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GLOBAL WELL-POSEDNESS FOR 2D INHOMOGENEOUS
VISCOUS FLOWS WITH ROUGH DATA VIA DYNAMIC
INTERPOLATION

RAPHAEL DANCHIN

ABSTRACT. We consider the evolution of two-dimensional incompressible flows
with variable density, only bounded and bounded away from zero. Assuming
that the initial velocity belongs to a suitable critical subspace of L?, we prove
a global-in-time existence and stability result for the initial (boundary) value
problem.

Our proof relies on new time decay estimates for finite energy weak solutions
and on a ‘dynamic interpolation’ argument. We show that the constructed so-
lutions have a uniformly C' flow, which ensures the propagation of geometrical
structures in the fluid and guarantees that the Eulerian and Lagrangian formu-
lations of the equations are equivalent. By adopting this latter formulation, we
establish the uniqueness of the solutions for prescribed data, and the continuity
of the flow map in an energy-like functional framework.

In contrast with prior works, our results hold true in the critical regularity
setting without any smallness assumption. Our approach uses only elementary
tools and applies indistinctly to the cases where the fluid domain is the whole
plane, a smooth two-dimensional bounded domain or the torus.

INTRODUCTION

A huge literature has been devoted to the mathematical analysis of the Navier-
Stokes equations that govern the evolution of the velocity field uv = w(¢,x) and
pressure function P = P(t,x) of homogeneous incompressible viscous flows in a
domain Q of R%. Recall that these equations read

w+div(u®u) — pAu+ VP =0 in Ry xQ,
(NS) divu =0 in Ry x €,

uli—o = up in Q,
and, if € has a boundary, are supplemented with homogeneous Dirichlet boundary
conditions for the velocity.

The global existence theory for (NS) originates from the paper [24] by J. Leray
in 1934. In the case Q = R?, by combining the energy balance associated to (NS):

1 t 1
(01) gl s [ IVuldr = Sl
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2 RAPHAEL DANCHIN

with compactness arguments, he constructed for any divergence free ug in L?(R3; R?)
a global distributional solution of (NS) satisfying (0.1) with an inequality (viz. the
left-hand side is bounded by the right-hand side).

It is by now well understood that Leray’s result is true in any open subset ()
of R with d > 2 (see for instance the first part of [4]). However, despite the
numerous papers devoted to the topics and significant recent progresses, the question
of uniqueness of finite energy solutions in the case d > 3 has not been completely
solved yet. The two-dimensional situation is much better understood: finite energy
solutions are unique and do satisfy (0.1) with an equality. Although uniqueness
in dimension two could be hinted from another paper by J. Leray [25] in 1934, it
has been established only in 1959 by O.A. Ladyzhenskaya [22], and J.-L. Lions and
G. Prodi [29].

In the present paper, we are concerned with inhomogeneous, that is, with variable
density, incompressible viscous flows. The evolution of these flows that can be
encountered in models of geophysics or mixtures, is often described by the following
inhomogeneous incompressible Navier-Stokes equations:

pt +div (pu) =0 in Ry xQ,
(INS) (pu) +div(pu@u) — pAu+VP =0 in Ry xQ,
divu =0 in Ry x Q.

Above, u and P still denote the velocity and the pressure, respectively, and p =
p(t, ) stands for the density that for obvious physical reasons has to be nonnegative.
If we supplement (INS) with initial data and boundary conditions:

(0.2) pli=o = po, uli=o =up and ulpn =0,

then the energy balance associated to (INS) reads:

1 t 1
(03) SN /Pu) Oz + p /0 IVullzz dr = 5 |[v/po ol 72

The divergence free condition ensures that the Lebesgue norms of p are conserved,
and that

(0.4) Vt € Ry, inf p(t,x) = inf po(x) and sup p(t,x) = sup po(z).
el z€Q e e

In the torus case, we have in addition the conservation of total momentum:
(0.5) / (pu)(t, ) dx = / (poug) () dz.
T2 T2

Like (NS), equations (INS) have a scaling invariance (if  is stable by dilation):
they are invariant for all A > 0 by the transform:

(0.6) (p,u, P)(t, ) ~ (p, Mu, N> P)(N\%t, Ax).

Although (INS) is of hyperbolic-parabolic type while (NS) is parabolic, similar re-
sults hold true for the initial value (or boundary value) problem. For instance:
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e In any dimension and provided pg is bounded and nonnegative, and /pg ug
is in L2, there exists a global weak solution satisfying (0.3) with inequality.

e Smooth enough data with density bounded and bounded away from zero
generate a unique local-in-time smooth solution, which is global in the two-
dimensional case, or in higher dimension if the initial velocity is small?.

In dimension two, the quantities that come into play in the energy balance (0.3)
are scaling invariant in the sense of (0.6). However, unlike the case with constant
density, it is not known whether finite energy two-dimensional weak solutions with
bounded density, albeit having critical regularity, are unique.

In order to explain the difference between the variable and constant density cases
and to motivate the assumptions that will be made in this paper, let us sketch the
proof of the uniqueness of finite energy solutions for (NS) in dimension two. Assume
that we are given two solutions (u, P) and (@, P) pertaining to the same finite energy
initial velocity ug. Then, du :=u — u and 6P := P-p satisfy

our +u - Vou — pAdu + VOP = —du-Vu  in Ry xQ,
{div&u:() in Ry x Q.

Taking the L2(; R?) scalar product with du, integrating by parts where needed and
using Hoélder inequality to bound the right-hand side yields

1d ~

§£II&LII%Q +pl|Véul|7e < [Vl g2|ul 74,
which, in light of the celebrated Ladyzhenskaya inequality
(0.7) 12074 < Cll2l 211V 2] 2

leads to
1d

5 g 10ullZe + plIVoul7z < ClIVal| o ldull 2|V éull -

2
H 2 c ~112 2
< BVl + 5 Vsl e
At this stage, Gronwall lemma allows to conclude that
2

K a2t u T
|mmmé+uéuvwﬁﬂws6thwdmwmﬁa

Owing to (0.1), the exponential term if finite. Hence we have du = 0 if @(0) = u(0).

In contrast, when comparing two finite energy solutions (p, u, P) and (p, u, ﬁ) of
(INS), we get the following system for dp := p — p, du and 6P:

dpt + div (dpu) = —div (pdu),
p(ous +u - Vou) — pAdu 4+ VOP = —dp(us + u - Vu) — pdu - Vu,
divéu = 0.

Lirst proved by A.V. Kazhikhov in [21] if po > 0, then for general po > 0 by J. Simon [32]. In
[30], P.-L. Lions pointed out that the density is a renormalized solution of the mass equation, and
treated density dependent viscosity coefficients. He also considered unbounded densities.

2First established by O.A. Ladyzhenskaya and V.A. Solonnikov in [23].
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Since p is only bounded, the first line is a transport equation by the divergence
free vector-field u, with a source term that has (at most) the regularity C~! with
respect to the space variable. Now, in order to control the propagation of negative
regularity in a transport equation, we need

(0.8) Vu € L}, (Ry; L™®).

However, this property generally fails for finite energy solutions of (INS) and even
for the two-dimensional heat equation. In fact, the set of functions ugy so that the
solution u to the free heat equation with initial data ug satisfies Vu € LY(R,; L™)
is the homogeneous Besov space B;O%l, and L? is not embedded in this space.

To avoid working in spaces with negative regularity, one can recast (INS) in
the Lagrangian coordinates system as in [11]. Then, the density becomes time
independent and the velocity equation keeps its parabolicity (at least for small
time). However, the equivalence between the Eulerian and Lagrangian formulations
of (INS) in our low regularity context still requires (0.8), a property that cannot be
expected if ug is only in L? since it fails for the heat flow.

To make a long story short, it is not clear that uniqueness holds for (INS) in the
framework of just finite energy solutions.

Before describing in more detail the main objective of the article, let us recall
some recent results on the well-posedness theory for (INS). A number of works have
been devoted to this issue under weaker assumptions than in [23]. This is mainly
to relax the positivity condition on the density or the regularity assumptions on
the initial data. Regarding the first question, it has been observed by Y. Cho
and H. Kim in [6] that (INS) is well-posed for smooth enough data and, possibly,
vanishing densities satisfying a suitable compatibility condition. Recently, J. Li in
[26] discovered that this condition is no longer needed if one considers H' regularity
for the velocity, and the full well-posedness theory for general only bounded (not
necessarily positive) initial densities and H'! velocities has been carried out in a joint
work with P.B. Mucha [11].

Regarding the minimal regularity requirement of the velocity for well-posedness,
the scaling invariance of (INS) pointed out in (0.6) suggests (if Q = R?) to take
po € L®(R?) and ug € Hgfl(Rd). In the constant density case and for d = 3,
this assumption is in accordance with the well-known Fujita and Kato theorem [17].
However as, again, Ve'“uy need not be in L} (Ri;L>®) if ug € H%_I(Rd) then
it is not clear that uniqueness may be achieved if no additional regularity, in the
variable density case. In this direction, it has been proved in [7, 8] that if uy belongs

.d_q .
to the homogeneous Besov space By, (RY), a large subspace of H%_I(Rd) with the
same scaling invariance, then (INS) is globally well-posed in dimension two (or in
higher dimension if ug is small) provided py is close to some positive constant in

. d
the homogeneous Besov space B;l(Rd). This result is satisfactory as regards the
regularity requirement for the velocity, since it is critical and closely related to the
L? space, but the condition on the density is rather restrictive both because pg
d

has to be almost constant and since it has to be continuous (the space Bg L(RY) is
embedded in the set Cy(RY) of bounded and continuous functions on R%). The result
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of [7] has been significantly improved recently in the two-dimensional case: H. Abidi
and G. Gui [1] established the global well-posedness without any smallness condition
on the data if pg — 1 is in 321’1(]1%2) and ug belongs to Bg?l(RQ). The corresponding
result in dimension three has been obtained with completely different techniques by
H. Xu in [33] (for small uy of course). As said before, works based on the use of
critical Besov spaces for the density precludes considering the case of densities that
are discontinuous along an interface, a situation which is of particular interest if one
believes (INS) to be a relevant model for mixtures of incompressible viscous flows
with different densities. This very situation, that is sometimes called the density
patch problem has been extensively studied lately, see e.g. [11, 19, 27].
Well-posedness results for only bounded initial density, bounded away from zero,
and smooth enough velocity have been obtained in a joint work with P.B. Mucha [9],
then improved by M. Paicu, P. Zhang and Z. Zhang in [31] (there, ug is in H*(R?)
for some s > 0 if d = 2, and in H'(R3) if d = 3). In the whole space case, the
critical regularity index has been reached in an intriguing work by P. Zhang [34].
He established the global existence for any small enough divergence free ug with

1
coefficients in B22,1(R3) while pg is only bounded and bounded away from zero. It
has been observed recently in a joint work with S. Wang [15] that Zhang’s solutions
actually satisfy (0.8), and are thus unique.

The main goal of the present paper is to investigate the counterpart in dimension
two and for large initial data of P. Zhang’s result recalled just above: we want to
establish a global well-posedness result for general divergence-free velocity fields ug
with critical regularity of L? type and densities pg just satisfying:

(0.9) px i=essinf po(x) >0 and p* :=esssup pp(z) < oco.

z€eQ or=e)

According to [1], a good candidate to achieve the Lipschitz property within a critical
regularity framework of L? type is the space 3871. However, one can hardly expect
the Fourier analysis techniques used therein to be appropriate for handling the case
with only bounded density. Here we shall combine real interpolation arguments and
three levels of time decay estimates for a linearized version of (INS) (corresponding to
H-' L? and H data, respectively) that can be obtained just by energy arguments,
and basic properties of the Stokes system, so as to work out a space for ug that
coincides with BSJ if pp is smooth (but that might depend on it if it is not). The
overall strategy is so robust that it can be adapted to other systems.

The rest of the paper is structured as follows: in the next section we state our
main results and explain the key steps of the proof. Then, in Section 2, we establish
a first family of time decay estimates pertaining to the case where ug is just in
L?, and construct corresponding global finite energy weak solutions for (INS). The
next section is devoted to proving more a priori decay estimates. The final goal
is to establish that under a slightly stronger assumption on the initial velocity,
very close to the regularity 3871, the Lipschitz property (0.8) is satisfied. Finally,
we establish in Section 4 the existence and uniqueness of a solution under this
assumption, assuming only (0.9) and that the velocity belongs to the aforementioned
space. The same method also provides stability estimates for the flow map, in the
energy space.
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Notation: In the rest of the paper, Q will be either a C? bounded domain of RZ, a
two-dimensional torus, or R2. Tt will be convenient to use the same notation H*(Q)
to designate:

— the classical homogeneous Sobolev space if Q = R?,

— the subset of functions of H® with mean value 0 if Q = T2,

— the space H(Q) (that is the completion of C°(Q) for the H*(R?) norm) if
) is a bounded domain and s > 0;

— the dual of Hj*(€) if © is a bounded domain and s € [—1,0].

We designate by L2(€) the set of divergence free vector-fields with coefficients in
L?(Q) (such that ug-n = 0 at dQ in the bounded domain case, with n being the
unit exterior normal vector to Jf2).

For any normed space X, Lebesgue index ¢ € [1, 00] and time T' € [0, oo], we shall
denote ||Z||L‘1T(X) = HHZ(t)HX”L‘?(O,T) and omit 7" if it is co. In the case where z has
several components in X, we keep the same notation for the norm.

As usual, C designates harmless positive real numbers, and we shall sometimes
write A < B instead of A < C'B. To emphasize the dependency with respect to
parameters ai,-- -, a,, we adopt the notation Cy, ... 4,. In particular, the notation
C,» denotes various ‘constants’ that only depend (algebraically) on the infimum and
supremum of p and on ‘energy-like’ norms of v, that is on ||v|| e 2y and || Vv || 2 (r2).

Acknowledgments. The author is indebted to P. Auscher for clarifying some
properties of the real interpolation space in which the initial velocity is taken.

1. RESULTS AND STRATEGY

The first step is to exhibit time decay estimates for finite energy solutions. More
precisely, we shall establish the following statement:

Theorem 1.1. Let ug be in L2(Q)) and po satisfy (0.9). Then, (INS) supplemented
with (0.2) admits a global solution (p,u, P) satisfying (0.4) (and (0.5) if Q = T?),
u€ L®(Ry; L2), Vu € L*(R4 x Q), and

1 t 1
L) SIWPu)Olz: +p /0 IVulljedr < Slvaouls, ¢ >0.

Furthermore, there exists a constant C depending only on §2, px and p* such that
for allt > 0, we have

IV u()ll 2 < Clut) ™ luoll2 for k=0,1,2,
IV (e, ) (8)]| 2 < Cut) P lugll 2 for k=01,
IVP(#)]2 < Ctluol| 2,
where 1 denotes the convective derivative of u, that is, 1 := us + u - Vu.

Two remarks are in order:

— The constructed solutions satisfy more time decay estimates : see (2.12),
(2.22), (2.27), Proposition 3.1 with s’ = 0 and Proposition 3.2 with p = 2.

— As pointed out in [13] for H(Q) initial velocities, exponential time decay
estimates hold true if € is bounded. Following the proof of Lemma 5 therein,
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one can show that there exists a positive constant cq depending only on 2
such that

ekt
vt € Ry, [(Vpuw) (@)L < e 0" |ly/po uol| L2

From this inequality, one can deduce exponential decay for |[tF/2V¥uy]| 2,
([t15/2V k|| 2 and ||[t1HF/2V k4| 2. However, as exponential decay does not
hold if Q = R?, and since we strive for a unified approach, we refrain from
tracking it in the rest of the paper, to simplify the presentation.
As underlined in the introduction, in order to establish the uniqueness of solutions,
we need a functional space that ensures (0.8). At the same time, we want our
functional framework to be critical, to allow any initial density just bounded and
bounded away from zero and to be strongly related to the energy space L?. Note that
Theorem 1.1 ensures that Vu belongs to the weak L' space for the time variable with
values in the Sobolev space H'. This latter space ‘almost’ embeds in L. A classical
way to improve embeddings is to work out a space by means of real interpolation
with second parameter equal to 1. In our context, since energy arguments play an
important role, it is natural to interpolate from Sobolev spaces and to consider®

(1.2) [H_S,Hs]l/m for some s € (0,1).

This definition gives the Besov space B%l (independently of the value of s).

Let us shortly explain why in the idealized situation where u is the solution of
the free heat equation in R?, supplemented with an initial data wug in ngl, we do
have (0.8). We start from the following two inequalities:

(1:3)  IVu(®)lle < Ot |lug|l gy and [|Vu(t) < CE 2 luoll -
which may be easily derived by using the explicit formula for u in the Fourier space.

Then, we use the characterization of real interpolation spaces in terms of atomic
decomposition like in e.g. [28]. In our setting, it reads z € 3871 if and only if there
exists a sequence (zj);cz of H~* N H* satisfying:

z= sz and Z(2‘j/2|]zj||Hs + 2j/2|\zj||H,5) < 0.
JEZ JEZL
The infimum of the above sum on all admissible decompositions of z defines a norm
on Bg}l. Now, decompose ug into

(1.4) Uy = ZUOJ with 2(27]'/2”7“)7]‘

JEZ. JEZ.

e+ 272 o g-) < 2lluoll g,

and solve all the heat equations
(uj)e = Auj =0, wjli=0 = uo ;-
Obviously, we have u =}, u; and thus
o (o)
(1.5) / |V e dt < Z/ 17, e dt.
0 Gez0

30ne could rather choose to interpolate between Lebesgue spaces and thus consider the initial
velocity in the Lorentz space L*'. However we do not know how to handle (INS) in such a space.
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Now, for every j in Z and A; > 0, we have, due to (1.3),

(9] Aj ()
A A Py A T
0 0 i

J

Aj 1 2 o 1 2
HS/O t +s/ dt‘l‘”uo,jHH—s/’ t —s/ dt

J

S o4l

AT,

H—s%%j

< Mol g A5 + [l s
Hence, choosing A; = 277/* and remembering (1.4) and (1.5) gives (0.8) (globally
in time).

This ‘dynamic interpolation approach’ has been used before by T. Hmidi and S.
Keraani in [20] for the transport equation and by P. Zhang in [34] for the velocity
equation of (INS) (in dimension 3 and for small velocities). In both cases however,
the initial data was decomposed according to a Littlewood-Paley decomposition.
The additional flexibility that consists here in using general atomic decompositions
enables us to do without Fourier analysis and to treat general domains.

As our aim is to prove (0.8) for (INS), we have to consider instead of the heat
equation a linear system which captures both the effects of the density and of the
convection. To this end, we consider

p(ug+v-Vu) — Au+ VP =0 in Ry xQ,
(1.6) divu =0 in Ry x €,

ult=0 = uo in Q,

where the (smooth enough) triplet (p, v, ug) is given with p bounded and bounded
away from zero,

(1.7) pt+v-Vp=0, divv=0 and v|pg =0.

Clearly, if we succeed in proving (1.3) for (1.6) with a constant that only depends on
px, p° and of energy-like norms of v, then repeating the above dynamic interpolation
procedure will yield (0.8) for the solutions of (1.6) supplemented with initial data
in 3871, then for (INS) if taking v = u.

The way to get (1.3) is to prove beforehand three families of time weighted es-
timates for (1.6) corresponding to initial data ug in L2, H' and H!, respectively.
The estimate in H~! will be obtained by duality from the estimate in H'. This
will lead us to consider the backward system associated with (1.6) and it is rather
|(pu)(t)]| ;-1 and, more generally, ||(pu)(t)| z—s for s € (0,1) that can be estimated.
In the end, combining the three families of inequalities with suitable Gagliardo-
Nirenberg inequalities yields instead of (1.3),

(1.8) IVu()lle < Cpot™ 2 |lugll g and [Vu(t)l|ze < Cpot ™| pouo]l -
Above, C,,, only depends on p,, p* and on energy-like norms of v.

As a consequence, the suitable interpolation space to carry out our dynamic
interpolation procedure for (1.6) is the one that is given in the following definition:
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Definition 1.2. Let s be in (0, 1) and a be a measurable function on €2 with positive
lower bound. We denote by BST(Q) the set of vector-fields z on €2 such that there
exists a sequence (z;)jez of L2(Q) satisfying:

— z=)_jcz % in the sense of distr.ibutions7 '

— for all j € Z, there holds az; € H™*(Q2) and z; € H*(Q),

— ZjEZ (27j/2HZjHHS + 2j/2HaZjHH,S) is finite.
The infimum on all admissible decompositions of z defines a norm on Bg‘f(ﬂ)

Before stating the main result of the paper, let us highlight a few properties of
this interpolation space.

e Owing to (1.2), if a is a positive constant, then Bgf is nothing than 38,1,
and if a has a positive lower bound a,, then it is included in L?. Indeed,
decomposing z € BS:T according to Definition 1.2, we have for all j € Z,

(1.9) I3 < a;' /Q(azj)zj do < a7 (272 azjl| govs2) (2772125 jyse),

which implies, by Young inequality, that

2]l 22 < 2\ﬁH 50

e If a is bounded and s = 2/p — 1 for some p € (1 2) then the critical Besov

space B 1+2/p =[LP, W2 J1/2,1 is embedded in B 1- Indeed, if z € B 1+2/p,
then there exists a sequence (zj);cz of the nonhomogeneous Sobolev space

W2S such that

2=z and Y (272|zllwae + 2772 0) < 20|20l ;12
JEZ JEZ

Now, the embeddings Wgs < H*® and LP < H~* allow to write that

1Zjll s < Cllzjllyizs and  llazjll - < Cllazjllze < Cllaf|zeeflz;] e,

which gives our claim.
e For general measurable function a bounded and bounded away from zero,
the space Bgf might depend on s. However, in the case s € (0,1/2), if a
is positive and piecewise constant along a finite number of Lipschitz curves,
then it coincides with Bg’l. Indeed, in this case the space H—* is stable by
multiplication by piecewise constant functions.
Although our main result holds for any s in (0, 1), we concentrate on the case s = 1 / 2

~0,1/2

to simplify the presentation. Then, using the short notation B ) for B ool

statement reads as follows:

ur

Theorem 1.3. Let py satisfy (0.9) and uy be in ngl. Then, (INS) supplemented
with (0.2) admits a unique global solution (p,u,VP) satisfying all the properties
stated in Theorem 1.1 (and the remarks that follow) and the energy balance (0.3).
In addition, we have

ueC(Ry; L?), Vue L'(Ry;ConHY), Vi(u, VP, V?u) e LY3(R,; LY
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and, for all t € Ry, we have u(t) € Eg(t) | with the inequality
1.1 Dl = < .
(1.10) @l | < Clluol |

Remark 1.4. As a by-product of the proof of the uniqueness, we get a stability result
with respect to the initial data in the energy space (see Theorem 4.2 below).

Remark 1.5. Owing to Vu € L'(Ry;Cy(Q)), the flow of u has C! regularity with
respect to the space variable, which entails the conservation of the geometrical
structures of the fluid during the evolution. For example, if py takes two different
positive values across a C! interface, then it remains so forever: the interface is
just transported by the flow and keeps its C' regularity. Likewise, the (local) H?
regularity of the interfaces is preserved since V?u € L'(Ry; L?(Q)).

Remark 1.6. As said before, for = R? a result in the same spirit has been obtained
by P. Zhang in [34] in the small velocity case (see also [15]). An important difference
with our situation is that in dimension three, the critical space for the velocity is
3217/12 = [L?, H1]1/2,1- Hence, it is enough to prove time weighted energy estimates

in L2 and H!, so that the critical space for uy does not depend on 00-

Let us explain the main steps of the proof of Theorem 1.3. The global existence
of a solution being ensured by prior results, the main point is to exhibit enough
regularity of the solution to ensure uniqueness. As already explained at length in
the introduction, the key is to establish (0.8), and this will be actually performed
on the linear system (1.6).

The first step is to prove energy type weighted estimates for (1.6) that require
only ug to be in L? and the density to be bounded and bounded away from zero.
The three principles guiding our search for estimates are:

e one should take convective derivatives Dy := 0y + u - V since Dip = 0 rather
than space derivatives since p has no regularity;

e in the parabolic scaling, differential operators ViV, t0; and tD; are of or-
der 0O;

e one can transfer time regularity to space regularity thanks to the maximal
regularity properties of the Stokes equations (recalled in Appendix) since

(1.11) Ay —VP =pi and divu=0 in .

In the end, this allows to estimate ||vtVu(t)| 2, |tOwu(t)| 12, ||ti(t)]/ 2 (and some
higher order quantities) in terms of ||ug||z2, p«, p* and energy-like norms of v.

The second step is to propagate the H' and the H~! norms. On the one hand,
H' estimates for (INS) are known since the work by O. Ladyzhenskaya and V. A
Solonnikov in [23] (we shall also derive time weighted versions of these estimates).
On the other hand, propagating the H ! regularity seems to be new (ditto for the
H—s regularity). This will be achieved by duality after observing that the backward
system associated with (1.6) satisfies the same estimates in H*®. However, owing to
density dependent structure of this latter system, we will actually have access to
|(pu)(t)]| f—s, whence the ‘weighted’ definition of the interpolation space B
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0
p,1
in L'(R,; L™) in terms of the data only. In passing, we exhibit some controls of

other critical norms (like e.g. that of @ in L'(R,;L?)) that will be needed in the
proof of uniqueness and stability. All these bounds rely on the dynamic interpolation
method that has been described above for the heat equation. In the end, we get:

o [ee) o0 3/4
| v+ [ ||u||L2dt+</ t2/3ru||j§i3dt) < Clluolz .
0 0 0 P01

The fourth step is the proof of existence of a global solution corresponding to the
assumptions of Theorems 1.1 or 1.3. For Theorem 1.1, the overall strategy is stan-
dard: we smooth out the data, resort to classical results that ensure the existence
of a sequence of global smooth solutions for (INS), and use the aforementioned es-
timates and compactness arguments to pass to the limit. For Theorem 1.3, it is a
bit the same, except that one has to be careful when smoothing out the velocity,
owing to the ‘exotic’ definition of the space 320,1- The easiest way is to truncate a
decomposition of ug so as to have an approximate initial velocity in the smoother
space H 1/2,

The third step is devoted to propagating the regularity B and to bounding Vu

The last step is devoted to uniqueness and stability for (INS). As in [11], we refor-
mulate (INS) in Lagrangian coordinates. The properties of the solutions provided
by Theorem 1.3, in particular (0.8), ensure that the two formulations are equivalent.
The gain is that we do not have to worry about the density as it is time-independent.
As for the difference of the two velocities in Lagrangian coordinates, it satisfies a
parabolic type equation and may be estimated in L>®(R,;L?) N L?(R,; H D). The
computations are in the spirit of those of [13]. However, in our case the velocity is
less regular by one derivative, which requires some care.

As a concluding remark, we want to point out that, in contrast with numerous
recent works dedicated to the inhomogeneous incompressible Navier-Stokes equa-
tions, our approach does not use Fourier analysis at all. It just relies on very basic
energy arguments, interpolation, embedding and the classical regularity theory for
the Stokes system (this is the only place where some assumptions have to be made
on the fluid domain). For simplicity here we considered R2, T? or C2? bounded
domains, but more general domains might be treated in the same way.

In the rest of the paper, we shall focus on the case y = 1 for simplicity. The
general case follows thanks to the rescaling:

p(t,z) := p(ut,x), u(t,z):= pu(pt,z), P(t,x):= P(ut,x).

2. WEAK SOLUTIONS WITH TIME DECAY

This section is devoted to proving Theorem 1.1: we here construct finite energy
weak solutions satisfying algebraic time decay estimates of different orders, without
requiring more regularity on ug than L?. The exponential decay that can be expected
in the bounded domain case (see [13]), is not addressed to simplify the presentation,
as it is not needed for achieving the main result of the paper.
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2.1. Time decay estimates for the linearized momentum equation. We here
consider the following linearization of the momentum equation of (INS) that will
play a fundamental role throughout the paper:

{(pu)t—i-div(pv@u)—Au—}—VP:pf in Ry xQ,

(2.1) divu =0 in Ry xQ,

where the (smooth enough) given pair (p,v) satisfies (1.7) and

(2.2) pr= inf  p(t,z) >0 and p*= sup p(t,z) < oc.

(t,I)€R+XQ (t,ﬂf,‘)GR+ xQ
System (2.1) is supplemented with a source term f (that will be taken equal to 0 in
most parts of this section) and a divergence free initial velocity field ug, vanishing
at the boundary in the bounded domain case and, in the torus case, such that

/ (poup)(z) dz = 0.
T2

This latter assumption is not restrictive owing to the Galilean invariance of the
system, and will enable us to use freely the Gagliardo-Nirenberg inequality (5.2).

We aim at proving energy estimates for the solution with time weights t¥/2 for
k €{0,1,2,3}. We strive for bounds depending only on p.., p*, ||ug||r2 and on energy-
type norms of v, a point that is fundamental for getting not only Theorem 1.1 but
also Theorem 1.3. Recall that, by energy-type norms of v we mean Hv||Loo(L2) and
[Vv|[2(z2). Note that owing to the energy balance, these norms may be bounded
in terms of p., p* and ||ug||z2 if v = u.

Before proceeding, let us warn the reader that we unfortunately did not find a
way to avoid the tedious calculations that will follow, since it is has to be checked
with the greatest care that only ‘energy type norms’ come into play.

2.1.1. The basic energy balance. Taking the L? scalar product of (2.1) with u yields

1d
(2.3) s lvpule + 19ul3e = [ pu- faa.
2dt Q
From this, denoting ¢y = 1 if f # 0, and ¢y = 2, we get for all t € R,
t t
4 WA +es [ IVuladr < 1wl + [ ol dr

Note that if f = 0 then, as p. > 0, combining (2.4) with the Gagliardo-Nirenberg
inequality (5.1) recalled in Appendix yields for all 2 < p < oo:

(2.5) lull ooy < Cppx PlVpouoll e with 1/p+1/q=1/2.

2.1.2. Estimates with weight v/t. Assuming in the rest of this section that f = 0,
we rewrite (2.1) as follows:

(2.6) Au—VP=pu and divu=0 in Q, with 4 :=u+v-Vu.
Taking the L?(Q;R?) scalar product of (2.6) with tu yields for all ¢ > 0:

/pt|ﬂ|2d1::t/Au-utd$—t/VP-utd:v—i—t/(Au—VP)-(U-Vu)dx.
Q Q Q Q
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As divu = 0, integrating by parts and using again (2.6) yields

1 1
Ld t|Vu|2d:1:/ |Vu|? dm+/ptu|2 d:c:/ptit-(v-Vu)daz.

Remembering (2.3) and performing a time integration, we get for all ¢ > 0,

(2.7)

1 t 2 ! .12
(2.8) 4/Qp(t)\u(t)]2dm+2/QIVu(t)| dx—i—/O/QTpM dx dr

1 t
—/p0]u0|2dx+//7'pu-(U-Vu)dach.
4 Jo 0Ja

Of course, since u; = @ — v - Vu, one can write

1

1 . 1
ZH\/ﬁutH%2 < 5“\/@”%2 + 5”” - Vul7e.

Hence adding up this inequality multiplied by ¢, to (2.8) and using Young inequality
to bound the last term of (2.8), we discover that

t
(29) [Vou(t)|2: + 2VEVu(t) |2, + /0 (VB + /57 urlZe)dr
t
< IVB5uole + 6 / |7 - Va2 dr.
0

Combining Holder, Ladyzhenskaya inequality (0.7) and Young inequality yields
€ P
@10)  IVpv- Vuls € IVl + S VAl Vil >0

and taking advantage of the regularity theory of the Stokes system (recalled in
Appendix) gives

(2.11) IV*ullZ2 + VP72 < Cap™ll Vil

Hence, choosing £ > 0 suitably small in (2.10), using (2.11), then reverting to (2.9)
and applying Gronwall lemma allows to conclude that there exist positive constants
cq and Cq depending only on 2, such that

(2.12) Xi(t) < ||ﬁ0u0||%gecf(t) with C7(t) := CQp*/OtH\/EUH%AL dr and
X1(t) = (Vo u)(®)]72 + 20IVEVu(t) |7
# 5 [ (WaTalie + IVl + 21F20 VP
2.1.3. Estimates with weight t. Applying J; to (2.1) gives
(2.13) pug + pv - Vug — Auy + VP, = —ppit — py - V.

As divu; = 0, testing (2.13) by t?u; then observing that
pr = —div (pv) and |w|? = |u|* — 20 - (v- Vu) + |v- Vul?
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gives after performing a few integration by parts:

1d
—— | pt? Juy|? d$+/t2|Vut|2 dx:/tp|u2 dx—2/ptu-(v-Vu)d:L‘
2dt Jo O Q Q
+/tp|v-Vu|2 d:v+/t2div(pv)u~utdx—/t2p(vt-Vu)-utd:c.
Q Q Q

Adding up twice (2.3) and (2.7) to this latter inequality, we obtain:

d t2
(2.14) dt/ﬂ(p|u]2+t]Vu\2+p2\utIQ)dx—i-/Q(|Vu2+pt]1l]2+t2\VutQ)dm

= /th v Vul? diL‘—I—/QthiV (pv)u'utdx—/QtQp(vt-Vu)-ut de =: Iy + Iy + I3.
Thanks to (2.10), (2.11) and Young inequality, we have
(2.15) I < S IVAtilRs + Cotlpolla Vel
For term I, an integration by parts yields
Ir = /QtQ(pv Vi) - up de — /Qtz(pv -Vuy) - tdr =: Ia1 + Iao.

By (0.7), Holder and Young inequalities, and (2.2), we have for some constant C
depending only on p,, p* and 2,
I < ClltVil ellv/pollalltull 12 19w 2
(2.16) < o (169wl + 67032 + CllpelLallvp tuel 3
The same arguments lead to
@17) I < < (Vw3 + 18Vals) + Cllollbd Vol
For I3, one has, still owing to Hélder and Young inequalities, and (5.1) or (5.2),
Is < [Vt vl pallty/puel a | VEVu] 4
(2.18) < %HtVUthHVUHm + ClIVpt vl 72 lty/pull 2 ([t V2wl 2.

Hence, inserting (2.15), (2.16), (2.17) and (2.18) in (2.14) gives

d 1
219) = (IvAulle + IVEVulfz + 5 vatull: )
1 . 1 .
+ 5 (IVuls + 1Vptal s + [EVuilF2 ) - 1 vl

< IWpvllps (Ivet(a, u)lfz + IVEVullf2) + Vet vel72llty/ouel 21tV 2.

To close the estimate, we have to bound ||\/ptil| 2, [|tV?ul| 2 and ||¢Vi| 2. For the
first two terms, one may use (0.7), (2.11) and the definition of u to get

1/2 1/2
[£(V?u, VP)|| 2 < Co(v/pFltv/puell 2 + |0t 40| Lo | VEV | 1o 19 2ul|147)
1
< SIeV2ull iz + Ca (Vo ltv/purl oz + llot" ol 2 ViVl 2).



TWO-DIMENSIONAL INHOMOGENEOUS NAVIER-STOKES EQUATIONS 15

This, in the end, implies that

Q
(2:20) 7 1620, 8V Pl 2 < O([ty/pue] g2 + 1t/ *0l| 2|V EV ]l 2)-

¢
/p*

Finally, from the definition of %, Holder inequality and (0.7), we may write:
1tV 2 < |tV 2 + |tV - Va2 + ||t - V) 12

1/2 1/2 1/2 1/2
< [tV 22 + [[VEV 1|Vl 22 16V 2| 157 + O] pa|[tal| 262 6Vl 1

which implies that

Vul 72 )
| 4HL FO (VY24 [tV 2u| ot 0| 24 | V/pta| 12 )

Let us set

1 1 :
Xo(t) = (Vo) @)1z + VEVu®ze + 7 IVetwllz: + 75 IVotilL:

co 1/t . .
+Ellt( 2u, VP)|[72 + 16/ (IVullZe + IVeralZs + 1TV |72 + I7Vil|72)dr

Integrating (2.19) on [0, t], then taking advantage of (2.20) and (2.21), then, finally,
using Gronwall lemma, we conclude that there exists a constant C' depending only
on 2, p, and p* such that

(2.22)  Xo(t) < [lug)?2e%®  with

t
O3 (t) = c( sup [I7u(r)1L + /0 (I/pulids + IVATollis + ||\ﬁmvfui2>d7)'

T€[0,t]
2.1.4. Estimates with weight t3/2. Let Dy := 0, +v-V and i := Dyu. We have®:
(2.23) pii— At +VP=F:=Vu-VP—Av-Vu—2Vu- V.
Taking the L2(Q;R?) scalar product with #3ii, we readily get
5
. 3 .
21) SNP4Il = Vil + 3
i=1
with
Jyp = / Ad - (3 - Va) da,

Jo = / 2 (Vo - Vu))da,

J3 = / VP (3, - Vu)dz,

Jy = / VP (v- V?u))daz,
J5 ::/F~t3iidx.
Q
4Here we use the notation (V2u - Vo)’ := Z v’ 8;0u’.

1<j,k<d
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For any € > 0, the terms J; to Js may be bounded as follows by combining Hoélder
inequality, Young inequality, (5.1) with p =4 or p =6 (and (5.4) for J4):

T < 22| ool pa |22Vl s < e]|t/2V 20|22 + Cellol|ta |32V i) 2,
T < |32V P|| 2[5 1 | VEV 0| 1[50V ]| 6
. 1/3 2/3
< C|E¥2V P| 2|t/ 50| 1o | VEV 0| 6 [|VEV | 152 92w s
< |32V P22 + Ce||tY/50 |26 || VEV 0| 26 VIV 0| 356520 15,
T3 < |2V P| 2 |[tve | o |6/ 2 V]| 1o
< e||t¥2VP|2, + Celltvr| L[t 2Vl 22 + [[t/2V2u) 2,
Ja < |2V P 12|15 )| 26 11770V 2| o
. .n1/3 .12/3
< C| 3PV P o[£/ 50|26 || /ol 152|632V a7
< e3PV P|2, + Ce|lv/pti| 22 + Ce|[tY/50] 86 ][£3/2 V|2,
. C
Js < e|[t*/2 /piil|22 + ;:uﬂ/an%a-
Thanks to Holder inequality, (0.7) and (5.4), we have
[£32F |22 < |VEV0l[24 |6V P, V2u) |24 + [tV %024 [VEVu| 24,
< VAVl 2a Vol 2 |32V al 2 + [[EV 20| 24 | VeVl 2 |VEVul| 2
< Vot +IIVEV2ul 22+ [VEV|| 14 |22Vl 22+ [tV 20l 14 | VEV | 2.

To close the estimates, we need to bound %2V P and t3/2V?4 in L2(R, x Q). Now,
we observe that the couple (u, VP) satisfies the inhomogeneous Stokes system

(2.25) ~Aiu+VP=F—pii and diva=Tr(Vv-Vu) in Q

with boundary condition |pq = 0 if © is a bounded domain, 4(t) — 0 at infinity
(due to u(t) € L? for all t > 0) in the case Q = R?, and

/pudx:o if Q=T
T2

Hence, applying (5.4) with p = 2 guarantees that
(2.26) V%0, VP72 S IFl72 + il 7z + V0 @ V|72 + [ Vo @ Vul 7.

The last two terms are parts of F. Hence bounding ||t3/2F|| 2 as above and putting
together with the previous inequalities, we conclude after time integration that

t
Xa(t) = |22V a(0)|2 + / 172(/pii, VP, V20) |2 dr
0
t t
< / (ol a0 o+ 1250 ]14) [75/25al 2 dr + / 17292, Jprals dr
0 0
t
T /0 (lros % + 7920/ L0) |72V a2, dr

t
L L A Ve T L
0
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After using Gronwall lemma and the inequalities of the previous steps, we get
(2.27)  X3(t) < Olug||22e%5®  with
C3(t) = C/Ot(\vHAizx +(1+ [ ol g0 lollFe + 70l G6 + VTV ollEs + 170172
+ 2V 1PV L + [ror || L) dr

2.2. The proof of Theorem 1.1. Let us fix some data (pg, ug) such that ug € L?
and 0 < p, < po < p* < oo0. Then we smooth out the velocity so as to get a sequence
(ul)nen of H! divergence free vector-fields (vanishing at 9 in the bounded domain
case) that converges strongly to ug in L2. It is known (see [11] for the bounded
domain or torus cases, and [31] for the R? case) that such data generate a unique
global solution (p",u™, VP™) with relatively smooth velocity. In particular, the
computations leading to the estimates of the previous subsection may be justified
for p = p", u = v = u", and we get for all ¢ > 0 for some constant depending only
on py, p* and £,

t
(2.28) Xg(t) = (Ve u™) ()7 +2/0 IVu"|[72 dr < |v/py ug 172,
t
(2.29) X7t) < IWVpoupl22e“TW with CP(t) :== C /0 [u™||14 dr,

2.30) X7(t) < u||2,e%2 W with
( 2 PoUollL

t
C(t) = € (sup [P+ [ (P + WAVl + IVrule)ar),

T€[0,t]

t
(2.31) X5(t) < Clluf2e% D with C(t) :==C / (1 + (|7 4™ a) a3

+ 170w | Go + VTV e + 17202 | e + [l 72Vt 7V, Tl 1) dr
Above, X7 for j € {1,2,3} are the quantities defined in (2.12), (2.22) and (2.27),
respectively, pertaining to (p™,u"™, VP™).

The fundamental point is that all the norms coming into play in C7, C3 and C¥

may be bounded by means of M := sup pen||ugl 2, p« and p*. For C7, this just
stems from (2.5) with p = 4. Hence we have for some Cjs := C(ps, p*, M),

sup X7'(t) < Cyy.

teRy
Combining with (0.7) and (2.28), we thus get
@320 s Ol S By VIV i) S MCr,
+
(2.33) IVEVU™ [ 7410y S IVEVU [T oo 12 IVEVZ 0" T2 12y S Chis

(2.34) VPt 722y < Cor,
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whence, remembering (2.30), we have up to a change of Cjy,
X3 (t) < Cp forall t>0.

Finally, one has to bound the terms of C'¥ independently of n. Let us just treat the
third one as an example. We write that, owing to (5.1) with p = 6,

o0 [e o]
/0 /5w dt < /0 2 [[VEV 2 [ V™ 2

< [ 7 oo 12y VIV [F e 12y [V T2 12y S MACr.

As a conclusion, we deduce that there exists a constant, still denoted by Cjs such
that, for all n € N, we have

sup (Xg'(t) + X7'(t) + X3 () + X5 (1) < Cur.

Regarding the density, the divergence free property of u™* clearly ensures that
Vn e N, Vt € Ry, p. < p"(t) < p*.

At this point, arguing like in the classical proofs of global existence of weak solutions
for (INS) (see e.g. [3, 30]), one can conclude that (p™, u", VP™),cn converges weakly,
up to subsequence to a global distributional solution of (INS) satisfying not only
(2.2) and the usual energy inequality (0.3), but also

sup (X1(t) + Xa(t) + X3(t)) < Cur.

3. MORE DECAY ESTIMATES
The final goal of this section is to prove that the solutions to the linearized

momentum equation (2.1) with p satisfying (2.2) and v verifying the regularity

properties listed in Theorem 1.1, supplemented with divergence free ugy in Bgml

satisfy (0.8). Achieving the result requires several steps. The cornerstones are real
interpolation, the use of Lorentz spaces for the time variable and estimates in H I and
H~1 for the solution to (2.1) (in addition to those that have been proved hitherto).

3.1. A priori estimates involving H? regularity of ug. In this part, we prove
estimates for (2.1) in terms of Vug € L?.

3.1.1. Basic estimates in H'. Taking the L? scalar product of the first line of (2.1)
with u; yields, after integrating by parts in the term with Aw,

1d
5Vl VAl = [ Vols = o Vu)- (Vo) do.

By virtue of Young and Hélder inequality, we have
1
/Q\/ﬁ(f —v-Vu) - (Vo) dz < Sllvpudis + Ve fllE: + Vo - Vulga.

Since 4 = uy + v - Vu, we may write

IWVpulle < lIVoudllz + IVev -Vl 2.

(3.1)
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Remembering (2.10), this yields for some constant cq depending only on :

d 2 1 .\ 112 cQ 2 2 2
(3.2) g IVullze + 2 lIve (u, )72 + ;HV u, VP < 4|V flize-

In the end, combining with Gronwall lemma, we get
2 e V112 ca [t oo 2
(3:3) IVu®lze + 5 ; IV (ue, @) |72 d7 + o ), IVou, VP|7. dr

* [t t * [T !/
< CP" Jo lveolys dT(HVUOH%Q +4/ o= CP Iy IVpolly s dr Iv/p £112 dT)'
0

3.1.2. Decay estimates with weight v/t: Assuming that f = 0, we proceed as for
proving (2.22) except that we take the L? scalar product of (2.13) with tu;, instead
of t?u;. In this way, we get

1d 1
(3:4) 5o (IVPkuel3a + 51 Vulds ) + [VETud s

2dt
= / tdiv (pv)a - uy do — / tp(ve - Vu) - up do — / p(v-Vu) - updz.
Q Q Q

Combining (5.1), Young inequality and (2.10) gives

1 cQ *
=2 [ (0 V) wedo < 51 Vpulls + 2Tl + O |l Ll Vull.
Hence, adding up half (3.2) to (3.4) yields

d

1
(35) 5 (IVtwl2: + 1Vull32)

VIVl + 2V Dl + ol V2, VP2,
< C|lpvl 14l V|32 + /Q tdiv (pv)d - uy dox — /Qt,o(vt -Vu) - ug de.

We integrate by parts in the second term of the right-hand side, and get:

/Qtdiv (pv)t - up do = —/Qt(pv V) - up da — /Qt(pv V) - dz.
The two integrals may be handled as for proving (2.22). We get

|t (i do < ZIVEV V) s + CllVBol bVt un) .
To bound the last term of (3.5), we proceed as follows (for all £ > 0):
| toton V) d < [tz [Vl | Tl

< el VPulfz + el VEVurlf2 + CellvVptvel| 7o IV ptuel| 2|Vl 2.
From the definition of @ and (2.11), it is easy to get

(3.6)  IVHV*u, VP, ypi)lre < C(IVptuelr2 + Ve vl zalVEVul 2)-
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By Holder inequality, (5.1) and (5.4) with p = 4, we also notice that

. 1/2 1/2 . 1/2 L 11/2
IVEVl| 2~ VEVu 2 S IVEVO| |Vl 22 ull 2+ ol | ot 2 VEVa s
which implies that

. 1 .
IVEVillz2 < 2[VEVul g2 + 4 [IV?ull 2 + C(IVEVOILa[Vullz2 + [0l 74 Vo] 12)-

Inserting all the above inequalities in (3.5), then using Gronwall lemma and (2.12),
we discover that

_ _ t
(3.7) Yi(t) S IVuol72e“1® with Cf(t) :ZC/(IlﬁW,vll‘ier\/pimlliz)dT
0

. C
and Y1(t) := |vpt(ur, )| 72 + | Vul 7 + p%ll\/f(Vzu, VP)|7

t
+ [ (IVATur Vil + it ) + 290, VP32 )ar.
0

3.1.3. Decay estimates with weight t: Still assuming f = 0, we now take the L2
scalar product of (2.23) with tD;(t4) and get

IR N
:/(tF—tVP—I—,m'L) -Dt(tu)der/A(tu)'(v-V(tﬂ))dﬂﬁ-
Q Q

Hence for all £ > 0,

1d . ) . .
(38) 5 V@03 + VA Duti)l3 < =(IV2E)3: + /5 Dilti) |32)
+2 (I velg+ il + == )

To continue the computations, we need to estimate tP and tV24. To this end, one
can remember Inequality (2.26) and observe that

IV/ptiil| 2 < [|/p Di(t)| 2 + ||/ptllp2-

Hence, taking € small enough in (3.8) yields:

(3.9) IV(ta(t)I72 + [IVpDu(tir), V(EP), V(i) |72 < Ve il7a
+ v V(E) |72 + [tV @ Vul|Zs + [tV?u @ Vo2 + [tV - VP 7..

The first term of the right-hand side may be bounded according to (3.3). So we are
left with bounding all the other terms. We have

. C . .
- )2 < Slolb V2. + 2|22
1/2
16920 ® VulZa < 6920 <HVuH%2HV2uHi2>

[tV2u ® Vo[|3, + [[tVv - VP72 < [VEH(V?u, VP) |34 VEVY][74.
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Using regularity estimates for (2.6) and (0.7) yields
IVEH(V?u, VP) |74 S [IVEalFa S llill g2 ][6 V| 2.
Hence
[tV2u @ Vo[22 +[[tVo - VP72 S (IVEV| 2] 2 [tV 2
S Nl + VeVl zaltval 7.
Plugging all these inequalities in (3.8), using (3.3) and integrating on [0, t] gives

Ya(t) := [V (ti(t))]2: + / IVBD, (rit), V(rP), V2(rit) |2, dr

C v dr
/ (]| + VAVl )17Vl 2adr + [[Vug| 226 1012497 (1 4 |72 ol fae)-

At this stage, Gronwall lemma enables us to conclude that

(3.10)  Ya(t) < O V|25 @ with C3(t c/ v, VTV, TV 20|14 d7.

3.1.4. Estimates in H® for s € (0,1). If we denote by E the linear operator that
associates to (ug, f) the solution u to (2.1) on R4 x €, then the previous inequalities
(2.4) and (3.3) and the fact that the norms in L?(pdx) or L?(dx) are equivalent
(recall (0.4)) ensure that:

o E maps L*(2) x L*(Ry; pH () to L®(Ry; L*(Q)) N L*(R; H' (Q));
e F maps H'(Q) x L*(Ry; pL?(Q)) to L®(Ry; H'(Q)) N L2(Ry; H(Q)).
]

Consequently, the complex interpolation theory ensures that, for all s € [0, 1],
B H(Q) x L2(Rys pH*~1(Q) — LRy H(Q)) 1 L2 (Ry: 741 (Q)

with, for some constant C, depending only on p, and p*, the bound:
2 L.
11) sup [l + [l de

te[0,7)
< Cp C’SP fo ||\/I3UH4 dt(HU0H2‘s / prHHs . )

In the case f = 0, due to (2.22), (3.10), for all £ > 0, the linear operator that
associates to ug the function tu(t) with u being the solution to (2.1) with no source
term maps L? to L? and H' to H'. Hence it maps H® to H* for all s € [0,1] and
we have:

S ’U

(3.12) [ti(t)] g < Ce2 el HuoHHg for all ¢ > 0.

3.2. Estimates in negative Sobolev spaces. We here prove estimates for (2.1)
in the case of initial data in Sobolev space with negative regularity. For simplicity,
we just consider the situation where f = 0.
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3.2.1. Data in H™'. To estimate VPu in L?(0,T x ), we consider the following
backward parabolic system:

pwy + pv - Vw + Aw + VQ = pu,
(3.13) divw = 0,
’w|t:T =0.

By definition of w, we have

T T
//u-(pu)dwdt://u-(pwt—kpv'Vw—i-Aw—i—VQ)dxdt.
0JQ 0JQ

Integrating by parts and remembering that dip + div (pv) = 0 and divw = 0 yields

T T
//p|u|2dmdt://(puAu+VP)-wdxdt
0JQ 0JQ

+ [ (@) wlT) — poo w(0)) -
Q

As w(T) = 0 and u satisfies (2.1) with f = 0, we conclude that

/ / plu? dat == | poo-w(0)da < lpwuall -+ [ Vo (0) 2.
Now, adapting the proof of (3.3) to (3.13) yields
= [ 4. dt
[Vw ()72 < o WP Bullf o 7o,
Hence we have
4
(3.14) B ullzorxe < lpouollgre™ % VP Iz
In order to bound pu(T) in H~', we start from
1) (D)l = SUP sy =1 /Q o(TYu(T) - wr da,

and solve (3.13) with no source term and data wr at time ¢ = 7. Hence,

T
0://(pwt+pv-Vw+Aw—|—VQ)-uda:dt
0Ja

T
_ _/ / p(Opu+v - Vu— Au) - wdz dt + /Q(p(T)u(T) cwr — poug - w(0)) da.

Since w satisfies (2.1) with f =0 and divw = 0, we get

(3.15) /Qp(T)u(T) ~wp dr = / pouo - w(0) dz.

Q
As

) 4
IVw(0) 2 < eF 6 WP iLadt G o,

we conclude that

(3.16) 1(pu)(T) -1 < llpouoll 1€ Py Bt dt,
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3.2.2. Estimates in H—* for s € (0,1). We start from:
1o (T s = SUD gyt /Q p(TYu(T) - wr da.

Using (3.15) and, again, the duality between H* and H™*, we get for any wr € H?
with norm equal to 1,

/ p(Tu(T) - wp dx
Q

< [lpouoll -+ 1w (O) | 7=

where w is the solution of (3.13) with no source term and data wr at time 7.
Keeping (3.11) in mind, we easily conclude that
Cs  « T
(3.17) () (D)l -+ < Clpougll - €7 o IVPrliadr,

Finally, as the linear operator that associates to (ug,0) the solution u to (2.1) maps
poH ! to L?(0,T; L?) and poL? to L2(0, T; H') (see (3.14) and (2.4)), it maps poH —*
to L2(0,T; H'~%) with the estimate

Cs « T
(318) HUHL2(O,T;H175) S CHpOUOHH,S eTp fo ”\/511“14 dT'

3.3. More time decay estimates. In this paragraph, we point out a number of
time decay estimates for (2.1) in Sobolev and Lebesgue spaces that may be deduced
from what we proved hitherto and basic interpolation results.

3.3.1. Sobolev decay estimates. They are summarized in the following proposition:
Proposition 3.1. The following estimates hold:
e Forany0<s<2and0<s <1, we have
_sts’
(3.19) lu®)ll e < Coot 5 lpotollr, > 0.

e Forany0<s,s <1,

. _sts’
(3.20) [tue ()| s + It 75 < Cowt™ 2 |lpouoll - t>0.

o Forany(0<s <1,

(3.21) (e, u(®)| g < CeBBOYEO LT g .,
(3.22) lat), up(t)]| 2 < CeBOTED =52 ug .,
(3.23) la(t)ll g < CeEOTEEO 1= g | 4.
Proof. The previous parts guarantee that:

(3.24) 2| VRut)| 2 < Cpo lugll2 for k=0,1,2,
(3.25) L2 F (g, @) (8) | 12 < Cpw luollzz for k=0,1,

Since ||pul|r2 ~ ||ul|z2, Inequality (3.19) in the case s’ = 0 immediately follows from
(3.24) with £ = 0,2 and complex interpolation. In order to attain negative values
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of s’ one can argue by duality as follows for all ¢ > 0:

lou(®)llz = sup /Q p(tult) - wds

wll 2=1
= sup /pouo-w(O)dx
wll 2=1/9

< llpovoll - sup [fw(O)ll o,
lwl2=1

where w(0) stands for the solution at time 0 of the backward Stokes system (3.13)
with no source term and data w at time t. Now, using the inequality we have just
proved (that, obviously, also holds true for (3.13)), we discover that

lw(O) g < CE/?|jw]| 2,

whence:
(3.26) Ip(t)u(®)llz2 < CE"2pguol ;o
Since Inequality (3.24) is valid on any interval [to,?] (if replacing ug by u(tp) of
course), one can assert that for all s € [0, 2], we have

lu(®)l| 7. < CE 2| (pu) (£/2)]] 2,
which, combined with (3.26) (at time t/2) completes the proof of (3.19) for all
0<s<2and 0< s <1.

Next, using (3.25) with £ = 0,1 and complex interpolation yields (3.20) for s’ =0
and all s € [0,1]. Since the inequality also holds true if ug is replaced with u(/2),
using again (3.26) yields the desired inequality for all s’ € [0,1].

By the same token, combining the above result with the continuity properties
resulting from Inequalities (2.27), (3.3), (3.7) and (3.10) gives the last three in-
equalities of the statement. The details are left to the reader. ]

3.3.2. Decay estimates in Lebesgue spaces. Inequalities (3.24) and (3.25) also imply
the following result.

Proposition 3.2. With the same convention as in Proposition 3.1, the following
inequalities hold true:

e [fl<p<2<qg< oo then

1 1
(3:27) lu@®)llps + [VEVu@)|ze < Cppta™# |luo] Lo.
o If1<p<2<q<oo then
1 1
(3.28) ([ (i, ug, V2u, VP) ()| e < Cpats P ||ug||Le-

Proof. Combining Gagliardo-Nirenberg inequality (5.1) and (3.24) with £ =0, 1,2,
it is easy to get:

1 1
(3.29) ()| ra + IVEVut)||re < Couta 2|lugll2, 2 < q< oo
while (3.25) ensures that

1_3
(3.30) lue(8), ()| e < Cpota 2 |uoll>-
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Since (u, VP) satisfies the Stokes system (2.6), Inequality (5.4) gives

1_3
(3.31) IV2u(t)]| s + [[VPE)|[ 1o < Cputa 2oz, 2 < g < oo
Remember that?®
(3.32) Izllzee < Cllz[32 NIV 2152

Taking first z = u and using (3.29) with p = 4, then z = Vu and using (3.31) with
p = 4 allows to reach the index ¢ = oo in (3.29).

In (3.29) and (3.31), the term |lug||z2 may be replaced with ||u(t/2)]|;2. Conse-
quently, using (2.2), (3.26) and Sobolev embedding LP < H~*2/P for all 1 < p < 2
ensures that

11 11
lu@®)llz2 < Cput> 7 lpouoll 12 < Cpt2 7 Juo Lo

which, plugged into (3.29) and (5.4) completes the proof of (3.27) and of (3.28) for
all admissibles values of p and gq. ]

3.3.3. Decay estimates for L*-in-time norms. Putting together (2.4), (2.12), (2.22)
and (2.27), we see that

t
3339 [ (IVulfs + VAT OP)IEs + V(i uo )|

+ 1 m(Vur, Va)|[7e + 172172 + 172 (V240, VP)|[72)dr < Cplluoll7.-
This will enable us to prove the following family of decay estimates:

Proposition 3.3. The following inequalities hold true:

(3.34) 755Vl 2y < Cpolluollz for all 2<q < oo,
(3.35) 7% (i un) | 2 zey < Cpalluollz for all 2< g < oo,
(336) 775 (V2 VPl 2y < Cpolluolle  forall 2<q < o,
(3.37) 725 Vitll 210y < Cpuolluollzz  for all 2 < q < oc.

Proof. Except for ¢ = oo, Inequality (3.34) follows from Gagliardo-Nirenberg in-
equality (5.1) and the fact that

IVl 222y + VTVl 2(22) < Cp
Similarly, except for the case ¢ = oo, Inequality (3.35) for 4 stems from (5.1) and

UOHLQ.

|7V 2z + H\EﬂHLf(ﬂ) < Cpolluol z2-

Now, since (u, P) satisfies (2.6), the regularity properties of the Stokes system
pointed out in (5.4), and (3.35) guarantee that

|74 (V2u, VP)[l 210y < Cpalluollzz for all 2 < g < oc.

Putting together this latter inequality and (3.34) with ¢ = 4, and remembering
(3.32) yields (3.34) for ¢ = oc.

5In the torus case, this inequality holds under the assumption fTQ az dx = 0 for some nonnegative
function a with mean value 1. The idea of the proof is similar to that of (5.2).
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Note that (3.33) also implies that

173292 2 2y + 7Vl 2gzy < Coluollze,
and thus (3.37), by (5.1). Using it with ¢ = 4 as well as (3.35) (also with ¢ = 4)
and (3.32) gives (3.35) for @ and ¢ = oc.
To prove that u; satisfies (3.35), it suffices to check that

1—1
|7 v - Vullp2pay < Cpplluollz forall 2<q < oo
Now, by Holder inequality, we have
1-1 1 1_1
|7 awv- vU||L§(Lq) < ||7'2U||L;;<>(L°°)||7'2 qquLf(Lq)'
The term with v is energy-like (see (3.27)), which completes the proof. O
3.4. The Lipschitz control and other properties needed for stability. In

the present subsection, we point out some additional properties of the velocity field
that are valid in the case where ug is in B,go,l' One of them is the Lipschitz control.

We shall also prove that the regularity Egml is preserved by the flow, and that other
norms that will be needed in the proof of uniqueness and stability are finite.

All these results follow from the Sobolev estimates we proved in the previous
pages and on the dynamic interpolation argument presented before : fix some v in
BSOJ and a sequence (ug j);cz such that

(3.38) ug = Z’U/OJ‘ with pouo,; € H_l/Q, Uup,j € H1/2 for all j € 7,
JEZ
and > (2792 |ug gl 172 + 27|l povo sl g-12) < 2[luoll 5o -
jEZ PO

Then, for each j € Z, we solve the linear system

pOyuj + pv - Vu; — Auj + VP; =0,
(3.39) divu; =0,

ujli=0 = uo,;-
From (3.38) and the uniqueness properties of System (2.1) in the energy space, we
deduce that

(3.40) u = Z u;.

JEZ
3.4.1. The Lipschitz bound. The starting point is the following Gagliardo-Nirenberg
inequality:

1/4 3/4
(3.41) V2]l ze < Cll2I15H V2250,

which, owing to the elliptic estimates for the Stokes system and Sobolev embedding
implies that for all ¢ > 0 and j € Z,

_ 4
IV (t) | oo < CE3/uy (8)]| ¥

: - 14 .
It (8)][ 0 < CE iy ()11 05 ()] 2
Hence, taking advantage of (3.11) and of (3.12) gives

IV (1)1 < ot/ a1l 12
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Combining with (3.19) and the fact that we also have

195 ()2 < Cost ™ Hu(t/2)]] 12

we conclude that
IV (1) | e < Cpt ™| potuo gl gr-1/5-

Hence arguing as in for the heat equation in Section 1, we conclude that
oo
(3.4 | 19l dt < €y ol
0 ro-1
Remark 3.4. Recall the following more accurate interpolation inequality:
1/2 3/4
(3.43) 1921372 < Cll=l V2174
Consequently, the above dynamic interpolation procedure actually gives

oo
[ 1l gy e < G ol

Since Bi/f < (p, this ensures that the flow of the velocity field is uniformly C! with
respect to the space variable.

3.4.2. Propagating the initial reqularity. Owing to (3.11) and to (3.17) with s = 1/2,
we have for all j € Z and ¢t > 0,

lwi ()l 12 < Cowlluojll gz and |[(pws) ()l 172 < Cpollpouo jll gr-1/2-

Hence, multiplying the first (resp. second) inequality by 2-7/2 (resp. 21/ 2), then
summing up on j € Z yields

= <C -
Ju(t)lzs, < Calluollzs |

3.4.3. Additional bounds for the pressure and the time derivative of the velocity. In
addition to the Lipschitz bound on velocity, our proof of uniqueness will require that
Vti and vtV P are in L*3(R,; L*), and we will also need the property that 7 and
VtDi are in L' (R ; L?) for proving the stability of the flow map.

Again, in light of the decomposition (3.40) and of the triangle inequality, in order
to prove that v/#u is in L4/3 (R4; L), it suffices to estimate tu; for all j € Z. Now,
owing to Sobolev embedding and the following inequalities (that stem from (3.12)
and (3.20) with s = ¢’ = 1/2):

()l a2 < Cpot~Hluogll e and iy (@)llgae < Coot™>[lpoo il jg-1s2,

we may write for all A; > 0,

4/3 4/3
N <c/ 203 |3, d

H1/2

Cpe ( /0 PO o)t + [ P

J

IN

)5t

1 3 4/3 —1/3 3
< oo (A o147 2 + A7 llpouo 1142, ),
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which gives, if taking A; = 27% and using (5.4),
(3.44) [(Vti, VEV2u, VIV P)| a3 g, 14y < Cpyo luoll o -
0>

Similarly, in order to bound % in L'(R,; L?), it suffices to get appropriate bounds
in terms of the data for u; in L*(R; L?), for all j € Z. The following inequalities
(that stem from (2.22) and (3.7)):

(D)2 < CpwtMuogllre and g (6)llz2 < Cpwt™ 2|V 4|2
and complex interpolation give
()22 < Coo t > [luogll a2
Furthermore, owing to (3.20), we have for all j € Z:

[t ()| L2 < Cpwt ™24 poto

H-1/2-
Hence , we have for all j € Z and A; > 0,

00 Aj [e's)
A MNWBﬁSA Mﬂﬂnﬁ+/ iy (8| = dt

J

Aj oo
< Cpo (/0 (t3/4\|u0,jHH1/2)dt+/ (t5/4Hpou0,j||H1/2)dt>

J

1/4 —1/4
< o (A ol + 45 oot )

Taking A; = 272/ summing up on j then using the regularity properties of the
Stokes system thus gives
2 .
(3.45) V2, VPl p3ge. 1) < Cpu ol
In the same way, one can prove that

(3.46) VD 1 (v ;22) < Cp

[uollg -
It suffices to use that, as a consequence of (3.20) and (3.21), we have

IVEViy(8)]12 < Coat ™ Mol e and [VEV(8)] 12 < Coat ™ Hipotto sl 172

4. A GLOBAL WELL-POSEDNESS RESULT FOR LARGE DATA

This section is devoted to the proof of Theorem 1.3 and of stability estimates.

4.1. The proof of existence. Consider data (pg,ug) satisfying the hypotheses of
Theorem 1.3. As pointed out in the introduction, the space Egml is embedded in
L?2. Hence Theorem 1.1 provides us with a global weak solution (p, u, VP) satisfying
the properties therein, and it is only a matter of checking that this solution has
the additional properties that are listed in Theorem 1.3. To do so, we fix some
decomposition ) ; U0,j of ug given by Definition 1.2 and look, for all j € Z, at the
solution u; to the linear system (2.1) with density p, transport field v and initial
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data ug j. Since each wg ; is in L2 N HY? N (pgH~1/?), standard techniques yield a
unique global solution (u;, VP;) that satisfies for all ¢t > 0,

1 t 1
@y GO+ [ 19wl dr = Slvama;i,
(12 (o) v < Clows 5 Joll2) ool -1
(4.3 5 )72 < Ol il 2) ol

Remembering (1.9), this ensures that the L?-valued series > ; uj converges normally
on R;. Its sum u thus also belongs to the energy space. Furthermore, as for each
j € Z, we have u; € C(R;;L?) (observe that 344 is in L®°(R,; L?) owing to
(3.22)), we deduce that @ € C(Ry; L?). Next, if we denote u™ := > ljl<n Ujs then we
see that for all n € N,

A (p(u” =) +div (pu® (u" =) — A(u" — )+ V(P"— P) = 0, div (u" —u) =0,

which implies

SIVA® (" = DO + [ 19 = @) dr = S 1VF (" (0) - u()-
0

As the right-hand side tends to 0 for n going to 0, the velocity field u satisfies the
energy balance (0.3), and it is also easy to conclude that, like u, it satisfies (2.1)
with density p, transport field v and initial data ug. In particular,

A (plu—1)) +div(pu® (u—10) —A(u—u) + V(P —P) =0,  div(u—1a)=0.

As (u — u)(0) = 0, and the two solutions are in the energy space, they must
coincide. Now, Inequalities (4.2) and (4.3) ensure that one can propagate the

regularity Ego,la getting (1.10). Likewise, justifying that u satisfies (0.8), that

(41, v/tDu, D*u, VP) € L'(Ry; L?) and that vtu € L*3(R,;L*) may be achieved
by following the arguments of the previous section. The fundamental point is that
all the bounds that are needed for the u;’s in the process only depend on py, p*,

luoll 2, llpowo,jll 172 and [uo jll g2

4.2. The proof of uniqueness. Let (p',u!, VP!) and (p? u?, VP?) be two so-
lutions fulfilling the properties listed in Theorem 1.3, and corresponding to data
(py,ud) and (p3,ud), respectively. As in [11], in order to prove that (p!,u!, VP!) =
(p?,u?, VP?) in the case where the two initial data coincide, we shall compare the
solutions at the level of their own Lagrangian coordinates. To do so, we consider
for i = 1,2, the flow X% of u’ that is defined by the following (integrated) ODE:

(4.4) Xi(t,y) =y + /0 i (r, X' (r, ) dr.

Since V' is in L' (R y; L) and v/tu' is in L=(0, T x Q) (see (3.27) with p = 2 and
q = o), there exists a unique continuous flow X* on (0,7") x €2, that is Lipschitz
with respect to the space variable.

In Lagrangian coordinates the density is equal to the initial density. As for the
velocity and the pressure, defined by

(4.5) Q'(t,y) = P'(t, X'(t,y)) and v'(t,y) =u'(t, X' (t,y)),
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they satisfy

(4.6)

phvi — div,i Vvt + V4, QP = 0,
div,iv' = 0,

where Vi := (A) TV, and div,; := div,(A%") = (49T : V,, with A" := (DX?)~L.
The fact that Vu' is in L'(R,; L) and the other properties of regularity ensure
that (INS) and (4.6) (with time independent density) are equivalent.

Observe that, due to (4.4) and to the definition of v*, we have
t
(4.7) DX'(t,y) =1d +/ Dv'(r,y)dr.
0

Hence, since det DX* = 1 (owing to dive! = 0), we have for i = 1, 2:
fg Dvt2dr  — fg vt dr
- fg o2 dr fg o tdr ) .
Hence 04 := A2 — A! depends linearly on Vv (with & := v? — v!) as follows:
SA(E) = ( Jy dodv?dr  — [) a0t d7> '
— [ dr [y ot dr
Now, setting A,i := div,iV,: and &Q := Q? — Q!, we discover that (dv, &Q) satisfies:
(410) { phovr — Do+ V,10Q = (Aye — Ay )v? — (V2 — V1) Q% — dpo v,

(4.8) Al(t) =T1d + <

(4.9)

div,10v = (div,: — div,2)v? = —div (64v?).

In order to prove uniqueness in the case where the initial data are the same and,
more generally, stability estimates with respect to the initial data, using the basic
energy method consisting in taking the L? scalar product of (4.10) with dv is not
appropriate since one cannot eliminate the pressure term (there is no reason why we
should have div,i10v = 0). To overcome the difficulty, we proceed as in [11], solving
first the equation

(4.11) div,w = —div (84v?) = —0A" : Vo? with 04 := A% — A',
Then, we look at the system for z := v — w, namely:
p(l)zt —Apz+V,udQ = (Av2 —Avl)v2
(4.12) —(Vi2 =V,1)Q* — pywt + Ayrw — dpo v7,
div,1z =0,
supplemented with z|;—o = dvg.

Solving (4.11) relies on the following lemma:

Lemma 4.1. Assume that Q is a C? bounded domain, the torus or the whole space.
Fiz T > 0 and denote

Ep = {w € C([0,T); L?), Vw € LX(0,Tx9), wlpgo =0 and w; € L4/3(0,T><Q)}-
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There exists a constant ¢ depending only on £ such that whenever the divergence
free vector-field u satisfies

(4.13) HVUHL2(0,T><Q) + HVUHLl(o,T;Lw) <g,

then, for all vector-field k € C([0,T); L?) such that divk € L*(0,T x Q) and k; €
L4/3(O,T x ), there exists a vector-field w in the space Er satisfying

div (Aw) = div k,

where A is defined from u as in (4.8), and the inequalities:

(4.14) lw(®)llz < Cllk()||lLz  for all t € [0,T7,
(4.15) IVwll 22y < ClldivEl L2 z2),
(4.16) well pars a0y < C(HktHL;/s(Lm) +IVullpz o) lwll s (24))-

Proof. With the notation of Lemma 5.1 in Appendix, we introduce the map
:wr— z:=B(k+ (Id — Aw)-

It is only a matter of proving that ® admits a fixed point. That ® maps Er to
Er follows from Lemma 5.1 and easy modifications of the computations below.
Hence, as Er is a Banach space, it suffices to show that the linear map & is strictly
contractive. To do so, take two elements w' and w? of Ep. Then, we have

d(w?) — o(w') = B((Id — A)dw) with dw := w* — w".
Remembering (4.8) and that B : L? — L?, we thus have
(4.17) 12(w?) — @(wh) | Lz (£2) < ClIVUll Ly (o) |00l L2 (12
Next, using again (4.8) and the fact that
div ((Id — A)dw) = (Id— A") : Véw,
we readily get
(4.18) IV(@(w?) — (W) 2 12) < ClVul Ly ooy VW] 22 12).
Finally, using that
(10— A))
yields for a.e. t € [0, T,
H(@(w?) = @(w") ()] pas < 11 = A(E)dwe(t)]| ass + [[Ae(t)w (t)l] s/
S IVullpy ooy lldwtl| pass + IV ull 1y 2y [|dw]] 4
1/2 1/2
(4.19) S NVull 2 ooy lwel Lass + 1V ull 12y 16wl 571V éw]| 5
Putting (4.17), (4.18) and (4.19) together, we conclude that
I(@(w?) = @(wh) ey < C(IVull g (zoey + IVl 12 (12)) 0wl| 7.

, = (1d — A)dw, — Adw

Hence, if (4.13) is satisfied with a suitable small ¢ > 0 then & is contractive, which
ensures the existence of w in Ep satisfying the desired equation. Finally, using the
fact that we thus have w = Bk + B((Id — A)w), and that

div ((Id = A)w) = (Id = AT) : Vw and ((Id — A)w); = (Id — A)w; — Asw,
mimicking the above calculations gives (4.14), (4.15) and (4.16). O



32 RAPHAEL DANCHIN

In what follows, we assume that 7" has been chosen so that (4.13) is satisfied for u!
and u?, and we define w on [0, T] x 2 according to the above lemma with k = —JA4 v?.
We shall use repeatedly that, owing to (4.9) and Cauchy-Schwarz inequality, we have

(4.20) maX(Ht_l/QMHL%O(L?)? H(5A)tHL2(o,TxQ)> < |[V&| r200,7x0)-
Hence, thanks to (4.14), we have for all t € [0, T,
(4.21) lwo@)llz2 < CIVEA ()| IV £2(0,6x0)-

Next, as

(6Av?); = 6Aww? + A2,
Inequality (4.16) (before time integration) and (4.9) guarantee that
(4.22) lwellpars < C(IVO 2wl pa + [V 8oll 2 ][0 2o + 164l 22 [07]] 2)-
Finally, using div (§4v?) = AT : Vo2, Inequalities (4.15) and (4.20) yields
(4.23) IDw(®)lz2 < CIV&| 1212 IVEV|| 130 (£20).

Now, taking the L2(0,t x ) scalar product of the first equation of (4.12) with z
and integrating by parts in some terms yields

1 t 1 >
(4.24) §|!\//)62H%oo<o,t;p) +/O IV 12|72 dr = s/~ dupll3s + > Ii(t)
j=1

with
t
I(t) :== —// (6A(AQ)—r + A15AT)V1)2 : Vzdxdr,
0JQ

t
Ir(t) = —// SATVQ? - zdx dr,
0JQ

t
I5(t) ::—//p(l)wT-zdxdT,
0JQ

I(t) == — /Ot/Q(Al)TVw (AN Vzdzdr,

I5(t) :z—//épovtz-zd:z:dr
0J/Q

We shall often use that, due to (4.8), we have

(4.25) V2l r20,rx0) = Vo2l L20,r%0)-

From this, we easily get

t 1
L(t) < C/ 1772 0A() |2 VTV (7)o |V 1 2(7) ] 2
0

Hence, using (4.20) and Young inequality,

1 t
(4.26) I < CIVTV L2100y VI 20 40y + 8/0 V1235 dr.
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Next, by (4.20), (4.25), Holder inequality and (0.7), we have
b<0/WFWMMﬁJV¢hHﬂmMMW2
_ 4/3 2/3 4/3
Séhéﬂvmﬂ@wﬁ+4mflﬂ&W£qmIﬂu@@g/thVQﬂ/
Hence, in light of (4.20), of Young inequality and of (0.9), we have

1 [t 1
(4W)JQS8A(W%MWQ+JWWN§WT+QMM&M$@MVEVQW%@My

In order to bound I3, we start with the inequality

t
héﬁAHWMwWMMT

Taking advantage of (4.22) to bound w;, and of Gagliardo-Nirenberg and Young
inequalities yields

1/2 1/2
Is < /nHMWn/mwwmmw+meWMm+mmmwugm
2 1 t 2 t 2114 2

<5 [ 1asledr+ o [AVBGadr+© [ WAL dr + I + T

wmlhl—c/WHWwvHWW|W%vn”%f
2/3 4/3 4 3

mdgz—o/nn/mm/uﬂﬂ

Just using (4.20) yields

4/3 2/3 4/3
Tz < IVl ooy 12172 o IR -

In order to bound I3, one has to use (4.21) and (4.23), which yields
2/3 4/3 2/3 2/3 — 2/3 2/3
m<C/HHWW1WHf2HUWMVHN V2A(T) 75 IV dr
4/3 2/3 2/3 4/3 2 3
< VR A iy [ IWVF BRI IS o 2 ar

This enables us to get the following bound for I3:
1 2 2|4
(128) I5(t) < SIVur 22y + 16 IVaI 250 + O 102y

t 3
2/3 4/3 2/3
+(/O VT P22 Vol | VT VP22 d’l‘) +H\EUZHZLL?/s(LAL)>H\/P(%ZH%?;(LQ).
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Next, thanks to (4.23), (4.20), and Cauchy-Schwarz and Young inequality,

t
L < c/ V]| 2|V 2] 2 d
0
t
<C [l Al AV e T
0

1 t
(4.29) < Yy /0 vale%Q dr + CH\/FV’UZH%P(OJS;LOO)HV&JH%%O,tXQ)'
Finally, it is obvious that

(4.30) Is(t) < llopo/\/ poll o= 1/ Po2ll o (o 10 a2y -
So plugging (4.26), (4.27), (4.28), (4.29) and (4.30) in (4.24) and taking t = T" yields

1o e any + 190203 g2y < I b dnl22 + AT b 213 iy

1
+ (8 + CH\/EVUZy%QT(LN)) HV&JH%zT(La) + 2H5P0/\//%H%oo ”Ut2||%1T(L2)

with A(T) = C (100 o + IV + VAT QL

(L4
¢ 2/3 4/3 23 )"
+< [ IR df) )

The regularity properties of the constructed solutions guarantee that A(oco) is finite,
and Lebesgue dominated convergence theorem thus ensures that if 7" is small enough,
then

(4.31) maX(SCH\/iVUQH%QT(LooyQA(T)) <L
Under this hypothesis, the above inequality becomes

1
(4.32) Sl P62l (n2) + 1Vor 2172 12)

1
< I/ duollze + 1V 0lT2 (12 + ClldpollZee 10717 (12)-
Since V& = Vz + Vw, we may write owing to (4.20), (4.23) and (4.25),
”V&)H%?T(p) < QHVZH%?T(H) + QHVUJH%%(H)
5

< ivalzni?T(LZ)S + CH\/7EVU2||2§(L<>0)||V5UH%2T(L2)-
Hence, under assumption (4.31) (up to a change of C' if needed), we have
(4.33) HV&’H%?(O,TxQ) < 3”V1112H%2(0,T><Q)'
Plugging this inequality in (4.32) gives

1 1

(4:34) 5l b 21302y + 71902123, 12) < C (Il 0 Bl 22+ lldpol 3 107 12 12))-

In the case where the two solutions correspond to the same initial data, this ensures
that z = 0 on [0,7]. Then, remembering (4.33) and (4.21), one can conclude to
uniqueness on [0, 7], then on R by standard bootstrap.



TWO-DIMENSIONAL INHOMOGENEOUS NAVIER-STOKES EQUATIONS 35

4.3. Continuity of the flow map. Here we consider the case where the two so-
lutions considered in the previous paragraph correspond to possibly different data.
As a first, we have to observe that (4.33) and (4.34) together imply that if

(4.35) IV || om0y < K,

then, in light of Inequalities (4.21), (4.33) and (4.34), there exists some constant
¢ > 0 such that if A(Tp) < ¢, then we have

(436) /o ®llzz u) + IV llza 2y < O+ ) (I b b2 + 100l 2 )

where we have denoted for all T' € [0, oo]:

T e (2[4 2 2\114/3
A(T) = P oy + VAR V@Y

+(1+ K)(HVUIH%%(B) + ||\EVU2”%2T(L00)) + HUtQHLlT(H)-
Now, if we consider data that belong to a bounded subset of Egml then K in (4.35)

and g(oo) can be uniformly bounded. By iterating the procedure that led to (4.36),
this allows to get in the end

(437) I/ oh g (1) + V080 23 12y < Ce“M (|1y/ ol 2 + poll o< )
Then, reverting to the Eulerian coordinates gives the following stability statement:

Theorem 4.2. Consider two solutions (p',u', PY) and (p? u?, P?) corresponding
to initial data (py,ul) and (p3,ud) given by Theorem 1.3. Assume that

0<p<ph <o and max(ludly N, ) <M.
Py Py

Then we have:

@38) /o 8ulugeqeo) + IVl 1 < Gt (/b ol + ol ).
and, for all p € [2,00),

1,1
(439) 1901 < Cppepr 1t (1001 + 5% (110 duoll 2 + 0]l 2) )-

Proof. Although our regularity assumptions are weaker, we shall follow [13] to bound
the difference of the velocities. The starting point is the relation:

V,00 = K1+ Ko+ K3 with Ki(t,y) := V,6X (t,y) - Vou?(t, X2(t, ),
Ko(t,y) == V, X (t,y) - Vaou(t, X(t,y))
and K3(t7 y) = val(tu y) ' (v:l?ul (ta XQ(tv y)) - kul(ta X2 <t7 y)))

Since Véu(t, X2(t,y)) = A{ (t,y)Ka(t,y) and the flow X? is measure preserving, the
above decomposition implies that

IVoul|rz < [[Au]lzee (Vv L2 + [ K1l L2 + [ K3l 22)-
Bounding K; may be done as in [13]. We get for all t > 0,
1K1 ()l < CIVIVE® ()] Lo [V 0]| 1212
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For bounding K3, we use the relation

s

2 2,1 s dX
1 S
where the ‘interpolating flow” X stands for the solution to
t
Xt =yt [ (2= s)ul(r X () + (s - Del(r, X ()
0

As X*(t,-) is also measure preserving, it is easy to prove that (again, see [13]):

HdXS

)| < Clloullprpsy-
L4 ¢

Thanks to that and to Holder inequality, we deduce that
13 (0) |2 < C (L4 IVul |y oo IIE 920 (8] | Gull g -

Hence, in the end, if T" is chosen so that

T T
maX(/ |Vt (t)|| Lo dt, / [Vu?(t)| Lo dt> <1
0 0

then we have, using also (5.4)
IVoullz 12y < (1+ H\/%VUQHL%(LOO))HV&)HL?'T(L?) + ||t3/4u1”L2T(L4)H5U|\L‘;(L4)~
The last term may be handled by means of (0.7), and one ends up with
(4.40) [[Véullr2,(z2) S (1+ H\/iVUQHL%(LOO))HV&’HL%(L%
AN g IVl -

Remember that the constructed solutions satisfy /tVu? € L?(R.; L>) and note
that, since

1/2 1/2
1640 | gy < ClEE IR o IVEDE [ 1)

Inequalities (2.22) and (3.46) guarantee that t3/4u1 is in L2(R4; L*). So we are left
with bounding \/ﬁldu in L*°(0,T; L?). To do so, we use, as in [13] the following
relation:

s

2
P(t9) = V370X 1) (e, X 00+ [ D, X500 5 (19) s )

Hence, as all the flows X?® are measure preserving and p; is bounded from below,
IV Pt (®)du(t)] L2 < 1\ pod()]| 2 + CV/p* || Du® (t)| palldull 3 14
< [ly/ pboo ()l 2 + ClIE D ()| 2| 6ull 3 )

< I/ phdo(®)ll e

+ CIVIDW W15 4D (1) IV Bl oy 1V 0T O8] 2 .
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Since both the terms with v/¢Du? and with tD?u? may be bounded in terms of py,
p* and ||ud||z2 only, we end up with

(R p! 5UHL39(L2) < 2”\/ Pé &)”LOTO(H) + C(ps; p*, H“%HLZ’)HV(SUHL?T(H)-

Putting this inequality together with (4.40) and remembering (4.37) allows to con-
clude that there exists an absolute constant C' such that for small enough T, we
have

I/ bl ey + 198l 22 < C I/ duollze + doollsee ),

then arguing by induction and using the bounds on u! and «? in terms of the data
yields (4.38).

Finally, the difference between the (Eulerian) densities may be bounded by re-
sorting to the classical theory of transport equation. Indeed, we have

Odp + div (dpu?) = —div (p'du).

Hence, we may write for all p € [1,00] and t > 0,

t
H(Sp(t)”wfl’p S <H5p0HW17P + / e fO ||Vu2HLoo dT’leduHLp d,]_> ef(f ”vuZHLOO dr
0
1,1 t 2
< (1oo0le v+ o 3+ 16 >ef0 Va2l oo dr
e LI,
Combining Inequality (4.38) with Gagliardo-Nirenberg inequality provides us with
2
a control of du in LP%(RJF; LP) for all p € [2,00). In the end, we get (4.39). O

Remark 4.3. In the bounded or torus cases, one can take advantage of exponential
decay to get a time independent bound. The details are left to the reader.

5. APPENDIX

Here we recall some results that played a key role throughout the paper. The
first one is the following Gagliardo-Nirenberg inequality that extends (0.7):

2 1-2
(5.1) Izllee < Gl IV20277, 2<p< o

It holds true with the same constant in R? and for any z € HZ(Q) in a general
domain Q, or in the torus T? provided the mean value of z is zero. In the torus case
however, we rather are in situations where

/ azdx =0
’]I‘Q

for some nonnegative measurable function a with positive mean value (say 1 with
no loss of generality). Then, we claim that

2 1-2 . p=2
(5-2) l2llr < Cpall2l 1V 127 with Cpai=Cylog 7 (e + [al|2)-
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Indeed, decomposing z into z = Z + z with z := ng zdx, we have:

/ ]z\pdx—/ 12)?|Z + 2P~ da
T2 T2
SISl + [ 1R da

=[P ~1|1p—2
S P22 + 21T 1217
Now, z is mean free and thus satisfies (5.1). Besides, according to [11, Ineq. (A.2)],
2| < Clog (e + ||all z2) IV 2|l 2
Hence
—92 ~112 1-2 —
12117, < Clog (e + [lall2) IV 2152 121132 + Coll2lls (1212192127~
Then, (5.2) follows from ||Z]|;2 < ||z 2. O
Next, we recall a well known result for the inhomogeneous Stokes equations:
(5.3) —Aw+VQ=f and divw=g in Q

with data f € LP(Q) and g € WHP(Q), 1 < p < .
In the bounded domain case (with g having mean value 0), it is known (see e.g.

[18]) that (5.3) admits a unique solution (w,VQ) € W?2P(Q) x LP(Q) such that
w|apq = 0, and that the following bound holds true:

(5:4) V2w, VQllz» < C(If v + Vgl Lr)-

A similar result holds true in Q = R? or Q = T? provided we consider only solutions
such that w — 0 at infinity (R? case) or J72 aw dx = 0 for some nonnegative bounded
function a, with mean value 1 (torus case). Indeed: one can set

VQ = Qf with Q:=—(—A)"'Vdiv,

then solve the Poisson equation —Aw = f + V(. Uniqueness is given by the sup-
plementary conditions that are prescribed above.

Finally, in the proof of stability and uniqueness, we used the following result.

Lemma 5.1. Assume that Q is a C? bounded domain, the torus or the whole space.
Then, there exists a linear operator B that maps LP to LP for all p € (1,00) such
that for all k € LP(Q;R?) (with mean value 0 in the case Q = T?) we have

div (Bk) = div k.

Furthermore, if divk € LY(Q2) for some q € (1,00), then we have Bk € Wol’q(Q;R”)
with ||VBk| ra < C||div k||re and if k (seen as a function from Ry to some space L"
with 1 < r < 00) is differentiable for almost every t € Ry, then so does Bk, and we
have ||(Bk)¢||Lr < Cllkt||Lr for a.e. t € R,

Proof. In the case where () is a bounded domain, the existence of B as well as the
first two properties have been established in [10]. The third one stems from the fact
that, owing to the continuity of B, we may write in the L"” meaning that

BE(t + h) — Bk(t) zlimh_,015’<k(t+h)_k(t)> — Bk,

(Bk)¢(t) = lim 50 Y Y
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If 2 is the torus or the whole space, then one can just set B := —(—A)"!Vdiv. O

1]

REFERENCES

H. Abidi and G. Gui: Global Well-posedness for the 2-D inhomogeneous incompressible
Navier-Stokes System with large initial data in critical Spaces, Archiv. Rat. Mech. Anal.,
242, (2021), 1533-1570.

H. Bahouri, J.-Y. Chemin and R. Danchin: Fourier Analysis and Nonlinear Partial
Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343,
Springer-Verlag, Berlin, Heidelberg, 2011.

F. Boyer et P. Fabrie: Mathematical tools for the study of the incompressible Navier-
Stokes equations and related models. Applied Mathematical Sciences, 183. Springer,
New York, 2013.

J.-Y. Chemin, B. Desjardins, I Gallagher and E. Grenier: Mathematical geophysics. An
introduction to rotating fluids and the Navier-Stokes equations. Oxford Lecture Series in
Mathematics and its Applications, 32. The Clarendon Press, Oxford University Press,
Oxford, 2006.

J.-Y. Chemin and P. Zhang: Inhomogeneous incompressible viscous flows with slowly
varying initial data, J. Inst. Math. Jussieu, 17 (2018), no. 5, 1121-1172.

Y. Cho and H. Kim: Unique solvability for the density-dependent Navier-Stokes equa-
tions, Nonlinear Analysis, 59 (2004), no. 4, 465-489.

R. Danchin: Density-dependent incompressible viscous fluids in critical spaces. Proc.
Roy. Soc. Edinburgh Sect. A, 133 (2003), no. 6, 1311-1334.

R. Danchin: Local and global well-posedness results for flows of inhomogeneous viscous
fluids. Adv. Differential Equations, 9 (2004), no. 3-4, 353-386.

R. Danchin, P.B. Mucha, Incompressible flows with piecewise constant density. Arch.
Ration. Mech. Anal. 207 (2013), no. 3, 991-1023.

R. Danchin and P.B. Mucha: Divergence, Discrete and Cont. Dyn. Systems S, 6(5), 11
pages (2013).

R. Danchin and P.B. Mucha: The incompressible Navier-Stokes equations in vacuum,
Communications on Pure and Applied Mathematics, 52 (2019), 1351-1385.

R. Danchin and P.B. Mucha: Compressible Navier-Stokes equations with ripped den-
sity, Communications on Pure and Applied Mathematics, to appear.

R. Danchin, P.B. Mucha and T. Piasecki: Stability of the density patches problem with
vacuum for incompressible inhomogeneous viscous flows, Annales de I'ITHP, Analyse
non linéaire, to appear.

R. Danchin, P.B. Mucha and P. Tolksdorf: Lorentz spaces in action on pressureless
systems arising from models of collective behavior. J. Evol. Equ., 21 (2021), 3103-
3127.

R. Danchin and S. Wang: Global unique solutions for the inhomogeneous Navier-Stokes
equation with only bounded density, in critical regularity spaces, Communications in
Mathematical Physics, 399 (2023), no. 3, 1647-1688.

R.J. DiPerna and P.-L. Lions: Ordinary differential equations, transport theory and
Sobolev spaces, Invent. Math., 98 (1989), 511-547.

H. Fujita and T. Kato: On the Navier-Stokes initial value problem I, Archive for
Rational Mechanics and Analysis, 16, (1964), 269-315.

G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equa-
tions. Steady-state problems. Springer Monographs in Math. Springer, New York, 2011.
F. Gancedo and E. Garcia-Juarez: Global regularity of 2D density patches for inhomo-
geneous Navier-Stokes, Arch. Ration. Mech. Anal., 229 (2018), no. 1, 339-360.



40
[20]

[21]

[22]

23]

[24]

RAPHAEL DANCHIN

T. Hmidi and S. Keraani: Incompressible viscous flows in borderline Besov spaces,
Arch. Ration. Mech. Anal., 189 (2008), 283-300.

A.V. Kazhikov: Solvability of the initial-boundary value problem for the equations of
the motion of an inhomogeneous viscous incompressible fluid, (Russian) Dokl. Akad.
Nauk SSSR 216 (1974), 1008-1010.

O.A. Ladyzhenskaya: Solution “in the large” of the nonstationary boundary value
problem for the Navier-Stokes system with two space variables, Comm. Pure Appl.
Math., 12 (1959), 427-433.

0O.A. Ladyzhenskaya and V.A. Solonnikov: Unique solvability of an initial and boundary
value problem for viscous incompressible inhomogeneous fluids, J. Sov. Math., 9 (1978),
no. 5, 697-749.

J. Leray: Sur le mouvement d’un liquide visqueux emplissant 1’espace, Acta Math., 63
(1934), no. 1, 193-248.

J. Leray: Essai sur le mouvement d’un liquide visqueux emplissant ’espace, Journal de
Mathématiques Pures et Appliquées, 13 (1934), 331-418.

J. Li: Local existence and uniqueness of strong solutions to the Navier—Stokes equations
with nonnegative density, Journal of Differential Equations, 263 (2017), 6512—-6536.
X. Liao and P. Zhang: Global regularity of 2D density patches for viscous inhomoge-
neous incompressible flow with general density: low regularity case, Comm. Pure Appl.
Math., 72 (2019), no. 4, 835-884.

J.-L. Lions and J. Peetre: Sur une classe d’espaces d’interpolation, Publications
mathématiques de 'l H.E.S., 19 (1964), 5-68.

J.-L. Lions and G. Prodi: Un théoreme d’existence et unicité dans les équations de
Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 248 (1959), 3519-3521.

P.-L. Lions: Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,
Oxford Lecture Series in Math. and its Applications, 3, Oxford Univ. Press, 1996.

M. Paicu, P. Zhang and Z. Zhang: Global unique solvability of inhomogeneous Navier-
Stokes equations with bounded density, Com. Partial Diff. Equ., 38 (2013), 1208-1234.
J. Simon: Nonhomogeneous viscous incompressible fluids: existence of velocity, density,
and pressure, STAM J. Math. Anal., 21 (1990) 1093-1117.

H. Xu: Maximal L; regularity for solutions to inhomogeneous incompressible Navier-
Stokes equations, J. Differential Equations, 335 (2022), 1-42.

P. Zhang: Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-
Stokes system, Adv. Math., 363 (2020), 107007, 43 pp.

UN1v PARris EsT CRETEIL, UNIVv GUSTAVE E1rrEL, CNRS, LAMA UMRS8050,
F-94010 CRETEIL, FRANCE AND SORBONNE UNIVERSITE, LJLL UMR 7598, 4
Prace Jussieu, 75005 PARIS

E-mail address: danchin@Qu-pec.fr



