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The concept of topological defects is universal. In condensed matter, it applies to disclinations,
dislocations or vortices that are fingerprints of symmetry breaking during phase transitions. Using
as a generic example the tangles of dislocations, we introduce the concept of topological metadefects
i.e. defects made of defects. We show that in cholesterics, dextrogyre and levogyre primary tangles
are generated through the D2 → C2 symmetry breaking from the coplanar dislocation pair called
Lehmann cluster submitted to a high enough tensile strain. The primary tangles can be wound up
individually into double-helices. They can also annihilate in pairs or associate into tangles of higher
orders following simple algebraic rules.

Topological defects such as vortices, dislocations or dis-
clinations are fingerprints of order parameters resulting
from broken symmetries [1, 2]. Here, we introduce the
new concept of topological defects of a higher order, that
we propose to callmetadefects, using as a generic example
tangles of dislocations in cholesterics.
Today, in the light of experiments reported below, we

can say that such tangles certainly occur frequently in the
well known textures of cholesteric liquid crystals called
oily streaks, which are networks of clusters of dislocations
but formerly, as far as we know, they have not been reco-
gnised and discussed explicitly. For the sake of simplicity,
we present here the first evidence of tangles produced in
a controlled manner from the so-called Lehmann clusters
[3–6]. The letter is organised as follows :

1. First, we explain what is the Lehmann cluster and
how it can be obtained by a collision of two parallel

dislocations with opposite Burgers vectors b = po
and b = −po (po is the full 2π pitch of the choles-
teric helix).

2. Subsequently, we introduce the overlapping insta-

bility of the Lehmann cluster submitted to a high
enough tensile strain and explain how the corres-
pondingD2 → C2 symmetry breaking produces one
or more primary tangles.

3. Next, we show that the primary tangles resulting
from the overlapping instability can be wound up
into dextrogyre or levogyre double-helices [7–10].

∗ pawel.pieranski@u-psud.fr

4. Finally, we point out that several textures in cho-
lesterics observed or discussed formerly [6, 11–13]
can also be interpreted as topological metadefects.

Our experiments were made with cholesteric droplets
confined by capillarity between two crossed cylindrical
mica sheets (see Fig.1a and also ref. [12]). The radius Rm

of curvature of mica sheets is of the order of 150mm and
the initial minimal distance hmin of the gap is of the order
of 10 cholesteric pitches po ≈ 18µm. When the radius rd
of droplets is of the order of 1mm, the thickness of the
gap which varies with the distance r from the centre as

h(r) = hmin + r2/(2Rm) (1)

increases only by 3µm from the centre to the meniscus
(r = rd) which is much less than the pitch po. For this
reason, in experiments discussed below, variation of the
thickness h(r) with r can be neglected.
The series of four pictures in Figs.1d-g shows evolution

of two dislocation loops with N+1 cholesteric pitches nu-
cleated previously by a tensile strain in a droplet contai-
ning N = 8 full cholesteric pitches (point 1 in Fig.2a).
Upon the action of the Peach-Koehler force

F̃PK =
FPK

2K22π2

po

=

(

1−
N + 1/2

h̃

)

(2)

corresponding to h̃ = h/po = 9 (point 2 in Fig.2a),
the two dislocation loops expand and collide (K22 is the
Frank-Oseen coefficient for the twist distortion). At first
sight, one could expect that the collision of two dislo-
cations should result in their coalescence (or rewiring).
Surprisingly, this is not the case in the experiment repre-
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Figure 1. Generation of the Lehmann cluster. a) Geometry
of the experiment : a cholesteric droplet confined by capil-
larity between crossed cylindrical mica sheets (for a better
visual readability, the thickness hmin of the gap is exaggera-
ted). b) Expanding coplanar dislocation loops. c) Lehmann
cluster resulting from the collision of the expanding loops. d-
g) Generation of the Lehmann cluster by collision of the ex-
panding coplanar dislocation loops. (0.87% CB15/5CB, N=8,
po = 18µm, hmin = 9po, point 2 in Fig.2a)

sented in Figs.1e-g where the collision of the two loops re-
sults in the association of dislocations into the Lehmann
cluster (see the video Lehmann cluster of Supplementary
Materials).

The coalescence of the colliding coplanar loops is avoi-
ded because as it was pointed out by Smalyukh and La-
vrentovich [4] the Lehmann cluster is the most stable
state of a pair of dislocations with the opposite Burgers
vectors (see Fig.2f) ; its energy per unit length (tension)
TLC is smaller than the total energy 2T of the two dis-
locations before their association. This is obvious in the
experiment represented in Fig.2b where the two disloca-
tions connected to the Lehmann cluster form the angle
α = 80◦. From the condition of the equilibrium of ten-
sions TLC = 2Tcos(α/2) one obtains TLC/(2T ) = 0.77.
(Warning : The cholesteric phase is continuous ; the dot-
ted lines in Figs.2 f, j and k delimit quasi-layers in which
molecules rotate by 2π.)

After its generation, the Lehmann cluster is submit-
ted to a higher tensile strain (h̃ = h/po ≈ 10.3, point 3
in Fig.2a) triggering the overlapping instability that we
will discuss in more details below. Here, the overlapping
instability splits extremities of the Lehmann cluster into
pairs of dislocations delimiting triangular fields labeled
“N+2 overlap” shown in Figs.2b and h. Subsequently,
the splitting of the Lehmann cluster progresses until the
vertices A and B of the triangular fields collide at the
center t of the droplet.
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Figure 2. Generation of one dextrogyre tangle of dislocations
from the Lehmann cluster in a droplet with N=8 cholesteric
pitches. a) Variation of the Peach Koehler force with the thi-
ckness of the gap. b-e) 1st overlapping instability occurring at

h̃ = 10.3 . f) Cross section of the droplet with the Lehmann
cluster. g-i) Top views of the droplet during the generation
of the tangle. j-k) Cross sections of the two types of N+2
overlaps. (0.87% CB15/5CB, N=8, po = 18µm).

One could think that this collision should result in coa-
lescence of the two triangular fields. Surprisingly, once
again, this is not the case : in Figs.2b and h the vertices
A and B remain in contact in the center t while the tri-
angular fields continue to grow thanks to the motion of
the delimiting dislocations.
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Figure 3. Tensile strain-induced generation of the levogyre
and dextrogyre tangles (labeled “lt” and “dt”) by the overlap-
ping instability of the Lehmann cluster. a) Temporal evolu-
tion as observed under a microscope (0.87% mixture of CB15
in 5CB, po = 18µm) : (0s)- pair of coplanar dislocations as-
sociated into the Lehmann cluster. (0s-81s)- the overlapping
instability. b-d) Schematic representation of the 3D motions
of dislocations that break the coplanar configuration of the
Lehmann cluster and lead to generation of the tangles. C2x,
C2y and C2z are the two-fold axes of the D2 symmetry group
of the Lehmann cluster shown in (b).

This behaviour is the fingerprint of the metadefect -
the dextrogyre tangle of dislocations - that appears as a
black dot in Figs.2d and e.

To grasp better geometrical aspects of the generation
of this tangle we show in Figs.2g-i top views of the dro-
plet and in Figs.2j-k cross sections of the droplet along
the dotted lines defined in Fig.2h. If the two cross sec-
tions were identical, for example such as the one in Fig.2j,
the dislocation drawn in red would be located above the
blue one everywhere. In this situation the red and blue
dislocations would be free to expand until they would
reach the meniscus of the cholesteric droplet. Therefore,
the necessary condition for the generation of the tangle is
that the two cross sections must be different : in Fig.2k,
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Figure 4. Beginning of the winding of a double-helix from
the primary tangle. a-d) 2nd overlapping instability (of a non

coplanar dislocations pair) occurring at h̃ = 11.2 (points 4 in
Fig.2a). e-h) Structure of the cholesteric droplet during the
2nd overlapping instability.

the dislocation drawn in red is located below the blue
one.

These considerations lead us to examine the symme-
try aspects of the generation of tangles using another
example represented in Fig.3 in which not one but four
tangles are generated simultaneously (see the video Over-

lapping instability in Supplementary Materials). Let us
remark first that the Lehmann cluster has theD2 symme-
try containing three mutually orthogonal two-fold axes
C2x, C2y and C2z (see Fig.3b). Figs.3b-d show that the
overlapping instability of the Lehmann cluster involving
3D motions of dislocations breaks its D2 symmetry. After
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Figure 5. Winding of a dextrogyre double-helix tangle driven
by a monotonic extension of the thickness h̃. a) Observations
in a microscope. (5.4% mixture of CB15 in 5CB, po = 2.4µm).
b) Spatio-temporal cross section extracted from a video along
the octagonal dashed line defined in (a). Staircase-like tra-
jectories of dislocations in the spatio-temporal cross section
are due to the thresholds to overcome during the successive
overlapping instabilities. c) Growth of the reduced thickness
in time. d-h) Perspective view of the winding process.

the D2 → C2 symmetry breaking, only the two-fold axis
C2x is preserved. The four tangles of dislocations well
visible in Fig.3a can now be seen as topological defects
characteristic of the D2 → C2 symmetry breaking.

Let us discuss in more details their genesis. In Fig.3b,
the coplanar dislocation pair is divided by thought into
three segments : AB, BC and CD. The red and blue ar-
rows in Fig.3c indicate that in the AB and CD segments,
the blue dislocation line passes below the red one while
in the BC segment, it passes above the red one. The new
configuration of dislocations in segments AB and CD are
related to the one in BC by the broken symmetry ele-
ments C2y and C2z. Reconnection of the adjacent red (or
blue) segments restores the continuity of the dislocation
lines and generates the dextrogyre and levogyre tangles
located alternatively in points A, B, C and D (see Fig.3d).

In experiments described above, the generation of the
Lehmann cluster and its subsequent overlapping instabi-
lity were driven by the Peach-Koehler forces acting on
the red and blue segments of dislocations. The expres-
sion of the Peach-Koehler force in equation 2 depends
on two dimensionless parameters : (1) the number N of
cholesteric pitches in the confined droplet containing the
dislocation loops, and (2) the reduced thickness of the

droplet h̃ = h/po. For this reason, for a given number N
of the full cholesteric pitches (N=8), the generation of the
Lehman cluster and the subsequent generation of tangles
was obtained by the adequate variation of the droplet’s
dimensionless thickness represented in Fig.2a as a trajec-
tory passing through points labeled from “1” to “3”.

1. At the beginning of our experiments, two disloca-
tion loops were present in the droplet containing
N=8 full cholesteric pitches (point 1 in Fig.2a).

2. The thickness h̃ was then set to 9 (point 2 in
Fig.2a), a value larger than 8.5, for which the
Peach-Koehler force is positive so that the two dis-
location converged, collided and the Lehmann clus-
ter was formed (see Fig.1c).

3. With the aim to trigger the overlapping instability
of the Lehmann cluster, h̃ must be set to a value
larger than 9.5, because after the instability the dis-
location loops must continue their expansion in a
droplet containing now N=9 pitches (see the line
labeled 9-10 in Fig.2a). In practice, to get out from
the energy well of depth ∆T = TLC − 2T of the
Lehmann cluster (the lowest energy state of a dis-
location pair), the thickness was set to 10.3 (points
3 in Fig.2a), a value larger than 9.5. By this means
the primary tangle of dislocations was generated.

When a solitary primary tangle is located in the centre
of the droplet it is possible to wind it up into a double-
helix tangle by a further extension of the gap thick-
ness (see the videos Double helix tangle and Perspective

view of the double-helix tangle in Supplementary Mate-
rial). As the first example we show in Figs.4a-d continua-
tion of the experiment from Fig.2b-e. Here, the primary
tangle of dislocations obtained previously is submitted to
the Peach Koehler forces corresponding to the thickness
h̃ = 11.2 (points 4 in Fig.2a) and the second overlapping
transition occurs as shown in Figs.4e-h. Motion of dis-
locations (delimiting fields with N+3 pitches in Figs.4g
and h) around the centre of the primary tangle increases
the height of the tangle by po.

In another experiment depicted in Fig.5, the growth of
the thickness h̃ is monotonic. In these conditions the se-
quence ... collision → association in pairs → overlapping

instability → rotation of dislocation → collision... occurs
several times and in this manner the primary tangle is
wound up iteratively into a double-helix of a growing
height. Let us stress that the staircase-like shape of tra-
jectories of dislocations in the spatio temporal cross sec-
tion in Fig.5b is due the thresholds that must be over-
come during the successive overlapping instabilities of
dislocation pairs. The perspectives views in Figs.5e-h si-
mulate the winding process.
Our experiments opened several issues that deserve to

be discussed in future in more details :
Immunity against the coalescence : Generation

of the Lehmann cluster by the collision of two coplanar
dislocation loops remains to be explained. It unveils a
surprising immunity of coplanar dislocations against the
coalescence (or rewiring).
The overlapping instabilities : The strain threshold

(∆h̃/h̃)crit necessary to get out from the potential well of
the Lehmann cluster of depth ∆T = Tpair − 2T through
the overlapping instability remains to be calculated.
Higher order tangles : When the winding process
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starts from more complex networks of dislocations pairs
containing several primary tangles, higher order tangles
made of 3,...,8 dislocations can be wound up (see the vi-
deo Tangle six dislocations in Supplementary Materials).
Geometry of helical tangles : The difference in

geometries of the levogyre and dextrogyre double-helix
tangles in CB15/5CB mixtures remains to be explained.
Networks of dislocation pairs : When several dis-

location loops are nucleated and expand simultaneously,
their collisions lead to formation of a foam-like polygo-
nal network made of dislocation pairs connected by triple
nodes. Due to tensions of dislocation pairs, this network
evolves slowly like a foam. A much more rapid and com-
plex reconfiguration of this network can be driven by a
growing tensile strain. At the beginning, pairs of dislo-
cations forming the Lehmann clusters may undergo the
overlapping instability that generate primary tangles. In
the subsequent evolution, the primary tangles can anni-
hilate in pairs or associate into tangles of higher ranks
(see below).
We would like to stress that other textures observed or

discussed formerly in cholesterics can be seen as topolo-
gical metadefects :
Kink chain generation in Lehmann clusters :

Using optical tweezers and magnetic colloidal particles
submitted to a rotating magnetic field, Varney, Jennes
and Smalyukh [6] generated a series of kinks in a Leh-
mann cluster. The optical aspect of such a kink chain
shown in Fig.8f of the ref.[6] is identical with that of an
obliquely stretched double helix tangle observed in our
studies (to be discussed elsewhere).
Dislocations in systems of twist-escaped discli-

nation clusters : Using a computer controlled laser
beam, patterns of twist-generated disclination clusters
(cholesteric fingers) have been generated in thin choleste-
ric layers [11]. Dislocation in these systems of equidistant
linear parallel clusters can also be seen as another type
of metadefects, different from tangles.
Knotted dislocations and disclinations : The pos-

sibility of the occurrence of knotted dislocations genera-
ted in cholesterics confined between crossed mica sheets
has been examined in ref.[12]. So far, closed dislocation
loops, self-crossing several times, observed in experiments
were topologically equivalent to the unknot. However, if
the rewiring of some adequate crossings was possible (e.g.
using heating by a laser beam), knots made of disloca-
tions could be created. Generation of knots made of de-
fect lines in nematics and their application in optics is
extensively discussed in the recent paper of Meng, Wu
and Smalyukh [13].

Finally, let us stress from the most general mathe-
matical point of view, the association of the primary
tangles obeys to a simple algebra involving their rank
t=n-1 (where n is the number of entangled dislocations)
and their levogyre and dextrogyre chiralities represented
respectively, for example, by signs - and + . Using this
convention, the annihilation of a pair primary tangles is
written as 1− 1 = 0 while the operation 1 + 1 + 1 = +3
represents the association of three primary dextrogyre
tangles into one dextrogyre tangle of rank t=3. It is also
worthwhile to note that, in 5CB/CB15 mixtures, the di-
rector field in planes orthogonal to the double-helix le-
vogyre and dextrogyre tangles contains respectively +4π
and −4π disclinations [8]. This fact is of interest for op-
tical applications.
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