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Abstract—Inverter-based resources (IBRs) are changing the
dynamics of medium-voltage distribution grids (MVDGs), lead-
ing to concerns over slow-interaction converter-driven stability
(SICDS). Although researchers have proposed numerous device-
level solutions for IBR stability, culminating in the promotion
of grid-forming (GFM) as opposed to grid-following (GFL)
inverters, a system-level analysis from the point-of-view of the
distribution system operator (DSO) is still lacking. As a first
step toward standardization, this paper provides some guiding
principles for DSOs to prevent SICDS issues in MVDGs, by
performing small-signal stability analysis and selecting a set of
key parameters from state-of-the-art GFL and GFM models. By
imposing bounds for these key parameters, DSOs could manage
small-signal interactions between IBRs, as exemplified in the last
section of this paper over a 2-IBRs study case, later scaled to
a multi-inverter configuration with five inverters in a CIGRE
medium voltage distribution benchmark network.

Index Terms—converter-driven stability, small-signal stability,
distribution grid stability, grid-following, grid-forming

I. INTRODUCTION

AGrowing presence of inverter-based resources (IBRs) is
leading distribution system operators (DSOs) to reeval-

uate their role in power system stability. As stated in [1], a
set of new stability issues are gaining prominence in modern
power systems, mostly due to a reduction in system iner-
tia, lower contribution to short-circuit currents from IBRs,
and interactions between converters; this has resulted in the
definition of a new category denominated “converter-driven
stability” (CDS), which involves broad instabilities resulting
from dynamic interactions between the control systems of
IBRs and other devices in the power system.

This category is further subdivided into “fast-interaction
CDS” (FICDS) and “slow-interaction CDS” (SICDS), depend-
ing on the frequency of the stability issues. In general, FICDS
involves harmonic phenomena, with frequencies ranging from
hundreds to several thousands of Hz [1]. Although these issues
may take system-level proportions, their origin is usually
a local resonance involving the output LCL filter of IBRs
and their inner current control loops, being mitigated by the
addition of active damping mechanisms [2]–[4].
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A. Slow-interaction converter-driven stability (SICDS)

SICDS, on the other hand, involves CDS events with a
frequency below 50 Hz [5], including low-frequency oscilla-
tions, typically under 10 Hz [1], and subsynchronous control
interactions. This issue has been addressed in the literature [5],
although studies have mostly focused on micro-grids [6] or
large transmission networks, particularly in the context of low
inertia [7] and weak grids [8], [9]. Interconnected medium-
voltage distribution grids have not been targeted in particular.

While FICDS is highly dependent on local parameters,
SICDS may be a result of dynamic interactions between distant
IBRs. In other words, while FICDS issues may be solved
through careful sizing of passive components and proper
tuning of specific control loops during interconnection studies,
SICDS issues may take place even when IBRs are well-tuned
from the producer’s viewpoint. From a DSO’s perspective,
FICDS issues should be solved at a device level, but SICDS
may require system-level actions, such as standardized guide-
lines for IBRs. Therefore, in the context of medium-voltage
(MV) distribution networks, where relatively large IBRs can
be connected to the grid (12 MW in France [10]), having a
considerable impact on local dynamics, the question of slow-
interaction converter-driven stability, in particular, is raising
concerns.

Research efforts on SICDS are primarily motivated by real-
life events [11], such as the ones observed in Texas [12], Xin-
jiang [13], and Australia [14]. Considerable literature has been
dedicated to explaining such events [8], [9], [15], developing
assessment tools for CDS [16], [17], and suggesting control-
based solutions [18], especially in the form of grid-forming
inverters [19]–[21]. Since the DSO is not usually capable
of controlling IBRs directly, however, a different approach
may be helpful, aiming instead at providing standardized
requirements for decentralized IBRs. In other words, from the
point-of-view of DSOs, it may be interesting to move from a
device-level to a system-level perspective to address SICDS.
This paper represents an effort to fill this gap in the literature,
focusing on a DSO-oriented solution to prevent SICDS on MV
distribution grids.

This poses a number of challenges, however. First, to
provide standardized requirements, the DSO would have to
adopt generic models for IBR controllers, which is a difficult
task in light of the diversity of control schemes available
in the literature. A distinction between two major operation
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modes, namely grid-following (GFL) and grid-forming (GFM)
inverters, is particularly crucial, since they may have vastly
different characteristics with respect to SICDS. Nevertheless,
researchers have made considerable progress in recent years
toward standardized modeling of IBRs, an overview of which
is provided below in Section I-B. A further challenge for the
DSO is to find a set of key parameters which can be used
as standardized requirements for stability, which we attempt
to do via small-signal stability analysis, by proposing such
parameters in Sections II-A and II-B, and demonstrating their
impact in Section III.

B. Standardized modeling of IBRs: recent developments

Despite the challenge of establishing a unified model for
IBR controllers, researchers have made considerable progress
in recent years toward the generic modeling of IBRs. In
[22], authors have provided a summary on this topic. Most
notably, generic models, usually employed in planning studies,
are supposed to be vendor-agnostic and should be able to
approximately depict the dynamic behavior of IBRs when
properly parameterized. For such, these models take advantage
of some fundamental building blocks, which are capable of
portraying a wide range of behaviors. In GFLs, for instance,
these would be the phase-locked loop (PLL) and the inner
current control loop; by adding these two components to the
preexisting generic models, it is possible to accurately depict
SICDS issues in simulations [23], and in small-signal stability
analysis [24]. Generic models also exploit some inherent sim-
ilarities between control methods, such as a Virtual Oscillator
Control (VOC) and a PLL [25], or a Power-Synchronization
Loop (PSL) and a Virtual Synchronous Machine (VSM) [26].
These similarities allow us to parameterize the models in
such a way as to emulate the behavior of different control
methods. This is particularly interesting from the point of view
of system operators, given that they can establish standardized
requirements for a generic control strategy that can be further
“translated” onto different control methods.

With respect to GFMs in particular, to unify the wide range
of control strategies proposed in the literature, researchers
have been suggesting some broad classifications. In [22], there
are categories for Droop-based control (DBC) [27], Virtual
Synchronous Machine [28], Matching Control (MC) [29], and
Virtual Oscillator Control [30]. This is a subject of debate, and
this list is not exhaustive, be it because of the existence of other
categories (PLL-based GFM, for instance [26]) or due to fur-
ther similarities between the aforementioned categories, which
could lead to a different clustering: a VSM, for example, is a
droop-based control with added inertial effect [31], and they
can be made equivalent in terms of small-signal stability [32].

These categories are helpful in light of the comparative
analyses provided in the literature. For example, EMT im-
plementations led to slight differences in transient behavior
in [22], suggesting nonetheless the possibility of unifying the
controllers in positive sequence through the parameterization
of generic models. For our purposes, however, since we are
interested in the assessment of small-signal interactions in a
distribution grid with GFMs, the most important conclusions

can be taken from [7] and [33]. Mentioning similar categories
as [22], the authors of [7] argue that all these strategies lead
to equivalent small-signal behavior (an idea that is further
elaborated in [34]) and can be thus reduced to a droop-based
controller. Focusing specifically on the comparison of such
GFM control methods, particularly the “advanced methods”
(as presented in [35], namely MC and dispatchable VOC),
the authors of [33] concluded that the addition of low-pass
filters allows for an equivalent representation of dVOC, VSM,
and DBC with respect to their inertial behavior, although they
may present discrepancies with respect to damping due to
parameterization constraints. In any case, the authors were
able to tune these four controllers so as to ensure similar
dynamic behavior, which suggests the possibility of using a
common droop-based model for representing GFMs in small-
signal studies. More research is needed with respect to the
generic representation of such advanced control techniques,
but they are considered out of the scope of this paper.

Hence, this work aims at delineating some guiding princi-
ples for the DSO to prevent SICDS issues in an MV distribu-
tion grid. For such, we begin by providing generic IBR models
in Section II, synthesizing some of the recent developments
on simplified source models, with a special emphasis on
photovoltaic solar plants and battery energy storage systems,
deriving key control parameters for both grid-following and
grid-forming controllers, expressed via intuitive and generaliz-
able indicators such as time responses. A simplified modeling
approach for analyzing 2-IBRs systems is also described in this
section, being employed in a small-signal stability analysis in
Section III, where we summarize some major low-frequency
interactions between IBRs. Using sensitivity analysis to define
a set of initial parameter ranges in subsection III-A, we define
some extreme IBR configurations and assess the stability of
scenarios involving their combinations in III-B. These extreme
scenarios are then stabilized by improving the bounds of the
chosen parameters in subsection III-C. Finally, a case study
with five IBRs is presented in subsection III-D, demonstrat-
ing the application of the proposed methodology for larger
systems.

II. MODEL DESCRIPTION

Our study case consists of two IBRs with P = 10MW
connected to a rural MV grid, namely the CIGRE Bench-
mark European MV Distribution Network [36], shown in
Fig. 1, where the network upstream is the Continental Eu-
ropean Transmission Grid. Because the interactions between
MV-connected IBRs and the network upstream are out of
the scope of this paper, we adopt an infinite-bus repre-
sentation for the high-voltage transmission grid, with short-
circuit power SSC = 5000 MVA and R/X = 0.1 [36].

A second assumption is that, except for IBRs, the MV
network is entirely passive; for simplification, we neglect the
dynamics of loads, therefore considered constant-impedance
models, as well as on-load tap-changers and capacitor banks,
both of which are considerably slower than IBR controllers.
It is worth mentioning, however, that local loads may have an
impact on CDS: in [37], for instance, a predominance of small
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Fig. 1. IBR connected to CIGRE Benchmark European MV Distribution
Network, configured for radial operation [36]
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Fig. 2. Physical model of an IBR connected to a MV grid

motors leads to GFMs operating in current limitation mode
due to low voltage conditions, affecting their stability. Some
specific interactions between IBRs and loads may require
advanced load models, such as component-based electromag-
netic transient (EMT) models [38]. Since our goal is to study
the interaction between IBRs in an isolated manner, load-
IBR interactions are considered out of our scope. Moreover,
because we are focusing on low-frequency interactions, loads
and lines downstream from the IBR point of interconnection
(POI) with the grid can be bundled into a single equivalent
load, as in a quasi-steady-state model.

Taking these hypotheses into account, the model of an
IBR connected to a radial MV grid shown in Fig. 1 can be
represented as in Fig. 2.

In its prospective studies for 2050, Enedis, the major French
DSO, envisions a RES capacity of up to 275 GW by 2050,
most of which (around 84 %) is expected to be in the form of
Photovoltaic Solar Power (PV) [39]. Some of these PV plants
will presumably be coupled with Battery Energy Storage
Systems (BESS). Hence, our renewable energy source (RES) is
modeled so as to emulate PV and BESS, disregarding certain
source-side stability concerns, which are usually associated
with Wind Power Plants (WPP) [40]. Although certain authors
might employ a constant DC source for both transient [41] and
small-signal analysis [42] of IBRs, or to propose and validate

IBR controllers [43], we have opted for a representation that
includes the DC-side dynamics, since they may have an impact
on small-signal stability [7]. As shown in Fig. 2, we have
adopted a controlled current-source model, based on [7],
where a first-order delay with a time constant τs = 1/ωs,
in addition to a saturation block, is used to represent the
dynamics related to the source-side DC/DC converter. A
reference current irefs is provided by a Maximum Power Point
Tracking (MPPT) algorithm or by the IBR controller. A DC-
link capacitor is used as an energy buffer between source
and converter. This is a common representation for generic
controllable sources, either an energy storage plant or a RES
with sufficient headroom, and is commonly employed in the
literature [33], [44], [45].

It is worth mentioning that this model may still be useful
for representing Type-4 WPPs in certain applications. For in-
stance, authors in [46], aiming to provide a stability assessment
for GFMs with limited DC-side current provision, compared
this simplified DC-side model with a detailed Type-4 WPP,
concluding that the representation is accurate for reproducing
vdc instability if the source current limitation is in accordance
with the maximum power point of the WPP; otherwise, if this
power limitation is not respected, dynamic events could lead
the rotor to stall. Moreover, a small-signal stability assessment
for offshore WPPs connected to High Voltage Direct Current
(HVDC) rectifiers, operating as GFL and GFM, was conducted
in [47], arriving at similar conclusions as Section III-C in this
paper, namely the key role played by GFL PLL gains and GFM
droop constant in the dominant modes of the system. More
specifically, for the study of low-frequency dynamics below
10 Hz in WPPs connected to weak grids, it is common for
researchers to ignore DC-side dynamics entirely [48], since the
root cause of such stability issues can be accurately explained
via simplified models.

For the inverter itself, we employ a generalized average
model [49]. Writing the network equations for the output filter
in per-unit, applying a power-variant dq0 transformation [50],
which uses a phase equal to θibr (with an angular speed of
ωibr), provided by the IBR controller, and assuming a balanced
three-phase output, we get the set of equations (1)-(3),

(Lf/ωb) ˙if d = vdc md − vf d −Rf if d + ωibr Lf if q (1)

(Lf/ωb) ˙if q = vdc mq − vf q −Rf if q − ωibr Lf if d (2)
Cdc ˙vdc = is − if d md − if q mq (3)

where mdq = {md,mq} designate the modulation signal m̃
for the PWM, in dq frame.

Assuming a LV/MV transformer with no phase-shift and an
inductive load, we may represent them using RL circuits, just
as the line, for which the capacitances are neglected. These
three components forming a “T” will lead to a singularity if all
inductor currents are taken as state variables, since their linear
combination is equal to zero. In order to avoid this, we may
leave ĩp aside and take only ig = {igd, igq} and il = {ild, ilq}
as state variables, obtaining their differential equations by
applying a star-delta transformation on the inductances.

It is worth noting that all variables when expressed in
dq must be referred to the dq-frame of the IBR, which is
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TABLE I
IBR PHYSICAL PARAMETERS

Parameter Lf Rf Cf Cdc Lt Rt τres

Value 0.1 pu 0.01 pu 0.1 pu 0.04 pu 0.05 pu 0.0005 pu 1 ms

rotating at ωibr. An external voltage, such as ṽp, must be
rotated from the global dq-frame, rotating at ωg , denoted by
the superscript “g”, to the reference frame of the IBR, using
a counterclockwise rotation of θg − θibr:

[
vpd
vpq

]
=

[
cos (θg − θibr) − sin (θg − θibr)
sin (θg − θibr) cos (θg − θibr)

] [
vp

g
d

vp
g
q

]
(4)

Hence, the physical model of an IBR branch may be
described using a set of differential equations in the form
ẋ = f(x, u), with state vector x and input vector u:

x =
[
if d if q vdc vf d vf q is igd igq ild ilq

]⊺
u =

[
irefs md mq θibr ωibr vp

g
d vp

g
q θg

]⊺ (5)

Modulation signal {md,mq} as well as the phase and fre-
quency of the rotating dq frame {θibr, ωibr} must be provided
by IBR controllers, depending on their operation mode, either
GFL or GFM. Parameters required in the physical model
of the IBR are given in Table I, where Sbase = 10MVA,
Ubase = 20 kV, and fbase = 50Hz.

A. Grid-following control (GFL)

Grid-following inverters are power converters controlled as
current sources [51]. They represent most of the IBRs used
for integration of RES. GFLs receive commands in terms of
active and reactive power, as well as measurements of voltage
and current at the POI; their objective is to simply inject P and
Q, which, if POI voltage is sufficiently steady, can be done by
injecting a certain current ĩf . This control is ideal for MPPT-
based power sources, and for a precise injection of reactive
power, which is commonly required in grid codes for voltage
support [10].

As shown in Fig. 3, a generic GFL controller is composed
of three control loops: internal, external and phase-locked loop
(PLL). The standard configuration usually involves a control
of active and reactive power, providing current references in
a dq frame, which are used in determining a modulation
function for the PWM. This dq frame is obtained through
a phase-locked loop (PLL), with the purpose of achieving
synchronization with the input voltage ṽf . Q-control is usually
done in a direct manner, using a low-pass filter (LPF) for
measurements. P-control, on the other hand, may be done in
an indirect manner, by controlling vdc; by using this method,
a GFL is able to keep vdc under control while injecting
whichever power is being provided by the source.

dq0
abc

PI

PI

PI

PI

PI

External Loop
Internal

Loop

Phase-Locked Loop (PLL)

Fig. 3. Control diagram for a Grid-Following Inverter (GFL)

Translating Fig. 3 into differential equations in the form
ẋ = f(x, u, z), where z is a vector with all algebraic variables,
a GFL branch is represented by the following vectors:

x = [if d if q vdc vf d vf q is igd igq ild ilq

γvdc qm γirefq
γif d

γif q
γpll θpll]

⊺

u = [irefs vdc
ref qref vp

g
d vp

g
q θg]

⊺ (6)

z = [md mq ωpll]
⊺

All variables indicated by γ in (6) correspond to integrator
outputs in proportional-integral (PI) controllers.

We may also define a vector p with all the parameters related
to a GFL branch:

p = [ωb Rf Lf Cf Rt Lt Rl Ll Rp Lp Cdc ωs ωff ωiq

Kp
vdc Ki

vdc Kp
iq Ki

iq Kp
pll Ki

pll Kp
i Ki

i]⊺ (7)

From (7), most non-physical parameters are PI gains Kp

and Ki. In order to tune them, one might linearize the model
and find approximate first-order open-loop transfer functions
in the form of (8),

Hp(s) =
K0

τ0 s+ c0
(8)

where c0 is either 1 or 0.
If using a PI controller with Hc(s) = Kp +Ki/s, we could

obtain a closed-loop transfer function by applying (9).

H(s) =
N(s)

D(s)
=

Hp(s)Hc(s)

1 +Hp(s)Hc(s)
(9)

This leads to a denominator in the form of (10).

D(s) = s2 + 2 ξ ωn s+ ω2
n (10)

where ξ is the damping ratio and ωn is the natural frequency.
Finally, assuming an oscillatory response (ξ ≤ 0.707), we

may obtain a reponse time tr, or settling time at 5 %, which
indicates the time it takes for a step response to reach ±5 %
of its steady-state value, applying (11) [52].

tr ≈ 3

ξ ωn
(11)



5

TABLE II
GENERIC GFL CONTROLLER TUNING

Description Open-loop
Transfer Function

Tuning
Parameter Gains

Internal Loop
vdc0/Rf

Lf/(ωb Rf ) s+1
tir Ki

p,K
i
i

External Loop: vdc
−md0/Cdc

s
t
vdc
r K

vdc
p ,K

vdc
i

External Loop: q
−vf d0

(1/ωiq) s+1
t
iq
r K

iq
p ,K

iq
i

PLL ωb
s

tpllr Kpll
p ,Kpll

i

TABLE III
STANDARD GFL TUNING PARAMETERS

Parameter t
vdc
r t

iq
r tpllr tir tqmr ωiq ωff

Value 100 ms 100 ms 50 ms 10 ms 30 ms 33.3 ms 1 pu

With (8)-(11), it is possible to write the gains Kp and Ki

as a function of tr and ξ:

Kp =
1

K0

(6 τ0
tr

− c0

)
and Ki =

9 τ0
K0 ξ2 t2r

(12)

It is a common practice to adopt ξ = 0.707, since it usually
provides an acceptable trade-off between speed of response
and damping of transient oscillations. This is done throughout
this paper, reducing our degree of freedom by half for every PI
controller. We opt for this approach because we intend to study
small-signal stability problems related to interactions between
IBRs: a low damping ratio would obviously lead to suboptimal
stability, hence it is a conservative assumption to consider this
parameter to be properly tuned. Our tuning criteria rely on a
desired time-response tr, which, unlike ξ, is a complex choice.

Table II summarizes the tuning of a generic GFL, while
Table III provides the standard tuning parameters adopted in
our small-signal stability analysis. Since this paper is focused
on low-frequency modes, the tuning vector pt for a GFL
branch may be reduced to three parameters:

pt = [tvdcr tiqr tpllr ]⊺ (13)

B. Grid-forming control (GFM)

A GFM controller is also composed of an external and
internal loop, as seen in Fig. 4, but the primary objective
of the latter is to regulate an output voltage ṽf instead of
a current; hence, a grid-forming inverter is controlled as a
voltage source [51]. This can be done either in a direct manner,
by controlling the modulation signal m̃ directly from voltage
errors [53], or in an indirect manner, by going through a fast
current control loop [21]. Because the second method – a
cascaded control loop – is generic and representative enough
for our purposes, it is adopted throughout this paper.

In microgrids, some GFM applications require IBRs to
inject any value of active power, if available, to keep voltage
and frequency under control [51]. When multiple GFMs are in-
terconnected, however, this stiff control should be replaced by

PI

PI

PI

PI

External Loop

Internal
Loop

 

V
ir
tu

al
Im

pe
da

nc
e

Active
Damping

PI

 DC Voltage
Control

Fig. 4. Control diagram for a Grid-Forming Inverter (GFM)

a droop-based mechanism [27], which emulates a synchronous
generator (SG) in its way of sharing power and reacting to
power variations via frequency. But SGs react according to
a swing equation, due to their rotating mass and its inertial
effect when subjected to power imbalances; this leads to
slow variations in frequency, which can only be emulated by
GFMs if a low-pass filter is added to the droop control, in
a method denominated “Virtual Synchronous Machine” [28].
We may thus adapt this control method to ensure a voltage-
source behavior and a synchronization capability, in addition
to an active power control loop, in what is called a “Power-
Synchronization Loop” (PSL) [53].

If the voltage-source is to keep a stiff voltage, we may
provide a reference V ref directly to the internal loop. How-
ever, multiple additional control features may be integrated to
improve the dynamic behavior of the GFM. Most commonly,
we may take advantage of this flexibility to add virtual
resistances or inductances, either for steady-state corrections,
as a Virtual Impedance (VI) [51], or transient improvements,
such as a Transient Virtual Resistor (TVR) [53], [54].

Finally, it is worth mentioning that a GFM is not able to
comply with any of these control requirements if the DC-link
voltage vdc is not kept under control. Since this voltage is
sensitive to power imbalances, and active power is already
controlled by an external loop, the only way to regulate vdc
is via source current is. Hence, this source should receive
irefs from the IBR, which is done by means of a DC voltage
control loop. To avoid confusion with the GFL parameter tvdcr ,
the tuning parameter for this loop is taken as τvdc = 1/(ξ ωn).

Once again, translating Fig. 4 into differential equations in
the form ẋ = f(x, u, z), a GFM branch could be represented



6

by the following vectors:

x = [if d if q vdc vf d vf q is igd igq ild ilq γp θpsl

γq γTVRd
γTVRq

γvf d
γvf q

γif d
γif q

γvdc ]
⊺

u = [irefs pref V ref qref vdc
ref ωref vp

g
d vp

g
q θg]

⊺ (14)

z = [md mq ωpsl]
⊺

Variables indicated by γ in (14) correspond to outputs from
low-pass filters (γp, γq), high-pass filters (γTVRd

, γTVRq ) or
from integrators in PI controllers (γvf d

, γvf q
, γif d

, γif q
, γvdc ).

As done for the GFL, we may define a vector p with all the
parameters related to a GFM branch:

p = [ωb Rf Lf Cf Rt Lt Rl Ll Rp Lp Cdc ωs ωff

ωp mp ωq nq ωtvr Rtvr
v Rv Xv Kp

v Ki
v (15)

Kp
i Ki

i Kp
vdc Ki

vdc]⊺

In order to tune the GFM controller, we ignore the reactive
power control loop (nq = 0) for simplification, as well as
the additional control loops (VI and TVR), considered out of
scope for this paper, since they are not always employed and
their tuning is too specific for individual IBRs. Internal control
loops can be tuned following the same method as GFLs, and
they mostly concern fast interactions. Hence, our focus is on
the active power control (APC), which is the most relevant for
slow interactions, in addition to the vdc control loop.

APC for GFMs depends on two parameters: droop mp

and LPF cut-off frequency ωp. If the goal is to achieve
synchronization while keeping a transient decoupling between
P and Q, as in a power synchronization control [53], we
may compute the system time-constant as a function of mp

[54], [55], adopting a droop that provides enough decoupling.
In this case, ωp can be tuned as a regular LPF, to filter
out high-frequency noise in P measurements. However, this
time-constant depends on external parameters, such as the
impedance at the POI, which may not be available to the IBR.

A more generic approach would consist of emulating the
swing equation of SGs, tuning the GFM to provide an equiv-
alent inertia H and damping K [28], [56]. Following Fig. 4:

γ̇p = −ωp γp + ωp mp (p
ref − p) (16)

and defining a GFM frequency ωpsl, in pu, as:

ωpsl = γp + ωref (17)

Substituting (17) in (16), we get:

2H ˙ωpsl = pref − p−K (ωpsl − ωref ) (18)

where H and K are defined as in (19).

H =
1

2mp ωp
and K =

1

mp
(19)

From (18), a PSL-based GFM is capable of emulating the
classical swing equation of an SG as expressed in [57], where
pref acts as the mechanical power and ωref as the rated value
of the rotor angular velocity.

Finally, the simplest way to determine mp is through grid
requirements. Since mp = ∆ω/∆p, for ∆p = 1 pu, a
maximum frequency deviation ∆ω allowed in most grid codes

TABLE IV
STANDARD GFM TUNING PARAMETERS

mp ωp τvdc tvr tir nq ωq Rtvr
v ωtvr Rv Xv

0.01 31.4 rd/s 5 ms 10 ms 0.5 ms 0 31.4 rd/s 0.028 pu 62.8 rd/s 0 0

is around 5 %, so we could adopt an mp of up to 0.05.
With respect to the LPF, it is common to tune it around
5 Hz i.e. ωp = 31.4 rad/s [56]. In this case, mp = 0.01 leads
to a rather low inertia constant H = 1.6 in comparison to
SGs (4 - 10 [57]). However, there is no consensus about the
desirable level of virtual inertia required from IBRs connected
to MV networks; for our purposes, rather than sticking to a
tuning method in particular, we perform a sensitivity analysis
on mp and ωp, assessing their impact on small-signal stability.

With respect to DC voltage control, from the correspondent
block represented in Fig. 4 and DC-side equation (3), by
linearizing around an equilibrium point, we get:

Hvdc
p (s) =

∆vdc(s)

∆irefs (s)
=

ωs

s+ ωs

1/Cdc

s
(20)

In order to simplify our tuning, we may consider an ap-
proximation which is only valid if the source is relatively
fast with respect to the time-response of this control loop:
τs = 1/ωs << τvdc . In the case of PVs, this delay is usually
under a millisecond. Since we intend to take τvdc in the
order of at least a few milliseconds, we may apply this
approximation, reducing (20) to Hvdc

p (s) = 1/Cdc

s ; this allows
us to apply (12), bringing down the DC voltage control to a
single parameter: τvdc .

Table IV provides the standard GFM tuning parameters
adopted in our studies. As for the GFL, tuning vector pt for
a GFM branch may also be reduced to three parameters:

pt = [mp ωp τvdc ]
⊺ (21)

C. Global state-space with multiple IBRs

Each IBR branch as well as the upstream network can
be described by a set of non-linear differential equations f ,
algebraic equations g, and output equations h. Denoting the
ith element, either an IBR branch or the upstream network,
by the subscript i, we may write:

ẋi = fi(xi, ui, zi)

0 = gi(xi, ui, zi) (22)
yi = hi(xi, ui, zi)

Linearizing around an equilibrium point xi0, for which
ẋi = fi(xi0, ui0, zi0) = 0, we may rewrite (22) as (23):

˙∆xi = Ai ∆xi +Bi ∆ui

∆yi = Ci ∆xi +Di ∆ui

(23)

where Ai, Bi, Ci, and Di are jacobian matrices representing
this element as a state-space.
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A  B 
C  D

A  B 
C  D

F  G 
K  L

Fig. 5. Association of multiple state-spaces into a single state-space

Taking all m elements in the system, ∀i ∈ [1,m], we may
group them as a unique state-space, which may be written in
an open-loop form, hereby denoted by subscript “L”:

˙∆xL = AL ∆xL +BL ∆uL

∆yL = CL ∆xL +DL ∆uL

(24)

where AL, BL, CL, and DL are diagonal concatenations of
individual matrices Ai, Bi, Ci, and Di, respectively; similarly,
xL, uL, and yL are vertical concatenations of the individual
state, input, and output vectors, respectively.

Evidently, all states must be included into the global state-
space: ∆x = ∆xL. Open-loop input vector ∆uL and closed-
loop output vector ∆y may be written as a function of global
input vector ∆u and open-loop ∆yL, as shown in Fig. 5 and
expressed below:

∆uL = F ∆u+G∆yL

∆y = K∆u+ L∆yL
(25)

Taking (24) and (25), we derive a closed-loop state-space:

∆̇x = A∆x+B∆u

∆y = C∆x+D∆u
(26)

Considering EL = (I −Dl G)
−1, closed-loop matrices A,

B, C, and D may be computed as:

A = AL +BL GEL CL C = LEL CL

B = (BL GEL DL +BL)F D = LEL DL F +K
(27)

D. Obtaining the state matrix “A” for our study case

In order to build a global state-space for our study case, we
consider a generic number of n IBR branches, all of which
are connected at a common node, which also includes the
upstream network, as in Fig. 6.

Here, for each IBR branch k, k ∈ [1, n], we have:

uk = [(uk
s)⊺ (ug)⊺]

⊺ and yk = [(ik
g)⊺ (vk

g)⊺]
⊺ (28)

where the kth input vector uk is subdivided into two compo-
nents: setpoint vector us

k, unique for each IBR, according to
its operation mode (GFL or GFM), and grid input vector ug ,
same for all IBR branches. For convenience, output vector yk
may also be subdivided into a current vector igk and a voltage
vector vgk . All of these are described below:

us
k =

[
irefs vdc

ref qref
]⊺

, if GFL

us
k =

[
irefs pref V ref qref vdc

ref
]⊺

, if GFM (29)

ug =
[
vp

g
d vp

g
q θg

]⊺
; igk =

[
ip

g
dk

ip
g
qk

]⊺
; vgk =

[
vl

g
dk

vl
g
qk

]⊺

IBRRES

IBR Branch 1

IBRRES

IBR Branch n

...

Fig. 6. Multiple IBR branches connected to a single-bus representation of
the upstream network

A similar representation may be adopted for the upstream
network:

uup =
[
(us

up)
⊺ (ug

up)
⊺]⊺ and yup =

[
vp

g
d vp

g
q θg

]⊺
(30)

where:

us
up = [ωg Vup]

⊺ and ug
up =

[
it
g
d it

g
q

]⊺
It is possible to obtain ug

up as a function of output currents
igk by applying Kirchhoff’s first law to the common node:

it
g
d = −

n∑
k=1

ip
g
dk

and it
g
q = −

n∑
k=1

ip
g
qk

(31)

We may thus rewrite ug
up as:

ug
up = −

[ (
1 0 0 0
0 1 0 0

)
. . .

(
1 0 0 0
0 1 0 0

) ]



ip

g
d1

ip
g
q1

vl
g
d1

vl
g
q1


...
yn


which, denoting “I” for identity matrices, gives:

ug
up = [ (−I 0 ) . . . (−I 0 ) ] [y

⊺
1 . . . y⊺n]

⊺ (32)

Hence, there is a relation between IBR inputs and upstream
outputs, namely ug = yup, as well as a relation between IBR
outputs and upstream inputs, expressed in (32). Adding to
these the differential and algebraic equations from each state-
space, and linearizing them around an equilibrium point, we
may write down an open-loop state-space formulation of the
global system according to (24), where, for subscripts “1”
to “n” designating IBR branches and “up” designating the
upstream network,

∆xL =
[
∆x⊺

1 . . . ∆x⊺
n ∆x⊺

up

]⊺
∆uL =

[
∆u⊺

1 . . . ∆u⊺
n ∆u⊺

up

]⊺
(33)

∆yL =
[
∆y⊺1 . . . ∆y⊺n ∆y⊺up

]⊺
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For IBR branch 1, we may express ∆u1 as:

∆u1 =
[
I 0 . . . 0
0 0 . . . 0

] 
∆us

1
...

∆us
n

∆us
up

+
[
0 . . . 0 0
0 . . . 0 I

] 
∆y1

...
∆yn
∆yup

 (34)

Similarly, for the upstream, we may rewrite ∆uup as:

∆uup =

[
∆us

up

∆ug
up

]
= Fup


∆us

1
...

∆us
n

∆us
up

+Gup


∆y1

...
∆yn
∆yup

 (35)

where, computing ∆ug
up from (32),

Fup =
[
0 . . . 0 I
0 . . . 0 0

]
, Gup =

[
(0 0) . . . (0 0) (0 0)
(−I 0) . . . (−I 0) (0 0)

]
Generalizing (34) for n IBRs and grouping it with (35):

∆u1
...

∆un

∆uup

 = F


∆us

1
...

∆us
n

∆us
up

+G


∆y1

...
∆yn
∆yup

 (36)

where:

F =



I 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0
0 0 . . . 0 0
0 0 . . . 0 I
0 0 . . . 0 0


, G =



0 . . . 0 0
0 . . . 0 I
...

...
...

...
0 . . . 0 0
0 . . . 0 I

(0 0) . . . (0 0) (0 0)
(−I 0) . . . (−I 0) (0 0)


As we can see, (36) is in the form ∆uL = F ∆u+G∆yL

(25), where closed-loop input vector u assembles all setpoints
in the system:

u = [us
1 . . . us

n us
up ]

⊺ (37)

Given that we have F and G from (36), we may obtain the
state-matrix A using (27).

It is worth noting that the simplified modeling approach
described in subsection II-C is only valid in some particular
situations, such as a multi-IBR configuration where each one
of them is connected to a different feeder or a configura-
tion with multiple IBRs connected to the same node in the
distribution grid. In our case, in particular, as we intend to
dive deeper into a configuration with two IBRs connected
to the network from Fig. 1, the representation from Fig. 6
with n = 2 could serve our purposes. A generic representation
could be obtained without simplifications by following the
steps described in [58].

III. SMALL SIGNAL STABILITY ANALYSIS

Using the state matrix A obtained in the last section, it is
possible to perform a small-signal stability analysis (SSSA) for
an MV grid with IBRs [57], which is done by computing the
eigenvalues of A, hereby noted as “λ”. SSSA is a classical
method to evaluate the stability of equilibrium points in
dynamic systems, linearizing its dynamic equations around
these equilibrium points and studying the eigenvalues of the

TABLE V
SELECTED SCENARIOS FOR SMALL-SIGNAL STABILITY ANALYSIS

Scenario Node
IBR 1

Node
IBR 2

Distance
IBR 1-2

S1 3 4 0.8 km
S2 3 5 1.4 km
S3 10 11 0.5 km
S4 7 11 3.3 km

TABLE VI
EQUIVALENT REPRESENTATION OF IBRS FOR SELECTED SCENARIOS

SCR
Up.

R/X
Up.

Xline [pu]
IBR 1

R/Xline
IBR 1

Xline [pu]
IBR 2

R/Xline
IBR 2

Sload [pu]
IBR 1

Sload [pu]
IBR 2

S1 4.77 0.40 0.0018 0.70 0.0127 0.70 0.75∠0.6◦ 0.26∠7.7◦

S2 4.77 0.40 0.0018 0.70 0.0228 0.70 0.80∠0.7◦ 0.20∠8.9◦

S3 3.76 0.42 0.0018 0.70 0.0077 0.70 0.67∠2.3◦ 0.18∠3.8◦

S4 4.14 0.40 0.0322 0.68 0.0277 0.68 0.37∠1.2◦ 0.50∠3.6◦

resulting state matrix. In traditional SG-dominated power
systems, SSSA measures the ability of the system to maintain
synchronism when subjected to small disturbances [57]. In
practice, SSSA has been mostly used for detecting insuf-
ficient damping of power oscillations, which are mitigated
through power systems stabilizers (PSS) but has also found
applications in voltage stability and subsynchronous resonance
analysis. In recent years, applications of SSSA have been
extended to power-electronic-dominated systems [7], being
adapted into frequency-domain and impedance-based methods,
and being employed in model order reduction techniques [59].

For our purposes, SSSA serves as an instrument for assess-
ing interactions between IBRs; we may employ classical tools,
such as eigen-sensitivity and participation factors, to detect the
modes by which IBRs interact with each other and the key
parameters that could be tuned for mitigating oscillations and
instabilities. The main difference is that, instead of focusing
on the tuning of a given IBR for dynamic purposes, we are
trying to find adequate ranges for key parameters in a multi-
IBR setting so as to ensure system-level small-signal stability,
which could be a practical methodology for a DSO.

Following the hypotheses presented in Section II, which
reduces the system from Fig. 1 to Fig. 6, where each IBR
is represented as in Fig. 2, we first select some scenarios
of interest, presented in Table V, chosen to reflect realistic
conditions with respect to POI strength and distance between
IBRs.

For the remainder of this paper, our system consists of two
IBRs, either GFL or GFM, connected to a common upstream
network via lines and loads as indicated in Table VI. This
table represents the steady-state equivalent of Table V taking
both IBRs as GFMs. Scenarios S3-S4 involve nodes further
away from the substation when compared to scenarios S1-S2,
hence the former is taken as weak grid scenarios, while the
latter will designate a strong grid. Scenarios S1-S3 involve
short distances between IBRs i.e below 1 km; S2-S4, on the
other hand, comprise IBRs distant from each other.
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TABLE VII
SUMMARY OF SMALL-SIGNAL SENSITIVITY ANALYSIS FOR CHOSEN

TUNING PARAMETERS

IBR Par. Range Worst
Scen.

Worst
Config.

Worst
Par. Value

Max.
ℜ(λ)

Freq. for
Max. ℜ(λ)

GFL t
vdc
r 50− 220ms S3 GFL/GFM 220ms −1.1 2.6 Hz

GFL t
iq
r 50− 1000ms S4 GFL/GFL 1000ms −2.4 0.6 Hz

GFL tpllr 20− 1000ms S2 GFL/GFM 1000ms −3.0 0.5 Hz

GFM mp 0.005− 0.045 S3 GFM/GFM 0.045 −1.5 11.4 Hz
GFM ωp 2.5− 50 rd/s S1,S2 GFM/GFL 2.5 rd/s −1.2 0.9 Hz
GFM τvdc 3− 70ms S1-S4 GFM/GFL 70ms −1.5 3.3 Hz

Fig. 7. Small-signal sensitivity for a 2-IBRs configuration, where t
vdc
r for

IBR 1 (GFL) is taken from 50 to 220ms. Initial eigenvalues are indicated by
the circles, where t

vdc
r = 50ms; they evolve along the scenarios {S1-S4} as

t
vdc
r increases.

A. Sensitivities

In order to assess the impact of key parameters, given in (13)
and (21), we may perform a sensitivity analysis and observe
the behavior of dominant modes. Assuming that both IBRs are
initially tuned according to their standard configuration, as in
Tables III and IV, a single parameter from IBR 1 varies along
the range presented in Table VII, while IBR 2 rests unaltered.
Table VII also summarizes the results for this sensitivity
analysis: within the chosen ranges, all parameters may drive
the dominant mode, or the eigenvalue with maximum real part
(maxℜ(λ)), relatively close to the imaginary axis; frequencies
for these modes are between 0.5 and 11.4 Hz. For illustration,
two interesting cases are presented below.

From Fig. 7, it is possible to see how high values of tvdcr

may lead to weakly-damped low-frequency oscillations. For
both configurations, all scenarios converge when tvdcr is high,
which suggests that this form of instability is unrelated to
grid conditions. Although both configurations present similar
results, GFL/GFM is slightly worse than GFL/GFL, as can
be observed through the time-domain simulations presented
in Fig. 8: if IBR 2 is a GFM, it will present power oscillations
due to a badly-tuned parameter in IBR 1, constituting an
undesirable small-signal interaction.

Fig. 9 presents the sensitivity for the droop constant mp in
IBR 1, which is now a GFM. This time, there is a visible dis-
crepancy between scenarios and configurations. Nearby IBRs,
with one of them reaching high droop levels (close to 0.045),
will interact through weakly-damped oscillations; in this case,
a weak grid configuration with distant IBRs (Scenario S4) is

Fig. 8. Time-domain simulation to illustrate the results from Fig. 7. Here,
“IBR 1” and “IBR 2” represent the injected power Pf for each inverter,
following a 0.1 pu step on pref for IBR 1 (at t = 0 s) and IBR 2 (t = 1 s).
“TA” and “TB” are tuning configurations: “TA” is the standard configuration
(tvdcr = 100ms for both IBRs), whereas “TB” presents a modified tuning for
IBR 1: tvdcr = 220ms.

Fig. 9. Small-signal sensitivity for a 2-IBRs configuration, where mp for
IBR 1 (GFM) is taken from 0.005 to 0.045.

Fig. 10. Time-domain simulation to illustrate the results from Fig. 9. Pf for
both IBRs following a 0.1 pu step on pref for IBR 1 (at t = 0 s) and IBR 2
(t = 1 s). Once again, “TA” is the standard tuning configuration (mp = 0.01
for both IBRs), while “TB” is modified for IBR 1: mp = 0.045.

less prone to instability. It is interesting to notice that switching
IBR 2 from GFM to GFL leads to a configuration that is
considerably more stable, as shown in Fig. 10.

B. Extreme IBR configurations

From the point of view of the DSO, knowing that a set of
key parameters can reproduce the most relevant low-frequency
interactions between IBRs, it is crucial to define and assess
worst-case scenarios. The objective is for the DSO to provide
bounds for these parameters, ascertaining that even the worst
combination between bound values will not lead to unstable
situations. Our study-case consists of two IBRs, either GFL
or GFM, each having three key parameters; considering the
four scenarios we have taken into account, if each parameter
is to assume a bound value, either minimum or maximum,
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Fig. 11. Worst combination between bound values for a GFL/GFL config-
uration, for scenarios S1 and S4. In this case, S2 and S3 can be omitted,
since they present the same structure as S1 and S4, respectively, while their
corresponding worst case is less extreme. ℜ(λ) indicates the maximum real
part among all eigenvalues computed for these combinations.

Fig. 12. Worst combination between bound values for a GFM/GFM config-
uration, for scenarios S3-S4. Here, S1 and S2 can be omitted, since both of
them present the same structure as S3.

each IBR configuration would involve 256 possibilities, all
scenarios comprised. The first step is to select the parameter
combinations among all these possibilities that lead to the
worst situations in terms of small-signal stability. For such, the
initial bounds are taken as the ranges presented in Table VII.

Through this analysis, we observe that the worst situations
take place for IBR configurations of the type GFL/GFL, shown
in Fig. 11, and GFM/GFM, shown in Fig. 12. These figures
indicate a given parameter combination: outer hexagons indi-
cate the upper bound values for each parameter, normalized,
while inner hexagons refer to the lower bounds, and dashed
lines are the standard values (Tables III, IV).

Hence, there are two additional GFL and GFM configura-
tions that should be taken into account for assessing worst-
case scenarios, as summarized in Table VIII. Two specific
parameter combinations may even lead to instability. In a
GFL/GFL configuration, for scenario S4 (distant IBRs con-
nected to a weak grid), with both GFLs configured as “GFLC”
from Table VIII, Fig. 11 indicates an instability. Similarly, a
GFM/GFM in scenario S3 (nearby IBRs), with both GFMs
configured as “GFMB”, would also lead to instability, as
shown in Fig. 12.

Taking into account these two additional GFL and GFM
parameter configurations given in Table VIII, which me may
designate as “extreme configurations”, in addition to the
standard ones, henceforth denominated GFLA and GFLB, it

TABLE VIII
EXTREME IBR CONFIGURATIONS

Par. GFLA GFLB GFLC Par. GFMA GFMB GFMC

t
vdc
r 100ms 220ms 220ms mp 0.01 0.045 0.045

t
iq
r 100ms 1000ms 1000ms ωp 31.4 rd/s 50 rd/s 2.5 rd/s

tpllr 50ms 1000ms 20ms τvdc 5ms 70ms 70ms
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Fig. 13. Combinations between a set of IBR configurations, for all scenarios
(S1-S4). Each square represents the maximum real part among all eigenvalues
for the correspondent combination between IBR1 and IBR2.

is possible to visualize a large number of stability scenarios.
Fig. 13 provides this visualization and a number of conclu-

sions: as expected, standard configurations are considerably
more stable than the other ones; GFMB/GFMB, which is a
high-droop configuration, leads to instability for all scenarios
expect for S4 (distant IBRs connected to weak grids); on
the other hand, GFLC/GFLC, a fast-PLL configuration, leads
to instability only under weak grids (scenarios S3 and S4).
GFLB leads to weak damping in all scenarios, becoming
slightly unstable in S3. GFMC/GFMC, characterized by slow
vdc control, also leads to damping issues in all scenarios.

C. Improving parameter bounds for stability

From Fig. 13, it is clear that the initial parameter bounds
given in Table VII are unable to ensure small-signal stability
under the stringent configurations presented in Table VIII.
To improve these bounds, we may perform some additional
sensitivity studies for S3, worst scenario according to Fig. 13.

1) Fast-PLL instability: Since GFLC/GFLC is defined by
a fast PLL, we may perform a sensitivity analysis on tpllr ,
trying to find the value that would lead to an acceptable
maxℜ(λ) (close to -1, for instance). This time, tpllr is modified
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(a) Small-signal sensitivity (b) Eigenvalue trajectory

Fig. 14. Small-signal sensitivity for a 2-IBRs configuration, where tpllr for
both IBR 1 and IBR 2 is taken from 10 to 50 ms. Both IBRs are GFLs
configured as “GFLC”, hence with t

vdc
r = max(t

vdc
r ) and t

iq
r = min(t

iq
r ).
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Fig. 15. Combinations between a set of IBR configurations, for all scenarios
(S1-S4), considering a new set of bound values for the key tuning parameters,
presented in Table IX.

for both IBRs at the same time, as shown in Fig. 14. We
observe that increasing the minimum tpllr to 25ms leads to
maxℜ(λ) = −1.44, which eliminates the instability, as can
be seen in Fig. 17a.

2) High-droop instability: A similar procedure can be
followed to solve a GFMB/GFMB instability, mostly related
to an elevated droop constant mp. Resorting once more to a
sensitivity study, Fig. 16 indicates that reducing the maximum
mp down to 0.025 eliminates this instability. Once again,
Fig. 17b corroborates this conclusion, demonstrating a further
improvement with respect to Fig. 17a.

3) Improved bounds: The remaining parameters can also be
improved, culminating in the values given in Table IX. These
new bounds lead to an updated situation with respect to com-
binations between extreme configurations, as shown in Fig. 15.

(a) Small-signal sensitivity (b) Eigenvalue trajectory

Fig. 16. Small-signal sensitivity for a 2-IBRs configuration, where mp for
both IBR 1 and IBR 2 is taken from 0.005 to 0.05. Both IBRs are GFMs
configured as “GFMB”, hence with ωp = max(ωp) and τvdc = max(τvdc ).
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(b) Stabilizing GFMB/GFMB

Fig. 17. Combinations between a set of IBR configurations for scenario S3.
In Fig. 17a, we consider an increase in the lower bound of tpllr , which is
now tpllr = 25ms, eliminating the instability for combination GFLC/GFLC.
Fig 17b considers a subsequent decrease in the upper bound of mp, which
becomes mp = 0.025, eliminating the instability for GFMB/GFMB.

TABLE IX
IMPROVED BOUNDS FOR KEY TUNING PARAMETERS

IBR Parameter Minimum Maximum Standard

t
vdc
r 50ms 220ms 100ms

GFL t
iq
r 50ms 400ms 100ms

tpllr 25ms 300ms 50ms

mp 0.005 0.025 0.01
GFM ωp 5 rd/s 50 rd/s 31.4 rd/s

τvdc 3ms 70ms 5ms

Compared to Fig. 13, all instabilities have been eliminated, as
well as low damping situations with maxℜ(λ) < −1.

Using well-known tools, namely a small-signal stability
analysis, the DSO is able to provide improved bounds for a
set of key parameters to prevent SICDS problems.

D. Multi-inverters case study: 5 IBRs connected to the MV
network

In order to provide an illustration of this methodology in a
more complex system, we may repeat the previous steps from
Section II-C for a configuration with five IBRs connected to
the network from Fig. 1 according to Table X. This scenario is
particularly interesting for our purposes since GFLs are con-
nected to the weakest nodes, while GFMs are connected to the
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TABLE X
SELECTED SCENARIO FOR FIVE IBRS

IBR IBR 1 IBR 2 IBR 3 IBR 4 IBR 5

Type GFM GFM GFL GFL GFL

Node 3 4 7 10 11

Fig. 18. Two worst combinations between bound values for the selected 5-
IBRs scenario.

strongest nodes and in proximity to each other, constituting a
worst-case scenario with respect to this specific configuration.
To keep a reasonable ratio between generation and load, the
total load of the network is raised to 5 pu, which is equal to
the total power provided by the IBRs. Moreover, unlike the
previous example with two IBRs, it would be unreasonable to
explore every single IBR combination, hence we will keep the
GFMs and GFLs connected to the same nodes. In the previous
example, we intended to understand the physical origin of
interactions between IBRs in general, while in a scenario with
more IBRs the goal is more practical, e.g., to evaluate the
interactions in this specific configuration, as well as the proper
actions to take regarding the limits of the key parameters. We
are assuming that, in practice, DSOs will know which IBRs
are configured as GFLs or GFMs, hence they will not have to
examine all possible configurations.

For simplicity, since our previous example showed little
impact of τvdc , this parameter is omitted in this example,
GFMs are assessed in terms of mp and ωp exclusively.
Adopting the same initial bounds as in Table VII and repeating
the sensitivity analysis from Subsection III-A, we do not find
any unstable scenario within these ranges, hence we may use
the same bound values to obtain the extreme configurations.
This time, none of these configurations leads to instability,
although some situations with low damping may take place.
In Fig. 18, we observe the two scenarios with the highest
Max.ℜ(λ), which are close to zero, but not yet unstable. The
lack of unstable situations is not a surprise, since the 2-IBRs
example already hinted at better stability for scenarios with a
GFL-GFM mix, as was shown in Fig. 13.

For a system with five IBRs, most scenarios with high
Max.ℜ(λ) happen for the IBR settings described in Table XI.
Note that, since there are two GFMs with two parameters each
and three GFLs with three parameters each, we have a total
of four possible configurations for GFM and eight for GFL,

TABLE XI
EXTREME IBR CONFIGURATIONS FOR FIVE IBRS

Par. GFLB GFLC GFLD Par. GFMB GFMC

t
vdc
r 220ms 220ms 220ms mp 0.005 0.045

t
iq
r 50ms 50ms 1000ms ωp 2.5 rd/s 2.5 rd/s

tpllr 20ms 1000ms 20ms

TABLE XII
SELECTED COMBINATIONS BETWEEN A SET OF IBR CONFIGURATIONS

Comb. Max.
ℜ(λ)

Freq. for
Max. ℜ(λ)

IBR 1 IBR 2 IBR 3 IBR 4 IBR 5

1 −0.25 3.17Hz GFMC GFMB GFLB GFLB GFLB
2 −0.98 3.10Hz GFMB GFMC GFLD GFLD GFLD
3 −1.32 0.47Hz GFMB GFMB GFLC GFLC GFLC
4 −1.42 3.00Hz GFMC GFMC GFLC GFLC GFLC

(a) Small-signal sensitivity (b) Eigenvalue trajectory

Fig. 19. Small-signal sensitivity for a 5-IBRs configuration, where t
vdc
r for

IBR 3, 4 and 5 is taken from 50 to 220 ms. All GFLs are configured as
“GFLB”, while IBR 1 is a GFMC and IBR 2 is a GFMB, as described in the
first row of Table XII.

considering that in each extreme configuration, every param-
eter is either at its lower or upper bound. However, picking
five among these twelve possibilities is enough to represent
the worst situations, reducing the problem’s complexity.

The next step is to combine these IBR configurations.
However, unlike in Subsection III-B, where these combinations
could be visualized in a matrix (see Fig. 13), we cannot resort
to such representations in a 5-dimensional problem. Some of
the combinations are displayed in Table XII, revealing how
the worst situation arrives in a particular setup with two slow-
acting GFMs, one with a high droop (GFMC) and one with a
low droop (GFMB), as well as a GFL with slow vdc control
(GFLB). This suggests that ωp and tvdcr might play a major
role in this combination, which we can confirm via sensitivity
analysis and participation factors.

Fig. 19 presents the sensitivity of two low-frequency modes,
λ121 and λ127, to tvdcr . When this GFL time-response is too
slow, namely above 200 ms, these modes tend to approach
the imaginary axis, leading to a low-damping scenario. It
is interesting to observe, however, that mode λ127 is also
impacted by the GFM parameter ωp, as illustrated in Fig. 20.
This has an interesting implication for DSOs, given that a
SICDS issue originated by slow-acting GFLs could actually
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(a) Small-signal sensitivity (b) Eigenvalue trajectory

Fig. 20. Small-signal sensitivity for a 5-IBRs configuration, where ωp for
IBR 1 and 2 is taken from 2.5 to 50 rd/s. All other IBRs are configured as in
Fig. 19.

TABLE XIII
SELECTED COMBINATIONS AFTER BOUND IMPROVEMENT

Comb. Max.
ℜ(λ)

Freq. for
Max. ℜ(λ)

IBR 1 IBR 2 IBR 3 IBR 4 IBR 5

1 −2.19 4.10Hz GFMC GFMB GFLB GFLB GFLB
2 −2.59 0.55Hz GFMB GFMC GFLD GFLD GFLD
3 −2.63 0.59Hz GFMB GFMB GFLC GFLC GFLC
4 −1.38 3.21Hz GFMC GFMC GFLC GFLC GFLC

be resolved by tuning a distant GFM.
Fig. 21 may further elucidate this interaction. Participation

factors for λ127 clearly indicate an interaction between the
three GFLs and the first GFM (connected to Node 3) for this
scenario, while the participation of IBR 2 (a low-droop GFM
connected to Node 4) is negligible. For both types of IBRs, the
predominant states are related to the active power control: vdc
and γvdc for GFLs, θ and γp for GFMs.

Considerable improvement may be thus achieved by acting
on the bounds of tvdcr and ωp, as can be inferred from Fig. 19
and Fig. 20. Decreasing the maximum tvdc

r to 200 ms and
increasing the minimum ωp to 5 rd/s, the combinations pre-
sented in Table XII will present lower Max.ℜ(λ), as indicated
in Table XIII. Once again, the worst of these combinations
is illustrated through time-domain simulations in Fig. 22. A
small disturbance in IBR 3 (0.1 pu increase in the power
reference pref ) leads to oscillations in two distant GFMs.
Re-tuning the two key parameters considerably reduces these
oscillations.

IV. CONCLUSIONS

This work was aimed at providing guiding principles to
prevent slow-interaction converter-driven stability (SICDS)
issues in MV distribution grids. First, a set of key param-
eters were defined for both grid-following (GFL) and grid-
forming (GFM) inverters, having their initial bounds de-
termined by small-signal sensitivities. After selecting some
extreme inverter-based resource (IBR) configurations, some of
which led to instability, these bounds were modified to ensure
small-signal stability.

In conclusion, following the same steps, a distribution
system operator can prevent SICDS problems in an MV

Fig. 21. Participation factors for the combination described in the first row
of Table XII. For better visualization, all the states related to inner loops or
grid variables have been omitted. The red square highlights an interaction
between the three GFLs and the first GFM while the participation of IBR 2
is negligible (as pointed out in the text).

distribution grid with GFL and/or GFM inverters. Since all
scenarios presented in this paper were extracted from a bench-
mark network, while the IBRs were configured in compliance
with the French grid code, our analysis relies on realistic
situations and could serve as an initial step toward standardized
requirements for IBRs to avoid SICDS issues. This has been
detailed on a 2-IBRs configuration and expanded on a 5-IBRs
study case, with similar conclusions.

Further work is still necessary, however, regarding a more
thorough and scalable method to automatically obtain generic
bounds for key parameters in grids with a high number of
IBRs, possibly resorting to optimization algorithms. A more
complex analysis could also include the interactions between
MV-connected IBRs and local loads, or between an active
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Fig. 22. Time-domain simulation to illustrate the results from Fig. 19 and
Fig. 20. Here we observe the injected power Pf for inverters “IBR 1”, “IBR 2’
and “IBR 3”, following a 0.1 pu step on pref for IBR 3 (at t = 0 s). Other
IBRs are omitted. “TA” and “TB” are different configurations, although both
of them represent the worst IBR combination in Table XII: “TA” is the
configuration before updating the bounds (tvdcr = 220ms for all GFLs
and ωp = 2.5 rd/s for all GFMs), whereas “TB” presents an improved
configuration, with t

vdc
r = 200ms and ωp = 5 rd/s.

MV grid and the network upstream, particularly in the case of
low inertia.
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