepare]… are well detailed in section 4.2).

5 Simulation and Analysis: case study ‘EIMSoS’
The SoSs features depend on different states, which are expressed in terms of the

relationship between Missions and Resources considering the temporal features. Then,

we will specify the dynamic global behavior that emerges from the SoS.

5.1 Maude-based modeling of the Resource Management

We show the use of the Resource Controller by applying a sequence of rules (module

ResourceCtrlSpec) on a configuration of the EIMSoS specified in Section 2.3. Given

object identifiers, H1, Dep, and AMECSctrl, the following term may represent a

configuration with a private and limited resource which is a Helicopter, a mission

Departure, a resource controller for AeroMedicalEmergencyCS, respectively, and an

access(Dep, H1) message from Dep to AMECSctrl to enable the allocation process.
< Dep : Mission | 5000, 450, 550, Idle, TCR > < H1 : Resource | lim, NotCns, PrvRes > <
AMECSctrl : AllocationCtrl | Dep , H1 >

The execution of this controller is modeled with a set of rewriting rules. For a given

scenario, when the mission Dep needs to consume/use the resource H1 the request-

analysis rule, will send the controller an access request and it will wait at WaitResp

state for a response. If ever H1 is not available (state notAv), the controller will send a

rejection (sendRej(H1, Dep)) replying to the mission, and the latter will back to state

Idle in request-rejection rule.
crl [request-analysis] : < Dep : Mission | 500, 450, 550, Idle, TCR > <H1: Resource | lim, resSt,
prvRes > accesReq(Dep, H1) => < Dep : Mission | 5000, 450, 550, WaitResp, TCR > < H1:
Resource | lim, resSt, prvRes > < AMECSctrl : AllocationCtrl | Dep, H1> sendRej(H1, Dep) if
resSt (H1) = notAv .
crl [request-rejection] : isReqRej(Dep) < Dep : Mission | 500, 450, 550, WaitResp, TCR > => <
Dep : Mission | 500, 450, 550, Idle, TCR >

Contrarily, if the mission receives an ok message (isRespOK (H1, Dep)), it will start

the execution (State Exec), and the controller sends a ResLock(H1) message to H1 and

moves to the ResLock state.
crl [request-accept] : < Dep : Mission | 500, 450, 550, Idle, TCR > <H1: Resource | lim, resSt,
prvRes > accesReq(Dep, H1) => < Dep : Mission | 5000, 450, 550, Exec, TCR > < H1: Resource
|lim, lckd, prvRes > < AMECSctrl : AllocationCtrl | Dep, H1> ResLock(M, R) if canBeCons(H1) &&
isTCR(Dep)) || (isLimButRnwable(H1) && isAv(H1) && isTCR(Dep)) (lock(H1) && isPubRes(H1)
&& canBeConsumed(H1) && isTCR(Dep)) || (isLimButRnwable(H1) && isAv(H1) && isTCR(Dep))

If the mission is taking longer than expected, a signal event MxV(Dep) is transferred

to inform the SoS that the duration constraint is violated.
crl [request-TCViolated] : < Dep : Mission | ET, 450, 550, Exec, TCR > <H1: Resource | lim, resSt,
prvRes> accesReq(Dep, H1) => < Dep : Mission | ET, 450, 550, Exec, MxV > < H1: Resource |
lim, lckd, prvRes > < AMECSctrl : AllocationCtrl | Dep, H1> if ET > 550 .

An Approach to Model and Control SoSs’ Resources

5.2 Maude-based modeling of the SoS states configuration

According to the SoS class, each CSs state has a relation with the list of roles RL that

he plays and the relevant list of missions ML as well. Based on these two lists, several

states and transitions naturally emerge within a CS that is relevant to the SoS:

- IgnoredCS: a CS which has neither the relevant ML to accomplish, neither the roles

to play [to-ignore], because RL and ML lists are empty.

- PreparedCS: a CS which has the relevant requirements of the SoS, but their states are

not triggered yet. Notice that the system RSCS is rewritten to move to the state

ignoredCS. This is due to the mission Dep state is still idled.

- PassiveCS: a CS that has joined the SoS but none of its roles as activated i.e. waiting

for activation requests. Notice that the system RSCS is rewritten to move to the state

PassiveCS. This is due to the mission Dep waiting WaitResp for a response to start

execution and the role Rec is not activated yet.

- ActiveCS: a CS that is participating in a constellation of the SoS once he activates one

or more role from the RL. This time the RSCS is rewritten to move to the state

ActiveCS. Because mission Dep state is not idled and the role Rec is activated.
rl [to-ignore] : < RSCS : SoS | ML, RL, csst : CSSt > ignoreCS (RSCS, RL, ML) => < RSCS : SoS | ML,
RL, IgnoredCS : CSSt > crl [to-prepare] : < RSCS : SoS | M[Dep : Mission | eT, 450, 550, Idle,
TCR], RL, csst : CSSt > prepareCS (RSCS, RL, ML) => < RSCS : SoS | M[Dep : Mission | eT, 450,
550, MSt, TCR], RL, PreparedCS : CSSt > if MSt = Idled .

 crl [to-passive] : < RSCS : SoS | M[Dep : Mission | eT, 450, 550, WaitResp, TCR], R[Rec : Role |
clck : 0, timer : INF, rid : R, mrt : INF], csst : CSSt > ignoreCS (RSCS, RL, ML) => < RSCS : SoS |
M[Dep : Mission | eT, 450, 550, MSt, TCR], R[Rec : Role | clck : 0, timer : INF, rid : R, mrt :
INF], PassiceCS : CSSt > if MSt = WaitResp && isRoleAct(Rec) = false.
crl [to-prepare] : < RSCS : SoS | M[Dep : Mission | eT, 450, 550, WaitResp, TCR], R[Rec : Role |
clck : 0, timer : INF, rid : R, mrt : INF], csst : CSSt > ignoreCS (RSCS, RL, ML) => < RSCS : SoS |
M[Dep : Mission | eT, 450, 550, MSt, TCR], R[Rec : Role | clck : 0, timer : INF, rid : R, mrt : INF],
ActiveCS : CSSt > if MSt = WaitResp && isRoleAct(Rec) = true .

6 Conclusion
The main contributions of this paper are threefold, we first proposed a generic

metamodel that emphasizes different aspects oriented towards a set of qualitative and

quantitative features. Then, we proposed a formal approach for the modeling and

specification of SoSs structures and behaviors based on temporal and resources

features. Finally, we provided an execution and verification solution of the defined

behaviors, using the rewriting-logic-based Maude system, and we validated it using an

Emergency Incident Management SoS as a case study. For future work, we plan to

formally verify the controller's properties with a symbolic state-based model-checking

technique relying on (LTL) as a temporal logic to consider symbolic high-level system

states. In addition, we seek to extend the work in progress by considering new strategies

of coordination related to temporal modeling, analysis, and verification.

References

[1] C. B. Nielsen, G. Peter Larsen, J. Fitzgerald, J. Woodcock, andJ. Peleska, “Systems of

systems engineering: Basic concepts, model-based techniques, and research directions,”ACM

Computing Survey, vol. 48, no. 2, pp. 18:1–18:41, sep 2015.

C, E Dridi et al.

[2] MaierMW. Architecting principles for systems-of-systems. Systems Engineering 1998; 1(4):

267 – 284

[3] Combi, C., Oliboni, B., & Zerbato, F. (2017, April). Modeling and handling duration

constraints in BPMN 2.0. In Proceedings of the Symposium on Applied Computing pp. 727-734.

[4] Graja, I., Kallel, S., Guermouche, N., & Kacem, A. H. (2019). Towards the verification of

cyber-physical processes based on time and physical properties. International Journal of Business

and Systems Research, 13(1), 47-76.

[5] Cheikhrouhou, S., Kallel, S., Guermouche, N., & Jmaiel, M. (2013, December). Toward a

time-centric modeling of business processes in BPMN 2.0. In Proceedings of International

Conference on Information Integration and Web-based Applications & Services (pp. 154-163).

[6] Mori, M., Ceccarelli, A., Lollini, P., Bondavalli, A., & Fromel, B. (2016). A holistic

viewpoint-based SysML profile to design systems-of-systems. 2016 IEEE 17th International

Symposium on High Assurance Systems Engineering (HASE).

[7] Mori, M., Ceccarelli, A., Lollini, P., Frömel, B., Brancati, F., & Bondavalli, A. (2017).

Systems-of-systems modeling using a comprehensive viewpoint-based SysML profile. Journal

of Software: Evolution and Process, 30(3), e1878.

[8] Seghiri, A., Belala, F., & Hameurlain, N. (2022). A Formal Language for Modelling and

Verifying Systems-of-Systems Software Architectures. International journal of systems and

service-oriented engineering (IJSSOE), 12(1), 1-17.

[9] Seghiri, A., Belala, F., & Hameurlain, N. (2022, April). Modeling the Dynamic

Reconfiguration in Smart Crisis Response Systems. In 17th International Conference on

Evaluation of Novel Approaches to Software Engineering (pp. 162-173). SCITEPRESS-Science

and Technology Publications.

[10] Gassara, A., Bouassida Rodriguez, I., Jmaiel, M., & Drira, K. (2017). A bigraphical multi-

scale modeling methodology for system of systems. Computers & Electrical Engineering.

[11] Axelsson, J., Fröberg, J., & Eriksson, P. (2019). Architecting systems‐of‐systems and their

constituents: A case study applying industry 4.0 in the construction domain. Systems

Engineering, 22(6), 455-470.

[12] Baek, Y., Song, J., Shin, Y., Park, S., & Bae, D. (2018). A meta-model for representing

system-of-systems ontologies. Proceedings of the 6th International Workshop on Software

Engineering for Systems-of-Systems - SESoS '18.

[13] Zhang, Y., Liu, X., Wang, Z., & Chen, L. (2012). A Service-Oriented Method for System-

of-Systems Requirements Analysis and Architecture Design. JSW, 7(2), 358-365.

[14] Halima, R. B., Klai, K., Sellami, M., & Maamar, Z. (2021, September). Formal Modeling

and Verification of Property-based Resource Consumption Cycles. In 2021 IEEE International

Conference on Services Computing (SCC) (pp. 370-375). IEEE.

[15] Maamar, Z., Faci, N., Sakr, S., Boukhebouze, M., & Barnawi, A. (2016). Network-based

social coordination of business processes. Information Systems, 58, 56-74.

[16] Graiet, M., Mammar, A., Boubaker, S., & Gaaloul, W. (2016). Towards correct cloud

resource allocation in business processes. IEEE Transactions on Services Computing.

[17] Axelsson, J. (2019, May). A refined terminology on system-of-systems substructure and

constituent system states. In 2019 14th Annual Conference System of Systems Engineering

(SoSE) (pp. 31-36). IEEE.
[18] Andrews, R., Wynn, M. T., Vallmuur, K., Ter Hofstede, A. H., Bosley, E., Elcock, M., &

Rashford, S. (2019). Leveraging data quality to better prepare for process mining: an approach

illustrated through analysing road trauma pre-hospital retrieval and transport processes in

Queensland. International journal of environmental research and public health, 16(7), 1138.

[19] J. Meseguer. “Rewriting logic and Maude: a Wide-Spectrum Semantic Framework

forObject-based Distributed Systems”.In S. Smith and C.L. Talcott, editors, Formal Methods

forOpen Object-based Distributed Systems, (FMOODS’2000), p. 89-117. Kluwer, 2000.

[20] M. Clavel, F. Duran, S. Ecker, P. Lincoln, N. Marti-Oliet, J. Meseguer, C. Talcott. “The

Maude 2.0 System”. In Proc. Rewriting Techniques and Applications (RTA), Volume 2706 of

LNCS, Spring-Verlag , p. 76-87., 2003.

