
HAL Id: hal-04227309
https://hal.science/hal-04227309

Submitted on 3 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System of Systems Engineering: Meta-Modelling
Perspective

Charaf Eddine Dridi, Zakaria Benzadri, Faiza Belala

To cite this version:
Charaf Eddine Dridi, Zakaria Benzadri, Faiza Belala. System of Systems Engineering: Meta-Modelling
Perspective. Budapest, Hungary, Oct 2020, 15th SoSE 2020: Budapest, Hungary, France. �hal-
04227309�

https://hal.science/hal-04227309
https://hal.archives-ouvertes.fr


System of Systems Engineering:
Meta-Modelling Perspective
Charaf Eddine DRIDI, Zakaria BENZADRI, Faiza BELALA

Constantine2-Abdelhamid Mehri University
LIRE Laboratory

Constantine, Algeria
{charafeddine.dridi, zakaria.benzadri, faiza.belala}@univ-constantine2.dz

Abstract—Systems-of-Systems (SoS) have emerged as a special
type of large-scale complex systems and have been widely used
in various fields. An SoS is a result of the integration of a
number of pre-existing, independent complex software systems
called Constituent Systems (CS). During the SoS Engineering
process, the specific characteristics of CSs such as the operational
and managerial independence, distribution and the emergent
behaviour make the modelling of their structure, relationships
and interactions a complex task.

On the other hand, Model-Driven-Architecture (MDA) is still
one of the most promising software architecture approaches, it
provides a method which simplifies SoSs complexity by increasing
their abstraction level. The aim of this study is to introduce a
software description meta-model that can be used for modelling
SoSs. The meta-model highlights the importance of Goals, Roles,
Capabilities and CSs concepts for SoS design. These concepts will
be translated into an abstract architecture where their composi-
tion and relationships are well-defined. The main contributions
of this paper are: (1) a Meta-Model for System-of-systems called
MeMSoS, (2) its supporting tool and (3) an illustrative case study
of an Aircraft-Emergency-Response-SoS (AERSoS).

Index Terms—Modelling, SoS, CS, SoSE, MDE, MDA, Meta-
model.

I. INTRODUCTION

In recent years, the technological development of large-
scale systems has experienced significant growth thanks to
the latest innovative advancements in various fields. Large-
scale systems have become more and more complex, they are
built by integrating independent sub-systems from different
providers to create a particular class of systems called System-
of-Systems (SoS). Thus, an SoS is composed of a set of
systems that interact to provide a unique capability that none
of the Constituent-Systems (CSs) can accomplish on its own.
These dispersed, autonomous and heterogeneous CSs have
also a degree of managerial and operational independence,
behave in a cooperative manner and interact with other CSs
which in turn can be complex SoSs in order to accomplish
their local goals as well as the SoS global goal.

SoS Engineering is the process of integrating existing
systems to create new functionalities and capabilities, the
architectural design is the most crucial activity in the SoS
Engineering (SoSE), it involves two main activities:

• Systems selection: SoS application domain experts
choose the required systems that have the necessary
capabilities to integrate them within the SoS.

• Conceptual design: design the mechanisms to integrate
them and facilitate their interactions.

Thereby, in the SoSE context, we argue that the MDA ap-
proach can be leveraged to model SoSs architectures and
abstract their design-related problems. With this aim, the
adoption of Meta-Modelling techniques to design SoSs archi-
tectures is an intrinsic step in MDA approach. SoSs Meta-
Modelling (model of models) provides a common, unambigu-
ous, structured and accurate SoS architectural model.

A. Context and problematic

SoSE differs from the ancient Software Engineering (SE)
in that CSs, goals, roles, capabilities and interactions are
considered as first-class entities. The complexity of SoSs arises
mainly from the interaction of large-scale complex systems
and their internal complexity (operational and managerial
independence, evolutionary, emergent behaviours, and disper-
sion).

To reduce the complexity of such types of systems, we
adopted an MDA approach for modelling and describing SoSs
using a meta-model that includes these entities and their
relations. This solution is based on the strong relationships
between the main components of a CSs in SoS, namely:

• SoSs and their CSs: to present the SoS hierarchical
organization.

• Different roles: to specify different interactions between
Roles.

• Roles and Capabilities: to identify the required Capa-
bilities of a Role.

• Local and global Goals: to specify the SoS global goal
and its sub-goals.

The proposed meta-model presents a comprehensive ar-
chitecture for SoSs and helps different SoSs stakeholders to
understand certain degree of SoS challenges and its potential
solutions at the architectural design activity.

B. Related works

The SoS research domain has experienced a fast growth as
shown by the increasing number of conferences, workshops
and scientific papers [1]. Despite all these researches, a
number of studies and literature reviews [2] emphasize that
the research in the SoS engineering process is still at early



stages and there is still a need for more contributions for SoS
architecture and modelling.

In [3] the authors propose a process-based model to support
design activities in the SoS development process by intro-
ducing some concepts like mission and roles. The proposed
approach serves as a guide and controller of the choices pro-
posed by the system architect during the design and evolution
stage. Authors of [4] presented a viewpoint-driven approach
to design SoS by adopting a SysML profile. This study was an
extensive discussion to [5], the authors focused on the relevant
concepts of the conceptual model. Moreover, they showed how
these concepts are coded into a SysML profile. Authors in
[6] identified a model of SE which provides a framework for
supporting the systems engineer in this SoS environment. This
study reviews the core elements of SoS which provide the
context for the application of basic SE processes adapted for
the challenges of SoS.

Whilst different MDA based architectural design methods
have been adopted to manage SoSs problems, little attention
has been devoted to SoSs main entities (CSs, Roles, Capabil-
ities and Goals) organization and their possible interactions.

C. Paper organization

This paper is organized as follows. Section 2 describes
the state of the art in SoS and MDA. Then, a motivating
example for SoS, the aircraft emergency response system, is
presented in section 3. In section 4, we give the principle
of our model-driven approach for designing SoS; we define
the meta model ”MeMSoS” for SoS and then we describe
its essential functionalities. Sections 5 and 6 are devoted to
the validation of our approach through an illustrative case
study and a supporting tool. Finally, Section 7 concludes the
document with some perspectives.

II. BACKGROUND

The starting point in our work is investigating and un-
derstand the characteristics of SoS, the CS including their
relationships and SoS architectural principles. Using an MDA
approach, we aim to raise the level of abstraction in the
modelling of SoSs and increase the automation of their de-
velopment to produce as a result, a practical meta-model for
representing and describing SoS architectures.

A. System-of-Systems

We should note that there is no formal definition for what
SoS is. Thus, many researchers have written papers giving
various attempts to define and characterize SoS [7]. Most of
the provided definitions refer to an SoS as a set of useful and
independent sub-systems that interact to create a large-scale
system and perform unique capability that cannot be provided
by any of the constituent-systems [8] [9] [10] [11].

According to [12], a successful system of systems relies
on the following fundamental parts: (1) characteristics which
distinguish SoS from large but monolithic systems, (2) archi-
tectural principles for the construction of SoS, (3) systems
built from communications.

Maier [10] [12] [13] has defined five key characteristics to
distinguish very large and complex systems from real systems
of systems:

• Operational independence of elements: every
component-system works independently to achieve its
own individual goals and collaborating with the other
CSs to accomplish the SoS global goal.

• Managerial independence of elements: every CS be-
longs to a specific company and it can be managed
independently by the company to which it belongs.

• Roles and Capabilities: to identify the required Capa-
bilities of a Role.

• Geographic distribution of elements: The CSs of the
SoS are dispersed, it means that the components can
exchange only information with one another and not
substantial quantities of mass or energy.

• Emergent behaviour: SoS global functionalities and
purposes do not remain in any single CS, these behaviours
are emergent properties of the entire SoS and cannot be
localized to any component system.

• Evolutionary development: The system-of-systems does
not appear fully formed, their structures, functions and
purposes are subject to several requirements, functional-
ities and evolutions (insertion, modification or suppres-
sion) of its CSs.

Beyond this, SoS can take four different types. These types
are primarily based on the relationships among the CS in the
SoS [14], the levels of responsibility and authority overseeing
the evolution of the SoS [11]. Maier has identified three
types “Directed, Virtual and Collaborative” and the fourth type
“Acknowledged” was found in a number of SoSs in DoD
projects [14] [15] [16]:

• Directed: an SoS with a central managed purpose and
central ownership of all CSs;

• Virtual: lack of central purpose and central alignment;
• Collaborative: voluntary interactions of independent CSs

to achieve a goal that is beneficial to the individual CS;
• Acknowledged: independent ownership of the CSs, but

cooperative agreements among the owners to an aligned
purpose.

B. MDE, MDA and Meta-model

Following the object approach of the 80s and its principle
of ”everything is object”, software engineering is now moving
towards Model Driven Engineering (MDE) and the principle of
”everything is model” [17], MDE has made several significant
improvements in the development of complex systems. The
authors of [18] consider that the implementation process has
become a classic concern for software developers and that
MDE has given them a new concept that changes their focus
from code to model.

Therefore, the MDE aims more radically, to provide a large
number of models to separately capture, describe and organize
each of the concerns of different stakeholders.

The central concept of the MDE is the concept of model
for which there is no universal definition to date. Despite that,



many studies [19] [20] [21] agree on a relative consensus that
a “model” is an abstraction of a system representing some
aspect of it based on a specific set of concerns, constructed
with an intended goal in mind and must be able to be used to
answer questions in place of the actual system. The model is
related to the system by an explicit or implicit mapping.

The Object Management Group’s MDA approach is the
specialization of MDE, it aims to provide a new way of
designing systems by separating the neutral business of the
company from the aspects linked to the platform.

The concepts of system, model and meta-model as well as
the relations which link them, represent the basic principles on
which the MDE and MDA are based. OMG standardization
has distinguished four abstract layers that may be instantiated
to any application domain. As illustrated in Fig. 1, these layers
in the context of SoS may indicate:

• M3: the Meta Object Facility (MOF) represents the most
abstract layer.

• M2: the meta-model we propose complies with MOF and
represents a meta-model for SoSs.

• M1: the Model conforms to the proposed meta-model
and represents this various SoS models.

• M0: the SoS implementation (executed code) represents
the lowest layer.

Fig. 1. Four-layer meta-modelling infrastructure of OMG.

The two main artefacts of MDE are models and meta-
models. This later may be in different types (Computation-
Independent Model (CIM), Platform-Independent Model
(PIM), Platform-Specific Model (PSM), and Platform-
Description Model (PDM)) [22] [23].

A CIM model represents the needs of the client and the
requirements of the system, its aim is to help better understand
the problem by describing the services that an application can
offer in its environment. The components are not included
in a CIM. For instance, a CIM for SoSs may not have any
information about CSs (it may just include goals of an SoS
and roles to be played).

A PIM is a model of analysis and design, it is an abstract
model independent of implementation technology and any
execution platform [22]. A PIM for an SoS can include CSs,
roles, goals, capabilities and associations among each other.

A PSM is a model that takes into account the technological
platform at an abstraction level. the exact model of an SoS

can be considered as one of the PSMs of the related SoS. For
instance, The model presents the implementation details of the
SoS and includes the entities of the SoS, which are given as
instances of the meta-classes defined in the Platform-Specific
Meta-Model.

A PDM models the platform on which the system will run.
It describes the different functionalities of the platform (file,
memory, BDD systems...etc.).

From a general point of view, we call model transformation
any program whose inputs and outputs are models. A trans-
formation expresses structural correspondences between the
source and target models. These structural correspondences
are based on the meta-models of source and target models
[22].

III. MOTIVATING EXAMPLE: AIRCRAFT EMERGENCY
RESPONSE SYSTEM-OF-SYSTEMS (AERSOS)

Air traffic has become widespread since the 1970s and it
continues to grow; the International Air Transport Association
(IATA) predicts 8.2 billion air travellers in 2037 [24]. Aviation
accidents involve not only passengers and flight crews, but
also a vast territory, around the airport with a large number of
residents who, in some cases, have paid a heavy price in terms
of their lives. As an example, the painful aviation accident on
April 11, 2018 in Algeria causes 257 dead [25]; where an
army aircraft of the Ilyushin-76 type crashed just after a short
take-off from the Boufarik Air Force Base.

From an IT point of view, frequent problems causing
aviation accidents are mainly due to a misunderstanding of the
interaction and communication between aviation constituent
systems. Researchers must pay particular attention to the idea
that the aviation is a ”System of Systems” [26] and the impact
of such approach at conceptual design stage [27]; since avia-
tion system is bound by a set of distinct subsystems (aircraft
subsystems, air traffic management/control subsystems, etc.)
and each of these subsystems has managerial and operational
independence (provided by different companies).

On this basis, we propose in this paper an MDA-based
approach for System-of-Systems to illustrate through this
case study: the ”Boufarik Air Force Ilyushin Il-76 Crash”
scenario [24]. We assume that the problem in this air crash
occurred at the engine level and due to poor communica-
tion (interaction) between the constituent aviation-systems.
Thus, we identify the ”Aircraft Emergency Response System-
of-Systems” (AERSoS) which maximizes aircraft safety by
minimizing critical situations; this by providing the required
emergency response and reacting to the aircraft critical prob-
lems. The AERSoS interacts with many independent CSs
which are deployed in the aircraft or even those which are
dispersed. AERSoS constituent systems are composed through
communication links as described in Fig. 2.

At aircraft level, approximately hundreds of sensors in-
stalled on all parts (turbines, oil, lubricant ... etc.) of the
aircraft subsystems that communicate with each other and
collect data on the aircraft’s performance and flight conditions



Fig. 2. Aircraft Emergency Response System-of-Systems (AERSoS).

-according to Cisco [28]. We classify these sensors into: (1)
those responsible for collecting data on high and unusual
temperature in turbines, oil, lubricant...etc., and (2) those
which detect the gases emitted by potential fires.

A warning SoS signals a problem that occurred with the
aircraft at a given position. This system constituted of sub-
systems that interact directly with the installed sensors; In the
case that these sensors detect something wrong (fire, flame,
gases...etc.), another autonomous system (which takes on the
task of verifying the validity of the indications and evaluating
the risks) must:

• Signals a state of danger on the plane and informs the
flight crew.

• Provokes the initial response systems which perform
functions that are intended to mitigate the emergency:
(1) systems designed to isolate damaged engines and
suppress fires (2), systems that generate secondary power
(ex: hydraulic and electrical power, liquid oxygen. . . etc.)
and (3) Passenger rescue system (provide oxygen, life
jackets..etc ).

• Interacts with the control tower to try to clear the runway
and airway for an emergency landing at the nearest airport
using GPS, as well as airport fire-fighters to ensure the
first aid.

• Interacts with the Air Force Analysis System (AFAS) for
the analysis of the technical report containing the details
of the missing parts to be sent to maintenance for a quick
repair upon landing.

As we explained, this SoS like others requires special atten-
tion to describe its complex behaviour through the arrangement

of its subcomponents, from several points of view. In this
paper, we will focus on its architectural abstract specification.
We start by showing the use of the MeMSoS meta model
in order to identify the different architectural entities of this
system, in particular the interactions that may exist between
them. Then, we evaluate this architectural model using a
disaster scenario. The proposed approach targets the complex
and distributed system architectural specification phase, where
a way to obtain a high-level designing and reasoning of such
systems behaviour analysis after their deployment.

IV. A MODEL-DRIVEN APPROACH FOR SOS DESIGN

A plethora of approaches are actively investigated by the
research community to support design and analysis of SoSs.
However, there is a deficiency concerning the definition of
suitable modelling and specification notations as well as
supporting formal verification. In this paper, we argue that
MDE can have a performed impact in engineering of SoSs. In
the following, we present the first steps of our approach and
the technical framework which will be developed to support
the engineering of such complex and heterogeneous systems.

A. Principle

an SoS is a hierarchically defined composition where the
super-element (the SoS) is made of a set of CSs. Each CS
may be itself an SoS. The bottom-elements of the hierarchy are
atomic CSs that have no CSs. CSs are distributed autonomous
entities composed of roles and capabilities that cooperate and
coordinate with other CSs to accomplish their local goal as
well as the SoS global goal.



The global goal of an SoS can be met only if CSs exchange
enough information. Since CSs are independent, distributed
and are not able to exchange mass or energy, communications
are the principle that allows the exchange of information.
Thus, modelling an SoS which is functionally adequate (which
accomplishes the global goal) is achieved by designing its CSs
with a relationship-driven interaction.

Our findings led us to propose a new structural definition
of SoS, primarily based on Links concept:

Definition 1: SoS = {CS, G, R, C, L} where:

CS: is set of Constituent-Systems, a CS is any complex
autonomous system that acts following its own list of Capa-
bilities and plays certain Roles.

R: are CS Roles describing the CS ideal behaviour through
the gathering of the required Capabilities to play the Role
needed to accomplish the SoS global Goal.

G: is a Goal, an instance of the SoS Roles, that represents
local objectives of a CS and Global objectives of SoS. A Goal
can be simple or complex.

C: represents the functions provided by a CS in a specific
Role to the wider needs of an SoS. A CS Role can execute
several Capabilities (C) concurrently.

L: are dynamic Links, forming possible interactions and
communications among different CS, R, G and C.

CSs are developed as reusable entities, they must be suffi-
ciently specific to be easily identified, employed and reused in
an SoS. The originality of the proposed structural definition
of SoS (definition 1) lies in the various types attached to the
Link main constituent of an SoS:

1) CSs Links: describe the association of the CSs, These
Links are mostly devoted to represent an SoS as a strong
organized composition.

2) Roles Links: express the interactions between different
Roles defined on CSs.

3) Capability-Role Links: binding the Roles with the their
required Capabilities.

4) Goals Links: describe the relations between a Goal and
its corresponding sub-goals.

This abstract and generic definition will be associated to
a meta-model within the MDA approach. Thus, this meta-
model defines a logical structure of elements involved in any
SoS models. While the notation describes the diagrammatic
notations used to represent visually the models. The use of this
approach in designing SoS architectures permits to describe all
the SoS features at a same high-level of abstraction.

B. MeMSoS: Meta-Model for System-of-Systems

We have chosen the class diagram notation to represent
graphically the proposed meta-model MeMSoS (Meta-Model
for System-of-Systems). UML Classes, aggregations, inheri-
tance...etc. are used to represent elements and entities of this
meta-model (see Fig. 3).

The proposed MeMSoS is defined based on the key con-
sideration that an SoS is more than simply a collection of
connected CSs. Therefore, the main purpose is that it has

been designed in order to explicitly model and represent
all SoS architectural elements. MeMSoS gives a particular
attention to the hierarchical composition of CSs and highlights
the importance of CS, R, C, G and L in the whole SoS
architecture. This is quite evident from Fig. 3.

As shown, MeMSoS meta-model defines SoS as a com-
bination of Sub-Systems which are composed of G (Goals),
C (Capabilities), R (Roles) and their L (Links). The class
SoS is the core of the proposed meta-model, it represents an
SoS as an aggregation with the cardinality of two-to-many
of Sub-Systems where each Sub-System class represents a
generalization of two different systems classes (SoS and CS).

In addition, the Class Sub-System has three one-to-many
aggregations expressing Capabilities, Roles and Goals. It is
associated with these classes with multiplicity one-to-many
since any Sub-System could have Capabilities, Roles and
Goals.

The class Roles in turn is associated with one or more Rela-
tion class and has two dependencies (gather) and (accomplish)
to Capability and Goal classes respectively.

Finally, the class Relation is used to model the possible
interactions among different Roles; the source and target
associations represent respectively both initial and final Roles.

C. MeMSoS Features

MeMSoS groups four main SoS modelling characteristics
according to two system viewpoints called structure and inter-
action.

1) Hierarchical organization: the MeMSoS classifies sys-
tems by their position in a three-level hierarchy from
simple atomic CSs, via a collection of interacting CSs
forming a single SoS which in his turn may be a Sub-
System to another super-SoS product up to an array
composed of several geographically dispersed systems
of varying types (CSType and SoSType classes) inter-
acting to achieve a common Goal.
The SoS hierarchical organization occurs in SoS, Sub-
System, CS classes and their associations. In other
words, the aggregation defines both the highest level
SoS (considered as the summit of the hierarchy) and
its constituent Sub-Systems. The generalization indicates
whether the components constituting the whole SoS are
themselves very-complex (SoS) or atomic CSs.

2) Goals organization: Goals of SoSs in MeMSoS can be
organized as a tree structure in which high level Goals
may be realized through the combination of lower level
Goals; i.e. The global Goal of an SoS is a complex
Goal that can be decomposed into sub-Goals, every
sub-goal corresponds to a Sub-System and the criterion
for stopping Goal decomposition is when a sub-goal
corresponds to a local Goal of an atomic CS.

3) Roles interactions: a Role can participate in the
achievement of several local Goals at the same time,
accordingly it can interact with several other Roles and
fulfill other Goals in parallel. Reuse of an existing Role
by using different types of relationships reduces the



Fig. 3. Meta-Model for System-of-Systems (MeMSoS).

overall effort required to achieve the global Goal of
an SoS. The Role Relation class specifies the possible
associations between multiple Roles :

• Include: if R1 include R2, then R1 live and die with
R2, i.e. R1 cannot stand by itself. Include relation-
ship shows that the Capabilities of the included Role
is part of the including Role.

• Extends: if R1 extends R2, then R2 is independent
of R1, i.e. As the name implies it extends the ex-
tended Role and optionally adds more Capabilities
to it.

4) Roles, Capabilities and Goals: MeMSoS provides the
properties of interoperability and heterogeneity that al-
low the unrestricted sharing of Roles and Goals between
different Sub-Systems in the SoS level and Capabilities
between Roles in a CSs level, this can reduce the cost of
creating new Roles, Goals and Capabilities by allowing
existing Sub-Systems to be reused in multiple ways for
multiple purposes:
The specification of Roles requires identifying the Ca-
pabilities for which the Role is responsible to achieve
the Goal and the same Capability can appear in different
Roles in the system level.

Obviously, our contribution here is related to the levels of
M1 and M2 of the meta-modelling infrastructure of OMG
(Fig. 1). The resulted MeMSoS may serve to define several
mapping or transformation. We limit our selves in this
article to deduce models for SoSs respecting this meta-model

definition.

V. AERSOS EXAMPLE APPLICATION

We show in the following section, how we apply our
approach to deal with the main limits of the AERSoS archi-
tectural design.

A. Instantiation of MeMSoS

In this section, we illustrate the AERSoS architectural model
to show the MeMSoS’s meta-modelling ability to design the
software architecture of such an intensive and complex system.
An AERSoS exhibits most of the dimensions of our MeMSoS.
The challenge is to model the whole AERSoS and show its
associated entities (CSs, R, G, C and L).
In order to instantiate MeMSoS and create an SoS model, we
provide a graphical editor which can be used to design AER-
SoS model. To do this, we have created representations for
each entity (classes, relations, aggregations, etc.) of MeMSoS,
this is shown in Fig. 4. In this model we find a set of instances
of the MeMSoS entities (see Table1), for example:

• Instances of the class SoS (represented as rectangles with
purple and dashed bordures); e.g. Aircraft Emergencies
SoS, Tower Control SoS, Warning SoS. . . etc.

• Instances of the class CS (rectangles with solid green
bordures); e.g. Fire Detection System, Evacuation
System, Fire Force Analysis System. . . etc.



Fig. 4. Aircraft Emergency Response System-of-Systems model.

• Instances of the classes Role (border nodes in the shape
of blue gear), Goal (orange nodes) and Capability (small
nodes inside systems).

• Dynamic links between these entities are instantiated
using various colored arrows.

B. AERSoS modelling

1) Hierarchical organization in AERSoS: MeMSoS al-
lows specifying the hierarchy of the AERSoS and its
constituents, which are fully independent, autonomous
and complex; This feature is presented in AERSoS model
as a set of overlapping rectangles. For instance, in
Fig. 4, the AERSoS includes Tower Control SoS, Force
Analysis System and Aircraft Emergencies SoS which in
turn contain Warning SoS and Emergencies Response
SoS...etc.

2) Goals in AERSoS: the SoS’s constituents also fulfil
local Goals which can be sub-goals of another global
Goal. Their combination form a tree structure where the
more global Goals near the SoS and the sub-goals near
the CSs. Thus, relations (orange links) between Goals
denote sharing of the same common Goals (the orange
diamond shape refers to global Goals). In Fig. 4 for
example, the global Goal Maximize Aircraft Safety has
the sub-goals Safe Landing, Accident Reports and Safe
Flight. The Goal Safe Flight in turn has two sub-goals
called Resources Safety, and Monitoring Risks. . . etc.

3) Roles interactions: The Roles of a CS define how it
interacts with other CSs, in addition, they ensure the
concepts of heterogeneity and interoperability of CSs
by abstracting the type of their relationships. A Role
link expresses its possible needs to the Capabilities of



TABLE I
ENTITIES INSTANTIATION.

another particular Role. The latter can even be a Role
for other systems.
In AERSoS model, the Roles are presented as border
nodes (blue gear icons) on the rectangles of systems.
Roles links (dotted blue arrows) are also modelled as
stereotyped links to specify the sense and the type (see
section IV.B) of interaction.
In what follows, we briefly introduce examples of Roles
interactions in the AERSoS model:
Risk Assessor include Smoke Detector, Overheat Detec-
tor and Ice Detector; means that the Role Risk Assessor
can not stand alone and will not be played until Roles
Smoke Detector, Overheat Detector or Ice Detector are
played. In the same way, the Warning SoS can not play
the Role Emergency Signal until finishing the Role Risk
Assessor.
According to these interactions, Warning SoS will pre-
vent any false indications or fake signals may occur at
the level of its CSs or their Capabilities. On the other
hand the constituents Fire and Ice Detection Systems
will collaborate to fulfill the Goal Monitoring Risks.
Emergency Procedure includes Initial Response; means
that the first Role depends on the second which, in turn,
was included by the previous Role Emergency Signal.
When something goes wrong, Warning SoS declares a
state of emergency. The Emergency Procedures, Emer-
gency Landing and Accident Investigation Roles must
be informed so that they can independently take the
necessary reactions.
When an engine is lost, power on the Aircraft will
drop quickly. In order to provide the energy to both the
aircraft and the crew, the Role Emergency Procedure

interacts with Power Generator and First Aid Crew
Roles which are played respectively by Power Units SoS
and Evacuation Systems. (power supplying is ensured by
the two Roles Electricity and Oxygen Generators.
A stereotyped ’extends’ type relationship is shown in the
model which relates between the two CSs Secondary
Emergency Power System and Evacuation System via
their own Roles: Oxygen Provider extends First Aid
Crew; means that the first Role is not always necessary,
but that it may be in certain situations when the crew
needs more oxygen.
In response to a critical situation, an emergency landing
is made by Tower Control SoS which play the Role
Emergency Landing Controller to clear the runway and
the airway providing a safe landing.

4) Goals, Capabilities and Links: The capabilities in
AERSoS can be any entity (sensors, operations, devices,
services) needed by a Role to fulfill a certain goal. In
our model, Capabilities are represented in forms of small
nodes inside their systems, they are directly associated
(with a gray arrow) to their corresponding Roles so that
they can fulfill their local Goals.
The AERSoS global and sub Goals are also represented
as small orange nodes. Each Goal can be fulfilled by
one or multiple interacted Roles. The links between
Roles and Goals are modeled using orange arrows. Table
2 shows examples of interactions among some Goals
Capabilities and Roles:

VI. IMPLEMENTATION AND VALIDATION

To provide tool support and proof of implementation con-
cept of our approach, we intend to realize a complete proto-
typical tool chain to edit and analyze dynamic behaviour of
SoSs. In this section, we are interested by an SoS graphical
editor.

A. Graphical Editor

Our approach is part of the MDA context. Therefore, we
wanted our framework to be based on standards in this
domain and a chain of tools. These tools should be able to
describe the meta-model’s abstract syntax and capable of semi-
automatically generating its corresponding graphical editor
(concrete syntax).

This chain essentially includes two tools running in an
Eclipse IDE: (1) EMF (Eclipse modelling Framework): uses
Ecore modelling Language to specify the abstract syntax of
the meta-model. (2) Sirius uses the transformation of models
for the automatic creation of graphical editor. Both were
developed primarily as Eclipse modelling Projects by Obeo.

The graphical editor corresponding to our MeMSoS could
now be used to create new SoS model instances taking into
account its specific characteristics and interactions aspects.
Fig. 5, shows the tool palette of tools facilitating the creation
of the SoSs components.



TABLE II
SUMMARY OF AERSOS COMPONENTS.

SoS Sub-Systems(CSs) Roles Capabilities Goals

Aircraft Emergencies SoS
Emergency Response SoS Power Units SoS Engines Protection System Engines Safety,

Fire Extinguisher
Reactor insulation,
Halon Engine Safety

Secondary Emergency Power System Electricity Generator,
Oxigen Provider

Hydrazine turbine,
Liquid Oxygen,
Oxygen generator

Energy Provider

Evacuation System First Aid Crew
Oxygen masks,
Life jackets,
Ejection seats

Crew Protection

Warning SoS Fire Detection System Smoke Detector,
Overheat Detector

Ionization measurment,
CO sensing,
Photoelectric flame detector,
IR radiation

Fire Sensing

Ice Detection System Ice detector Transducer probe Ice Sensing

Tower Control SoS Civil Protection System rescue Fire fighting,
First aid Crew Safety

Landing System Controller,
Locator

Runway clearance,
Airway clearance,
Airports map,
Gps

Safe Landing

Air Force Analysis System Accident Investigator
Accident report,
Damage Analysis,
Technical report

Accident Report

Fig. 5. SoSs graphical editor.

B. Consistency checking

Consistency check in a MeMSoS models refers to the
conditions of use of the palette tools(Fig. 5), i.e. SoS, Cs,
Goals, Capabilities and Links that a set of interacted CSs must
satisfy in order to form a meaningful SoS model. Some of
MeMSoS models related consistency checks performed are:

• Ensure whether interacted CSs match in terms of com-
position, e.g. each CS appearing in the MeMSoS-model
belongs to a specific SoS and it cannot in any case have
sub-systems.

• Automate the task of linking different nodes: there are
four different arrows that connect different kinds of
nodes, each arrow connects a specific pair of nodes.

Fig. 6 shows a screen-shot of the AERSoS model instance.
The model shows a root object representing the whole AER-
SoS. This SoS has constituents, which represent AERSoS
sub-systems (sub SoSs or atomic CSs), whose components
represent the Roles, Goals, Capabilities and Links of these
sub-systems.

VII. CONCLUSION

According to MDA and MDE principles, models and meta-
models may play first-class citizens in SoS engineering. In this
paper, we have given a model-driven approach to deal with
the definition of independent and heterogeneous constituent
systems of an SoS and their possible interactions in terms of
architecture, roles, goals and capabilities.

The resulted meta-model has been used to derive SoS mod-
els that allow graphical and ambiguous specification of such
systems. Besides, we have illustrated through the AERSoS
case study, how we can model a disaster scenario of this
critical SoS.

Since MDE components need to be investigated into soft-
ware development environment, we have thought about de-
veloping such a tool and we have started with a graphical
editor directed by the syntax of SoSs which is expressed by
MeMSoS.

Several lines of work are planned to be addressed in the near
future. The authors are working on the definition of ”Domain
Specific modelling Language” to represent the various facets
of SoSs, including their behavioural aspects. Furthermore the
authors are working on how they use model transformation
languages (ATL for instance) to transform models derived
from MeMSoS to other models, particularly formal ones
(Maude models), to achieve formal verification of certain
properties, and how to integrate other tools in order to provide
a complete tool support implementation of their approach for
modelling and reasoning about SoSs.



Fig. 6. AERSoS EMF model instance.

REFERENCES

[1] Guang-rong You, Xiao Sun, Min Sun, Ji-min Wang and Ying-wu Chen
(2014). Bibliometric and social network analysis of the SoS field. 2014
9th International Conference on System of Systems Engineering (SOSE).

[2] Kotov, V. (1999). Systems of Systems as Communicating Structures.
Object-Oriented Technology and Computing Systems Re-engineering,
141-154.

[3] Cherfa, I., Sadou, S., Belloir, N., Fleurquin, R., & Bennouar, D. (2018).
Involving the Application Domain Expert in the Construction of Systems
of Systems. 2018 13th Annual Conference on System of Systems
Engineering (SoSE).

[4] Mori, M., Ceccarelli, A., Lollini, P., Frömel, B., Brancati, F. and Bon-
davalli, A. (2017). Systems-of-systems modelling using a comprehensive
viewpoint-based SysML profile. Journal of Software: Evolution and
Process, 30(3), p.e1878.

[5] Mori, M., Ceccarelli, A., Lollini, P., Bondavalli, A., & Fromel, B. (2016).
A Holistic Viewpoint-Based SysML Profile to Design Systems-of-
Systems. 2016 IEEE 17th International Symposium on High Assurance
Systems Engineering (HASE).

[6] J. Dahmann, J. Lane, G. Rebovich, and K. Baldwin, “A Model of
Systems Engineering in a System of Systems Context,” Proceedings of
2008 Annual Conference on Systems Engineering Research, Redondo
Beach, CA, 4-5 April 2008.

[7] Nielsen, C. B., Larsen, P. G., Fitzgerald, J., Woodcock, J., & Peleska,
J. (2015). Systems of Systems Engineering. ACM Computing Surveys,
48(2), 1-41.

[8] ISO/IEC/IEEE 15288, Systems and software engineering - System life
cycle processes

[9] Department of Defense (DoD), 2004, Defense Acquisition Guidebook
Ch. 4.2.6. “System of Systems Engineering,” Washington, DC: Pen-
tagon, October 14.

[10] Seghiri, A., Belala, F., Benzadri, Z., & Hameurlain, N. (2018). A Maude
based Specification for SoS Architecture. 2018 13th Annual Conference
on System of Systems Engineering (SoSE).

[11] Cocks, D. (2006). 3.3.2 How Should We Use the Term “System of Sys-
tems” and Why Should We Care?. INCOSE International Symposium,
16(1), pp.427-438.

[12] Maier, M. (1998). Architecting principles for systems-of-systems. Sys-
tems Engineering, 1(4), pp.267-284.

[13] Cocks, D. (2006). 3.3.2 How Should We Use the Term “System of Sys-
tems” and Why Should We Care?. INCOSE International Symposium,
16(1), pp.427-438.

[14] Dahmann, J. and Baldwin, K. (2008). Understanding the Current State
of US Defense Systems of Systems and the Implications for Systems
Engineering. 2008 2nd Annual IEEE Systems Conference.

[15] Mori, M., Ceccarelli, A., Lollini, P., Frömel, B., Brancati, F. and Bon-
davalli, A. (2017). Systems-of-systems modelling using a comprehensive
viewpoint-based SysML profile. Journal of Software: Evolution and
Process, 30(3), p.e1878.

[16] Madni, A. and Sievers, M. (2013). System of Systems Integration: Key
Considerations and Challenges. Systems Engineering, 17(3), pp.330-
347.

[17] Bézévin, J. (2004). Sur les principes de base de l’ingénierie des modèles.
L’objet, 10(4), pp.145-157.

[18] Selic, B. (2003). The pragmatics of model-driven development. IEEE
Software, 20(5), pp.19-25.

[19] Benoı̂t Combemale. Ingénierie Dirigée par les Modèles (IDM) – État de
l’art. 2008. ffhal-00371565f.

[20] Omg.org. (2020). Model Driven Architecture (MDA) — Object Manage-
ment Group. [online] Available at: https://www.omg.org/mda/ [Accessed
1 Mar. 2020].

[21] Bezivin, J. and Gerbe, O. (n.d.). Towards a precise definition of the
OMG/MDA framework. Proceedings 16th Annual International Confer-
ence on Automated Software Engineering (ASE 2001).

[22] Diaw, S., Lbath, R. and coulette, B. (2010). État de l’art sur le
développement logiciel basé sur les transformations de modèles. Tech-
niques et sciences informatiques, 29(4-5), pp.505-536.

[23] Kardas, G. (2013). Model-driven development of multiagent systems:
a survey and evaluation. The Knowledge Engineering Review, 28(4),
pp.479-503.

[24] IATA Forecast Predicts 8.2 Billion Air Travelers in 2037. (n.d.). IATA
- Home. https://www.iata.org/en/pressroom/pr/2018-10-24-02/

[25] New York times. (2018, April 11). Military Plane Crashes in Algeria,
Killing at Least 257.

[26] Liu, H., Tian, Y., Gao, Y., Bai, J., & Zheng, J. (2015). System of systems
oriented flight vehicle conceptual design: Perspectives and progresses.
Chinese Journal of Aeronautics, 28(3), 617-635.

[27] Harris, D., & Stanton, N. A. (2010). Aviation as a system of systems:
Preface to the special issue of human factors in aviation. Ergonomics,
53(2), 145-148.

[28] IOX : Une Nouvelle Architecture Cisco Pour Le Fog Comput-
ing. (n.d.). Cisco Blogs. https://gblogs.cisco.com/fr/datacenter/iox-une-
nouvelle-architecture-cisco-pour-le-fog-computing/


