Ë L Rapha 
  
Danchin 
email: danchin@u-pec.fr
  
  
  
GLOBAL WELL-POSEDNESS FOR 2D INHOMOGENEOUS VISCOUS FLOWS WITH ROUGH DATA VIA DYNAMIC INTERPOLATION

Keywords: 2010 Mathematics Subject Classification. 35Q30, 76D03, 76D05 Critical regularity, uniqueness, global solutions, inhomogeneous Navier-Stokes equations, rough density

We consider the evolution of two-dimensional incompressible flows with variable density, only bounded and bounded away from zero. Assuming that the initial velocity belongs to a suitable critical subspace of L 2 , we prove a global-in-time existence and stability result for the initial (boundary) value problem.

Our proof relies on new time decay estimates for finite energy weak solutions and on a 'dynamic interpolation' argument. We show that the constructed solutions have a uniformly C 1 flow, which ensures the propagation of geometrical structures in the fluid and guarantees that the Eulerian and Lagrangian formulations of the equations are equivalent. By adopting this latter formulation, we establish the uniqueness of the solutions for prescribed data, and the continuity of the flow map in an energy-like functional framework.

In contrast with prior works, our results hold true in the critical regularity setting without any smallness assumption. Our approach uses only elementary tools and applies indistinctly to the cases where the fluid domain is the whole plane, a smooth two-dimensional bounded domain or the torus.

Introduction

A huge literature has been devoted to the mathematical analysis of the Navier-Stokes equations that govern the evolution of the velocity field u = u(t, x) and pressure function P = P (t, x) of homogeneous incompressible viscous flows in a domain Ω of R d . Recall that these equations read

(N S)      u t + div (u ⊗ u) -µ∆u + ∇P = 0 in R + × Ω, div u = 0 in R + × Ω, u| t=0 = u 0 in Ω,
and, if Ω has a boundary, are supplemented with homogeneous Dirichlet boundary conditions for the velocity.

The global existence theory for (NS) originates from the paper [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] by J. Leray in 1934. In the case Ω = R 3 , by combining the energy balance associated to (NS):

(0.1) 1 2 u(t) 2 L 2 + µ t 0 ∇u 2 L 2 dτ =
with compactness arguments, he constructed for any divergence free u 0 in L 2 (R 3 ; R 3 ) a global distributional solution of (NS) satisfying (0.1) with an inequality (viz. the left-hand side is bounded by the right-hand side).

It is by now well understood that Leray's result is true in any open subset Ω of R d with d ≥ 2 (see for instance the first part of [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF]). However, despite the numerous papers devoted to the topics and significant recent progresses, the question of uniqueness of finite energy solutions in the case d ≥ 3 has not been completely solved yet. The two-dimensional situation is much better understood: finite energy solutions are unique and do satisfy (0.1) with an equality. Although uniqueness in dimension two could be hinted from another paper by J. Leray [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] in 1934, it has been established only in 1959 by O.A. Ladyzhenskaya [START_REF] Ladyzhenskaya | Solution "in the large" of the nonstationary boundary value problem for the Navier-Stokes system with two space variables[END_REF], and J.-L. Lions and G. Prodi [START_REF] Lions | Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2[END_REF].

In the present paper, we are concerned with inhomogeneous, that is, with variable density, incompressible viscous flows. The evolution of these flows that can be encountered in models of geophysics or mixtures, is often described by the following inhomogeneous incompressible Navier-Stokes equations:

(IN S)      ρ t + div (ρu) = 0 in R + × Ω, (ρu) t + div (ρu ⊗ u) -µ∆u + ∇P = 0 in R + × Ω, div u = 0 in R + × Ω.
Above, u and P still denote the velocity and the pressure, respectively, and ρ = ρ(t, x) stands for the density that for obvious physical reasons has to be nonnegative. If we supplement (INS) with initial data and boundary conditions:

(0.2) ρ| t=0 = ρ 0 , u| t=0 = u 0 and u| ∂Ω = 0, then the energy balance associated to (INS) reads:

(0.3) 1 2 ( √ ρ u)(t) 2 L 2 + µ t 0 ∇u 2 L 2 dτ = 1 2 √ ρ 0 u 0 2 L 2 .
The divergence free condition ensures that the Lebesgue norms of ρ are conserved, and that (0.4) ∀t ∈ R + , inf In the torus case, we have in addition the conservation of total momentum: (0.5)

T 2 (ρu)(t, x) dx = T 2
(ρ 0 u 0 )(x) dx.

Like (NS), equations (INS) have a scaling invariance (if Ω is stable by dilation): they are invariant for all λ > 0 by the transform:

(0.6) (ρ, u, P )(t, x) (ρ, λu, λ 2 P )(λ 2 t, λx).

Although (INS) is of hyperbolic-parabolic type while (NS) is parabolic, similar results hold true for the initial value (or boundary value) problem. For instance:

• In any dimension and provided ρ 0 is bounded and nonnegative, and √ ρ 0 u 0 is in L 2 , there exists a global weak solution satisfying (0.3) with inequality 1 . • Smooth enough data with density bounded and bounded away from zero generate a unique local-in-time smooth solution, which is global in the twodimensional case, or in higher dimension if the initial velocity is small 2 . In dimension two, the quantities that come into play in the energy balance (0.3) are scaling invariant in the sense of (0.6). However, unlike the case with constant density, it is not known whether finite energy two-dimensional weak solutions with bounded density, albeit having critical regularity, are unique.

In order to explain the difference between the variable and constant density cases and to motivate the assumptions that will be made in this paper, let us sketch the proof of the uniqueness of finite energy solutions for (NS) in dimension two. Assume that we are given two solutions (u, P ) and ( u, P ) pertaining to the same finite energy initial velocity u 0 . Then, δu := u -u and δP := P -P satisfy

δu t + u • ∇δu -µ∆δu + ∇δP = -δu • ∇ u in R + × Ω, div δu = 0 in R + × Ω.
Taking the L 2 (Ω; R 2 ) scalar product with δu, integrating by parts where needed and using Hölder inequality to bound the right-hand side yields 1 2

d dt δu 2 L 2 + µ ∇δu 2 L 2 ≤ ∇ u L 2 δu 2 L 4 ,
which, in light of the celebrated Ladyzhenskaya inequality (0.7)

z 2 L 4 ≤ C z L 2 ∇z L 2 leads to 1 2 d dt δu 2 L 2 + µ ∇δu 2 L 2 ≤ C ∇ u L 2 δu L 2 ∇δu L 2 ≤ µ 2 ∇δu 2 L 2 + C 2 2µ ∇ u 2 L 2 δu 2 L 2 .
At this stage, Gronwall lemma allows to conclude that

δu(t) 2 L 2 + µ t 0 ∇δu 2 L 2 dτ ≤ e C 2 µ t 0 ∇ u 2 L 2 dτ δu(0) 2 L 2 .
Owing to (0.1), the exponential term if finite. Hence we have δu ≡ 0 if u(0) = u(0).

In contrast, when comparing two finite energy solutions (ρ, u, P ) and ( ρ, u, P ) of (INS), we get the following system for δρ := ρ -ρ, δu and δP :

     δρ t + div (δρ u) = -div ( ρ δu), ρ(δu t + u • ∇δu) -µ∆δu + ∇δP = -δρ( u t + u • ∇ u) -ρδu • ∇ u, div δu = 0.
1 First proved by A.V. Kazhikhov in [START_REF] Kazhikov | Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid[END_REF] if ρ0 > 0, then for general ρ0 ≥ 0 by J. Simon [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure[END_REF]. In [START_REF] Lions | Incompressible Models[END_REF], P.-L. Lions pointed out that the density is a renormalized solution of the mass equation, and treated density dependent viscosity coefficients. He also considered unbounded densities. 2 First established by O.A. Ladyzhenskaya and V.A. Solonnikov in [START_REF] Ladyzhenskaya | Unique solvability of an initial and boundary value problem for viscous incompressible inhomogeneous fluids[END_REF].

Since ρ is only bounded, the first line is a transport equation by the divergence free vector-field u, with a source term that has (at most) the regularity C -1 with respect to the space variable. Now, in order to control the propagation of negative regularity in a transport equation, we need (0.8) ∇u ∈ L 1 loc (R + ; L ∞ ). However, this property generally fails for finite energy solutions of (INS) and even for the two-dimensional heat equation. In fact, the set of functions u 0 so that the solution u to the free heat equation with initial data u 0 satisfies ∇u ∈ L 1 (R + ; L ∞ ) is the homogeneous Besov space Ḃ-1 ∞,1 , and L 2 is not embedded in this space. To avoid working in spaces with negative regularity, one can recast (INS) in the Lagrangian coordinates system as in [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF]. Then, the density becomes time independent and the velocity equation keeps its parabolicity (at least for small time). However, the equivalence between the Eulerian and Lagrangian formulations of (INS) in our low regularity context still requires (0.8), a property that cannot be expected if u 0 is only in L 2 since it fails for the heat flow.

To make a long story short, it is not clear that uniqueness holds for (INS) in the framework of just finite energy solutions.

Before describing in more detail the main objective of the article, let us recall some recent results on the well-posedness theory for (INS). A number of works have been devoted to this issue under weaker assumptions than in [START_REF] Ladyzhenskaya | Unique solvability of an initial and boundary value problem for viscous incompressible inhomogeneous fluids[END_REF]. This is mainly to relax the positivity condition on the density or the regularity assumptions on the initial data. Regarding the first question, it has been observed by Y. Cho and H. Kim in [START_REF] Cho | Unique solvability for the density-dependent Navier-Stokes equations[END_REF] that (INS) is well-posed for smooth enough data and, possibly, vanishing densities satisfying a suitable compatibility condition. Recently, J. Li in [START_REF] Li | Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density[END_REF] discovered that this condition is no longer needed if one considers H 1 regularity for the velocity, and the full well-posedness theory for general only bounded (not necessarily positive) initial densities and H 1 velocities has been carried out in a joint work with P.B. Mucha [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF].

Regarding the minimal regularity requirement of the velocity for well-posedness, the scaling invariance of (INS) pointed out in (0.6) suggests

(if Ω = R d ) to take ρ 0 ∈ L ∞ (R d ) and u 0 ∈ Ḣ d 2 -1 (R d ).
In the constant density case and for d = 3, this assumption is in accordance with the well-known Fujita and Kato theorem [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF]. However as, again, ∇e t∆ u 0 need not be in

L 1 loc (R + ; L ∞ ) if u 0 ∈ Ḣ d 2 -1 (R d
) then it is not clear that uniqueness may be achieved if no additional regularity, in the variable density case. In this direction, it has been proved in [START_REF] Danchin | Density-dependent incompressible viscous fluids in critical spaces[END_REF][START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF] 

that if u 0 belongs to the homogeneous Besov space Ḃ d 2 -1 2,1 (R d ), a large subspace of Ḣ d 2 -1 (R d )
with the same scaling invariance, then (INS) is globally well-posed in dimension two (or in higher dimension if u 0 is small) provided ρ 0 is close to some positive constant in the homogeneous Besov space

Ḃ d 2 2,1 (R d ).
This result is satisfactory as regards the regularity requirement for the velocity, since it is critical and closely related to the L 2 space, but the condition on the density is rather restrictive both because ρ 0 has to be almost constant and since it has to be continuous (the space

Ḃ d 2 2,1 (R d ) is embedded in the set C b (R d )
of bounded and continuous functions on R d ). The result of [START_REF] Danchin | Density-dependent incompressible viscous fluids in critical spaces[END_REF] has been significantly improved recently in the two-dimensional case: H. Abidi and G. Gui [START_REF] Abidi | Global Well-posedness for the 2-D inhomogeneous incompressible Navier-Stokes System with large initial data in critical Spaces[END_REF] established the global well-posedness without any smallness condition on the data if ρ 0 -1 is in Ḃ1

2,1 (R 2 ) and u 0 belongs to Ḃ0 2,1 (R 2 ). The corresponding result in dimension three has been obtained with completely different techniques by H. Xu in [START_REF] Xu | Maximal L 1 regularity for solutions to inhomogeneous incompressible Navier-Stokes equations[END_REF] (for small u 0 of course). As said before, works based on the use of critical Besov spaces for the density precludes considering the case of densities that are discontinuous along an interface, a situation which is of particular interest if one believes (INS) to be a relevant model for mixtures of incompressible viscous flows with different densities. This very situation, that is sometimes called the density patch problem has been extensively studied lately, see e.g. [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF][START_REF] Gancedo | Global regularity of 2D density patches for inhomogeneous Navier-Stokes[END_REF][START_REF] Liao | Global regularity of 2D density patches for viscous inhomogeneous incompressible flow with general density: low regularity case[END_REF].

Well-posedness results for only bounded initial density, bounded away from zero, and smooth enough velocity have been obtained in a joint work with P.B. Mucha [START_REF] Danchin | Incompressible flows with piecewise constant density[END_REF], then improved by M. Paicu, P. Zhang and Z. Zhang in [START_REF] Paicu | Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density[END_REF] (there, u 0 is in H s (R 2 ) for some s > 0 if d = 2, and in H 1 (R 3 ) if d = 3). In the whole space case, the critical regularity index has been reached in an intriguing work by P. Zhang [START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF]. He established the global existence for any small enough divergence free u 0 with coefficients in Ḃ 1 2

2,1 (R 3 ) while ρ 0 is only bounded and bounded away from zero. It has been observed recently in a joint work with S. Wang [START_REF] Danchin | Global unique solutions for the inhomogeneous Navier-Stokes equation with only bounded density, in critical regularity spaces[END_REF] that Zhang's solutions actually satisfy (0.8), and are thus unique.

The main goal of the present paper is to investigate the counterpart in dimension two and for large initial data of P. Zhang's result recalled just above: we want to establish a global well-posedness result for general divergence-free velocity fields u 0 with critical regularity of L 2 type and densities ρ 0 just satisfying: According to [START_REF] Abidi | Global Well-posedness for the 2-D inhomogeneous incompressible Navier-Stokes System with large initial data in critical Spaces[END_REF], a good candidate to achieve the Lipschitz property within a critical regularity framework of L 2 type is the space Ḃ0 2,1 . However, one can hardly expect the Fourier analysis techniques used therein to be appropriate for handling the case with only bounded density. Here we shall combine real interpolation arguments and three levels of time decay estimates for a linearized version of (INS) (corresponding to Ḣ-1 , L 2 and Ḣ1 data, respectively) that can be obtained just by energy arguments, and basic properties of the Stokes system, so as to work out a space for u 0 that coincides with Ḃ0

2,1 if ρ 0 is smooth (but that might depend on it if it is not). The overall strategy is so robust that it can be adapted to other systems.

The rest of the paper is structured as follows: in the next section we state our main results and explain the key steps of the proof. Then, in Section 2, we establish a first family of time decay estimates pertaining to the case where u 0 is just in L 2 , and construct corresponding global finite energy weak solutions for (INS). The next section is devoted to proving more a priori decay estimates. The final goal is to establish that under a slightly stronger assumption on the initial velocity, very close to the regularity Ḃ0 2,1 , the Lipschitz property (0.8) is satisfied. Finally, we establish in Section 4 the existence and uniqueness of a solution under this assumption, assuming only (0.9) and that the velocity belongs to the aforementioned space. The same method also provides stability estimates for the flow map, in the energy space.

Notation: In the rest of the paper, Ω will be either a C 2 bounded domain of R 2 , a two-dimensional torus, or R 2 . It will be convenient to use the same notation Ḣs (Ω) to designate:

-the classical homogeneous Sobolev space if Ω = R 2 , -the subset of functions of H s with mean value 0 if Ω = T 2 , -the space H s 0 (Ω) (that is the completion of C ∞ c (Ω) for the H s (R 2 ) norm) if Ω is a bounded domain and s ≥ 0; -the dual of H -s 0 (Ω) if Ω is a bounded domain and s ∈ [-1, 0]. We designate by L 2 σ (Ω) the set of divergence free vector-fields with coefficients in L 2 (Ω) (such that u 0 • n = 0 at ∂Ω in the bounded domain case, with n being the unit exterior normal vector to ∂Ω).

For any normed space X, Lebesgue index q ∈ [1, ∞] and time T ∈ [0, ∞], we shall denote z L q T (X) := z(t) X L q (0,T ) and omit T if it is ∞. In the case where z has several components in X, we keep the same notation for the norm.

As usual, C designates harmless positive real numbers, and we shall sometimes write A B instead of A ≤ CB. To emphasize the dependency with respect to parameters a 1 , • • • , a n , we adopt the notation C a 1 ,••• ,an . In particular, the notation C ρ,v denotes various 'constants' that only depend (algebraically) on the infimum and supremum of ρ and on 'energy-like' norms of v, that is on v L ∞ (L 2 ) and ∇v L 2 (L 2 ) .

Acknowledgments. The author is indebted to P. Auscher for clarifying some properties of the real interpolation space in which the initial velocity is taken.

Results and strategy

The first step is to exhibit time decay estimates for finite energy solutions. More precisely, we shall establish the following statement: Theorem 1.1. Let u 0 be in L 2 σ (Ω) and ρ 0 satisfy (0.9). Then, (INS) supplemented with (0.2) admits a global solution (ρ, u, P ) satisfying (0.4) (and (0.5

) if Ω = T 2 ), u ∈ L ∞ (R + ; L 2 σ ), ∇u ∈ L 2 (R + × Ω), and 
(1.1) 1 2 ( √ ρ u)(t) 2 L 2 + µ t 0 ∇u 2 L 2 dτ ≤ 1 2 √ ρ 0 u 0 2 L 2 , t > 0.
Furthermore, there exists a constant C depending only on Ω, ρ * and ρ * such that for all t > 0, we have

∇ k u(t) L 2 ≤ C(µt) -k/2 u 0 L 2 for k = 0, 1, 2, ∇ k (u t , u)(t) L 2 ≤ C(µt) -1-k/2 u 0 L 2 for k = 0, 1, ∇P (t) L 2 ≤ Ct -1 u 0 L 2 ,
where u denotes the convective derivative of u, that is, u := u t + u • ∇u.

Two remarks are in order:

-The constructed solutions satisfy more time decay estimates : see (2.12), (2.22), (2.27), Proposition 3.1 with s = 0 and Proposition 3.2 with p = 2. -As pointed out in [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF] for H 1 0 (Ω) initial velocities, exponential time decay estimates hold true if Ω is bounded. Following the proof of Lemma 5 therein, one can show that there exists a positive constant c Ω depending only on Ω such that

∀t ∈ R + , ( √ ρ u)(t) L 2 ≤ e -c Ω µt ρ * √ ρ 0 u 0 L 2 •
From this inequality, one can deduce exponential decay for t k/2 ∇ k u L 2 , t 1+k/2 ∇ k u t L 2 and t 1+k/2 ∇ k u L 2 . However, as exponential decay does not hold if Ω = R 2 , and since we strive for a unified approach, we refrain from tracking it in the rest of the paper, to simplify the presentation. As underlined in the introduction, in order to establish the uniqueness of solutions, we need a functional space that ensures (0.8). At the same time, we want our functional framework to be critical, to allow any initial density just bounded and bounded away from zero and to be strongly related to the energy space L 2 . Note that Theorem 1.1 ensures that ∇u belongs to the weak L 1 space for the time variable with values in the Sobolev space H 1 . This latter space 'almost' embeds in L ∞ . A classical way to improve embeddings is to work out a space by means of real interpolation with second parameter equal to 1. In our context, since energy arguments play an important role, it is natural to interpolate from Sobolev spaces and to consider 3

(1.2) [ Ḣ-s , Ḣs ] 1/2,1 for some s ∈ (0, 1).
This definition gives the Besov space Ḃ0 2,1 (independently of the value of s). Let us shortly explain why in the idealized situation where u is the solution of the free heat equation in R 2 , supplemented with an initial data u 0 in Ḃ0

2,1 , we do have (0.8). We start from the following two inequalities:

(1.3) ∇u(t) L ∞ ≤ Ct -1+s/2 u 0 Ḣs and ∇u(t) L ∞ ≤ Ct -1-s/2 u 0 Ḣ-s
which may be easily derived by using the explicit formula for u in the Fourier space.

Then, we use the characterization of real interpolation spaces in terms of atomic decomposition like in e.g. [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF]. In our setting, it reads z ∈ Ḃ0

2,1 if and only if there exists a sequence (z j ) j∈Z of Ḣ-s ∩ Ḣs satisfying:

z = j∈Z z j and j∈Z 2 -j/2 z j Ḣs + 2 j/2 z j Ḣ-s < ∞.
The infimum of the above sum on all admissible decompositions of z defines a norm on Ḃ0

2,1 . Now, decompose u 0 into (1.4)

u 0 = j∈Z u 0,j with j∈Z 2 -j/2 u 0,j Ḣs + 2 j/2 u 0,j Ḣ-s ≤ 2 u 0 Ḃ0 2,1
and solve all the heat equations (u j ) t -∆u j = 0, u j | t=0 = u 0,j .

Obviously, we have u = j u j and thus

(1.5) ∞ 0 ∇u L ∞ dt ≤ j∈Z ∞ 0 ∇u j L ∞ dt.
3 One could rather choose to interpolate between Lebesgue spaces and thus consider the initial velocity in the Lorentz space L 2,1 . However we do not know how to handle (INS) in such a space. Now, for every j in Z and A j > 0, we have, due to (1.3),

∞ 0 ∇u j L ∞ dt ≤ A j 0 ∇u j L ∞ dt + ∞ A j ∇u j L ∞ dt u 0,j Ḣs A j 0 t -1+s/2 dt + u 0,j Ḣ-s ∞ A j t -1-s/2 dt u 0,j Ḣs A s/2 j + u 0,j Ḣ-s A -s/2 j .
Hence, choosing A j = 2 -j/s and remembering (1.4) and (1.5) gives (0.8) (globally in time). This 'dynamic interpolation approach' has been used before by T. Hmidi and S. Keraani in [START_REF] Hmidi | Incompressible viscous flows in borderline Besov spaces[END_REF] for the transport equation and by P. Zhang in [START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF] for the velocity equation of (INS) (in dimension 3 and for small velocities). In both cases however, the initial data was decomposed according to a Littlewood-Paley decomposition. The additional flexibility that consists here in using general atomic decompositions enables us to do without Fourier analysis and to treat general domains.

As our aim is to prove (0.8) for (INS), we have to consider instead of the heat equation a linear system which captures both the effects of the density and of the convection. To this end, we consider

(1.6)      ρ(u t + v • ∇u) -∆u + ∇P = 0 in R + × Ω, div u = 0 in R + × Ω, u| t=0 = u 0 in Ω,
where the (smooth enough) triplet (ρ, v, u 0 ) is given with ρ bounded and bounded away from zero, (1.7) ρ t + v • ∇ρ = 0, div v = 0 and v| ∂Ω = 0.

Clearly, if we succeed in proving (1.3) for (1.6) with a constant that only depends on ρ * , ρ * and of energy-like norms of v, then repeating the above dynamic interpolation procedure will yield (0.8) for the solutions of (1.6) supplemented with initial data in Ḃ0 2,1 , then for (INS) if taking v = u. The way to get (1.3) is to prove beforehand three families of time weighted estimates for (1.6) corresponding to initial data u 0 in L 2 , Ḣ1 and Ḣ-1 , respectively. The estimate in Ḣ-1 will be obtained by duality from the estimate in Ḣ1 . This will lead us to consider the backward system associated with (1.6) and it is rather (ρu)(t) Ḣ-1 and, more generally, (ρu)(t) Ḣ-s for s ∈ (0, 1) that can be estimated. In the end, combining the three families of inequalities with suitable Gagliardo-Nirenberg inequalities yields instead of (1.3), (1.8) 

∇u(t) L ∞ ≤ C ρ,v t -1+s/2 u 0 Ḣs and ∇u(t) L ∞ ≤ C ρ,v t -1-s/2 ρ 0 u 0 Ḣ-s .
Above, C ρ,v only depends on ρ * , ρ * and on energy-like norms of v.

As a consequence, the suitable interpolation space to carry out our dynamic interpolation procedure for (1.6) is the one that is given in the following definition: Definition 1.2. Let s be in (0, 1) and a be a measurable function on Ω with positive lower bound. We denote by B 0,s a,1 (Ω) the set of vector-fields z on Ω such that there exists a sequence (z j ) j∈Z of L 2 σ (Ω) satisfying: -z = j∈Z z j in the sense of distributions, -for all j ∈ Z, there holds az j ∈ Ḣ-s (Ω) and z j ∈ Ḣs (Ω), -j∈Z 2 -j/2 z j Ḣs + 2 j/2 az j Ḣ-s is finite. The infimum on all admissible decompositions of z defines a norm on B 0,s a,1 (Ω). Before stating the main result of the paper, let us highlight a few properties of this interpolation space.

• Owing to (1.2), if a is a positive constant, then B 0,s a,1 is nothing than Ḃ0 2,1 , and if a has a positive lower bound a * , then it is included in L 2 . Indeed, decomposing z ∈ B 0,s a,1 according to Definition 1.2, we have for all j ∈ Z,

(1.9) z j 2 L 2 ≤ a -1 * Ω (az j )z j dx ≤ a -1 * 2 j/2 az j Ḣ-1/2 2 -j/2 z j Ḣ1/2 ,
which implies, by Young inequality, that

z L 2 ≤ 1 2 √ a * z B 0,s a,1
.

• If a is bounded and s = 2/p -1 for some p ∈ (1, 2), then the critical Besov space Ḃ-1+2/p p,1 := [L p , Ẇ 2s p ] 1/2,1 is embedded in B 0,s a,1 . Indeed, if z ∈ Ḃ-1+2/p p,1
, then there exists a sequence (z j ) j∈Z of the nonhomogeneous Sobolev space W 2s p such that

z = j∈Z z j and j∈Z 2 -j/2 z j W 2s p + 2 j/2 z j L p ≤ 2 z Ḃ-1+2/p p,1
. Now, the embeddings Ẇ 2s p → Ḣs and L p → Ḣ-s allow to write that

z j Ḣs ≤ C z j Ẇ 2s p and az j Ḣ-s ≤ C az j L p ≤ C a L ∞ z j L p ,
which gives our claim.

• For general measurable function a bounded and bounded away from zero, the space B 0,s a,1 might depend on s. However, in the case s ∈ (0, 1/2), if a is positive and piecewise constant along a finite number of Lipschitz curves, then it coincides with Ḃ0 2,1 . Indeed, in this case the space Ḣ-s is stable by multiplication by piecewise constant functions. Although our main result holds for any s in (0, 1), we concentrate on the case s = 1/2 to simplify the presentation. Then, using the short notation B 0 ρ 0 ,1 for B 0,1/2 ρ 0 ,1 , our statement reads as follows:

Theorem 1.3. Let ρ 0 satisfy (0.9) and u 0 be in B 0 ρ 0 ,1 . Then, (INS) supplemented with (0.2) admits a unique global solution (ρ, u, ∇P ) satisfying all the properties stated in Theorem 1.1 (and the remarks that follow) and the energy balance (0.3).

In addition, we have

u ∈ C(R + ; L 2 ), ∇u ∈ L 1 (R + ; C b ∩ Ḣ1 ), √ t( u, ∇P, ∇ 2 u) ∈ L 4/3 (R + ; L 4 )
and, for all t ∈ R + , we have u(t) ∈ B 0 ρ(t),1 with the inequality

(1.10) u(t) B 0 ρ(t),1 ≤ C u 0 B 0 ρ 0 ,1
.

Remark 1.4. As a by-product of the proof of the uniqueness, we get a stability result with respect to the initial data in the energy space (see Theorem 4.2 below).

Remark 1.5. Owing to ∇u ∈ L 1 (R + ; C b (Ω)), the flow of u has C 1 regularity with respect to the space variable, which entails the conservation of the geometrical structures of the fluid during the evolution. For example, if ρ 0 takes two different positive values across a C 1 interface, then it remains so forever: the interface is just transported by the flow and keeps its C 1 regularity. Likewise, the (local) H 2 regularity of the interfaces is preserved since

∇ 2 u ∈ L 1 (R + ; L 2 (Ω)).
Remark 1.6. As said before, for Ω = R 3 a result in the same spirit has been obtained by P. Zhang in [START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF] in the small velocity case (see also [START_REF] Danchin | Global unique solutions for the inhomogeneous Navier-Stokes equation with only bounded density, in critical regularity spaces[END_REF]). An important difference with our situation is that in dimension three, the critical space for the velocity is

Ḃ1/2 2,1 := [L 2 , Ḣ1 ] 1/2,1 .
Hence, it is enough to prove time weighted energy estimates in L 2 and Ḣ1 , so that the critical space for u 0 does not depend on ρ 0 .

Let us explain the main steps of the proof of Theorem 1.3. The global existence of a solution being ensured by prior results, the main point is to exhibit enough regularity of the solution to ensure uniqueness. As already explained at length in the introduction, the key is to establish (0.8), and this will be actually performed on the linear system (1.6).

The first step is to prove energy type weighted estimates for (1.6) that require only u 0 to be in L 2 and the density to be bounded and bounded away from zero. The three principles guiding our search for estimates are:

• one should take convective derivatives D t := ∂ t + u • ∇ since D t ρ = 0 rather than space derivatives since ρ has no regularity; • in the parabolic scaling, differential operators √ t∇, t∂ t and tD t are of order 0;

• one can transfer time regularity to space regularity thanks to the maximal regularity properties of the Stokes equations (recalled in Appendix) since (1.11) µ∆u -∇P = ρ u and div u = 0 in Ω.

In the end, this allows to estimate √ t∇u(t) L 2 , t∂ t u(t) L 2 , t u(t) L 2 (and some higher order quantities) in terms of u 0 L 2 , ρ * , ρ * and energy-like norms of v.

The second step is to propagate the Ḣ1 and the Ḣ-1 norms. On the one hand, Ḣ1 estimates for (INS) are known since the work by O. Ladyzhenskaya and V. A Solonnikov in [START_REF] Ladyzhenskaya | Unique solvability of an initial and boundary value problem for viscous incompressible inhomogeneous fluids[END_REF] (we shall also derive time weighted versions of these estimates). On the other hand, propagating the Ḣ-1 regularity seems to be new (ditto for the Ḣ-s regularity). This will be achieved by duality after observing that the backward system associated with (1.6) satisfies the same estimates in Ḣs . However, owing to density dependent structure of this latter system, we will actually have access to (ρu)(t) Ḣ-s , whence the 'weighted' definition of the interpolation space B 0,s ρ,1 .

The third step is devoted to propagating the regularity B 0 ρ,1 and to bounding ∇u in L 1 (R + ; L ∞ ) in terms of the data only. In passing, we exhibit some controls of other critical norms (like e.g. that of u in L 1 (R + ; L 2 )) that will be needed in the proof of uniqueness and stability. All these bounds rely on the dynamic interpolation method that has been described above for the heat equation. In the end, we get:

∞ 0 ∇u L ∞ dt + ∞ 0 u L 2 dt + ∞ 0 t 2/3 u 4/3 L 4 dt 3/4 ≤ C u 0 B 0 ρ 0 ,1 .
The fourth step is the proof of existence of a global solution corresponding to the assumptions of Theorems 1.1 or 1.3. For Theorem 1.1, the overall strategy is standard: we smooth out the data, resort to classical results that ensure the existence of a sequence of global smooth solutions for (INS), and use the aforementioned estimates and compactness arguments to pass to the limit. For Theorem 1.3, it is a bit the same, except that one has to be careful when smoothing out the velocity, owing to the 'exotic' definition of the space B 0 ρ 0 ,1 . The easiest way is to truncate a decomposition of u 0 so as to have an approximate initial velocity in the smoother space H 1/2 . The last step is devoted to uniqueness and stability for (INS). As in [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF], we reformulate (INS) in Lagrangian coordinates. The properties of the solutions provided by Theorem 1.3, in particular (0.8), ensure that the two formulations are equivalent. The gain is that we do not have to worry about the density as it is time-independent. As for the difference of the two velocities in Lagrangian coordinates, it satisfies a parabolic type equation and may be estimated in L ∞ (R + ; L 2 ) ∩ L 2 (R + ; Ḣ1 ). The computations are in the spirit of those of [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF]. However, in our case the velocity is less regular by one derivative, which requires some care.

As a concluding remark, we want to point out that, in contrast with numerous recent works dedicated to the inhomogeneous incompressible Navier-Stokes equations, our approach does not use Fourier analysis at all. It just relies on very basic energy arguments, interpolation, embedding and the classical regularity theory for the Stokes system (this is the only place where some assumptions have to be made on the fluid domain). For simplicity here we considered R 2 , T 2 or C 2 bounded domains, but more general domains might be treated in the same way.

In the rest of the paper, we shall focus on the case µ = 1 for simplicity. The general case follows thanks to the rescaling: ρ(t, x) := ρ(µt, x), u(t, x) := µ u(µt, x), P (t, x) := P (µt, x).

Weak solutions with time decay

This section is devoted to proving Theorem 1.1: we here construct finite energy weak solutions satisfying algebraic time decay estimates of different orders, without requiring more regularity on u 0 than L 2 . The exponential decay that can be expected in the bounded domain case (see [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF]), is not addressed to simplify the presentation, as it is not needed for achieving the main result of the paper.

2.1. Time decay estimates for the linearized momentum equation. We here consider the following linearization of the momentum equation of (INS) that will play a fundamental role throughout the paper:

(2.1) (ρu) t + div (ρv ⊗ u) -∆u + ∇P = ρf in R + × Ω, div u = 0 in R + × Ω,
where the (smooth enough) given pair (ρ, v) satisfies (1.7) and

(2.2)

ρ * = inf (t,x)∈R + ×Ω ρ(t, x) > 0 and ρ * = sup (t,x)∈R + ×Ω ρ(t, x) < ∞.
System (2.1) is supplemented with a source term f (that will be taken equal to 0 in most parts of this section) and a divergence free initial velocity field u 0 , vanishing at the boundary in the bounded domain case and, in the torus case, such that

T 2 (ρ 0 u 0 )(x) dx = 0.
This latter assumption is not restrictive owing to the Galilean invariance of the system, and will enable us to use freely the Gagliardo-Nirenberg inequality (5.2).

We aim at proving energy estimates for the solution with time weights t k/2 for k ∈ {0, 1, 2, 3}. We strive for bounds depending only on ρ * , ρ * , u 0 L 2 and on energytype norms of v, a point that is fundamental for getting not only Theorem 1.1 but also Theorem 1.3. Recall that, by energy-type norms of v we mean v L ∞ (L 2 ) and ∇v L 2 (L 2 ) . Note that owing to the energy balance, these norms may be bounded in terms of ρ * , ρ * and u 0

L 2 if v = u.
Before proceeding, let us warn the reader that we unfortunately did not find a way to avoid the tedious calculations that will follow, since it is has to be checked with the greatest care that only 'energy type norms' come into play.

2.1.1. The basic energy balance. Taking the L 2 scalar product of (2.1) with u yields

(2.3) 1 2 d dt √ ρ u 2 L 2 + ∇u 2 L 2 = Ω ρu • f dx.
From this, denoting c f = 1 if f = 0, and c 0 = 2, we get for all t ∈ R + ,

(2.4) ( √ ρ u)(t) 2 L 2 + c f t 0 ∇u 2 L 2 dτ ≤ √ ρ 0 u 0 2 L 2 + t 0 ρf 2 Ḣ-1 dτ.
Note that if f ≡ 0 then, as ρ * > 0, combining (2.4) with the Gagliardo-Nirenberg inequality (5.1) recalled in Appendix yields for all 2 ≤ p < ∞:

(2.5) u L q (L p ) ≤ C p ρ -1/2 * √ ρ 0 u 0 L 2 with 1/p + 1/q = 1/2.
2.1.2. Estimates with weight √ t. Assuming in the rest of this section that f ≡ 0, we rewrite (2.1) as follows:

(2.6) ∆u -∇P = ρ u and div u = 0 in Ω, with u := u t + v • ∇u.

Taking the L 2 (Ω; R 2 ) scalar product of (2.6) with t u yields for all t ≥ 0:

Ω ρt| u| 2 dx = t Ω ∆u • u t dx -t Ω ∇P • u t dx + t Ω ∆u -∇P ) • (v • ∇u) dx.
As div u = 0, integrating by parts and using again (2.6) yields

(2.7) 1 2 d dt Ω t |∇u| 2 dx - 1 2 Ω |∇u| 2 dx + Ω ρt | u| 2 dx = Ω ρt u • (v • ∇u) dx.
Remembering (2.3) and performing a time integration, we get for all t ≥ 0,

(2.8) 1 4 Ω ρ(t)|u(t)| 2 dx + t 2 Ω |∇u(t)| 2 dx + t 0 Ω τ ρ | u| 2 dx dτ = 1 4 Ω ρ 0 |u 0 | 2 dx + t 0 Ω τ ρ u • (v • ∇u) dx dτ.
Of course, since

u t = u -v • ∇u, one can write 1 4 √ ρu t 2 L 2 ≤ 1 2 √ ρ u 2 L 2 + 1 2 v • ∇u 2 L 2 .
Hence adding up this inequality multiplied by t, to (2.8) and using Young inequality to bound the last term of (2.8), we discover that (2.9)

ρ(t)u(t) 2 L 2 + 2 √ t∇u(t) 2 L 2 + t 0 √ ρτ u 2 L 2 + √ ρτ u τ 2 L 2 dτ ≤ √ ρ 0 u 0 2 L 2 + 6 t 0 √ ρτ v • ∇u 2 L 2 dτ.
Combining Hölder, Ladyzhenskaya inequality (0.7) and Young inequality yields

(2.10) √ ρ v • ∇u 2 L 2 ≤ ε ρ * ∇ 2 u 2 L 2 + ρ * ε √ ρv 4 L 4 ∇u 2 L 2 , ε > 0,
and taking advantage of the regularity theory of the Stokes system (recalled in Appendix) gives

(2.11) ∇ 2 u 2 L 2 + ∇P 2 L 2 ≤ C Ω ρ * √ ρ u 2 L 2 .
Hence, choosing ε > 0 suitably small in (2.10), using (2.11), then reverting to (2.9) and applying Gronwall lemma allows to conclude that there exist positive constants c Ω and C Ω depending only on Ω, such that (2.12) 

X 1 (t) ≤ √ ρ 0 u 0 2 L 2 e C v 1 (t) with C v 1 (t) := C Ω ρ * t 0 √ ρ v 4 L 4 dτ and X 1 (t) := ( √ ρ u)(t) 2 L 2 + 2 √ t∇u(t) 2 L 2 + 1 2 t 0 √ ρτ u 2 L 2 + √ ρτ u τ 2 L 2 + c Ω ρ * √ τ (∇ 2 u, ∇P ) 2 L 2 dτ.
ρu tt + ρv • ∇u t -∆u t + ∇P t = -ρ t u -ρv t • ∇u.
As div u t = 0, testing (2.13) by t 2 u t then observing that

ρ t = -div (ρv) and |u t | 2 = | u| 2 -2 u • (v • ∇u) + |v • ∇u| 2
gives after performing a few integration by parts: 1 2

d dt Ω ρt 2 |u t | 2 dx + Ω t 2 |∇u t | 2 dx = Ω tρ | u| 2 dx -2 Ω ρt u • (v • ∇u) dx + Ω tρ |v • ∇u| 2 dx + Ω t 2 div (ρv) u • u t dx - Ω t 2 ρ(v t • ∇u) • u t dx.
Adding up twice (2.3) and (2.7) to this latter inequality, we obtain:

(2.14)

d dt Ω ρ|u| 2 + t |∇u| 2 + ρt 2 2 |u t | 2 dx + Ω |∇u| 2 + ρt | u| 2 + t 2 |∇u t | 2 dx = Ω ρt |v • ∇u| 2 dx + Ω t 2 div (ρv) u • u t dx - Ω t 2 ρ(v t • ∇u) • u t dx =: I 1 + I 2 + I 3 .
Thanks to (2.10), (2.11) and Young inequality, we have (2.15)

I 1 ≤ 1 2 √ ρt u 2 L 2 + Cρ * √ ρv 4 L 4 √ t∇u 2 L 2 .
For term I 2 , an integration by parts yields

I 2 = - Ω t 2 (ρv • ∇ u) • u t dx - Ω t 2 (ρv • ∇u t ) • u dx =: I 21 + I 22 .
By (0.7), Hölder and Young inequalities, and (2.2), we have for some constant C depending only on ρ * , ρ * and Ω,

I 21 ≤ C t∇ u L 2 √ ρv L 4 tu t 1/2 L 2 t∇u t 1/2 L 2 ≤ 1 10 t∇u t 2 L 2 + t∇ u 2 L 2 + C √ ρv 4 L 4 √ ρ tu t 2 L 2 . (2.16)
The same arguments lead to (2.17)

I 22 ≤ 1 10 t∇u t 2 L 2 + t∇ u 2 L 2 + C √ ρv 4 L 4 √ ρ t u 2 L 2 .
For I 3 , one has, still owing to Hölder and Young inequalities, and (5.1) or (5.2), 

I 3 ≤ √ ρt v t L 2 t √ ρ u t L 4 √ t∇u L 4 ≤ 1 10 t∇u t L 2 ∇u L 2 + C √ ρt v t 2 L 2 t √ ρu t L 2 t∇ 2 u L 2 . (2.
d dt √ ρ u 2 L 2 + √ t∇u 2 L 2 + 1 2 √ ρtu t 2 L 2 + 1 2 ∇u 2 L 2 + √ ρt u 2 L 2 + t∇u t 2 L 2 - 1 4 t∇ u 2 L 2 √ ρv 4 L 4 √ ρt( u, u t ) 2 L 2 + √ t∇u 2 L 2 + √ ρt v t 2 L 2 t √ ρu t L 2 t∇ 2 u L 2 .
To close the estimate, we have to bound √ ρt u L 2 , t∇ 2 u L 2 and t∇ u L 2 . For the first two terms, one may use (0.7), (2.11) and the definition of u to get

t(∇ 2 u, ∇P ) L 2 ≤ C Ω ρ * t √ ρu t L 2 + ρ t 1/4 v L 4 √ t∇u 1/2 L 2 t∇ 2 u 1/2 L 2 ≤ 1 2 t∇ 2 u L 2 + C Ω ρ * t √ ρu t L 2 + ρ t 1/4 v 2 L 4 √ t∇u L 2 •
This, in the end, implies that

(2.20) 1 4 √ ρt u L 2 + c Ω √ ρ * t∇ 2 u, t∇P L 2 ≤ C t √ ρu t L 2 + t 1/4 v 2 L 4 √ t∇u L 2 •
Finally, from the definition of u, Hölder inequality and (0.7), we may write:

t∇ u L 2 ≤ t∇u t L 2 + t∇v • ∇u L 2 + tv • ∇ 2 u L 2 ≤ t∇u t L 2 + √ t∇v L 4 ∇u 1/2 L 2 t∇ 2 u 1/2 L 2 + C v L 4 t u 1/2 L 2 t∇ u 1/2 L 2 , which implies that (2.21) t∇ u L 2 ≤ 2 t∇u t L 2 + ∇u L 2 4 +C √ t∇v 2 L 4 t∇ 2 u L 2+ v 2 L 4 √ ρt u L 2 •
Let us set

X 2 (t) := ( √ ρu)(t) 2 L 2 + √ t∇u(t) 2 L 2 + 1 4 √ ρtu t 2 L 2 + 1 16 √ ρt u 2 L 2 + c Ω ρ * t(∇ 2 u, ∇P ) 2 L 2 + 1 16 t 0 ∇u 2 L 2 + √ ρτ u 2 L 2 + τ ∇u τ 2 L 2 + τ ∇ u 2 L 2 dτ.
Integrating (2.19) on [0, t], then taking advantage of (2.20) and (2.21), then, finally, using Gronwall lemma, we conclude that there exists a constant C depending only on Ω, ρ * and ρ * such that

(2.22) X 2 (t) ≤ u 0 2 L 2 e C v 2 (t) with C v 2 (t) := C sup τ ∈[0,t] τ 1/4 v(τ ) 4 L 4 + t 0 √ ρ v 4 L 4 + √ τ ∇v 4 L 4 + √ ρτ v τ 2 L 2 dτ • 2.1.4.
Estimates with weight t 3/2 . Let D t := ∂ t + v • ∇ and ü := D t u. We have 4 :

(2.23)

ρü -∆ u + ∇ Ṗ = F := ∇v • ∇P -∆v • ∇u -2∇ 2 u • ∇v.
Taking the L 2 (Ω; R 2 ) scalar product with t 3 ü, we readily get (2.24) 1 2

d dt t 3/2 ∇ u(t) 2 L 2 + t 3/2 √ ρ ü 2 L 2 = 3 2 t∇ u 2 L 2 + 5 i=1 J i with J 1 := Ω ∆ u • (t 3 v • ∇ u) dx, J 2 := - Ω ∇ Ṗ • t 3 v • (∇v • ∇u) dx, J 3 := Ω ∇ Ṗ • (t 3 v t • ∇u) dx, J 4 := Ω ∇ Ṗ • t 3 v • (v • ∇ 2 u) dx, J 5 := Ω F • t 3 ü dx.
4 Here we use the notation (∇ 2 u • ∇v

) i := 1≤j,k≤d ∂ k v j ∂j∂ k u i .
For any ε > 0, the terms J 1 to J 5 may be bounded as follows by combining Hölder inequality, Young inequality, (5.1) with p = 4 or p = 6 (and (5.4) for J 4 ):

J 1 ≤ t 3/2 ∇ 2 u L 2 v L 4 t 3/2 ∇ u L 4 ≤ ε t 3/2 ∇ 2 u 2 L 2 + C ε v 4 L 4 t 3/2 ∇ u 2 L 2 , J 2 ≤ t 3/2 ∇ Ṗ L 2 t 1/6 v L 6 √ t∇v L 6 t 5/6 ∇u L 6 ≤ C t 3/2 ∇ Ṗ L 2 t 1/6 v L 6 √ t∇v L 6 √ t∇u 1/3 L 2 t∇ 2 u 2/3 L 6 ≤ ε t 3/2 ∇ Ṗ 2 L 2 + C ε t 1/6 v 2 L 6 √ t∇v 2 L 6 √ t∇u 2/3 L 2 t∇ 2 u 4/3 L 2 , J 3 ≤ t 3/2 ∇ Ṗ L 2 tv t L 4 t 1/2 ∇u L 4 ≤ ε t 3/2 ∇ Ṗ 2 L 2 + C ε tv t 4 L 4 t 1/2 ∇u 2 L 2 + t 1/2 ∇ 2 u 2 L 2 , J 4 ≤ t 3/2 ∇ Ṗ L 2 t 1/6 v 2 L 6 t 7/6 ∇ 2 u L 6 ≤ C t 3/2 ∇ Ṗ L 2 t 1/6 v 2 L 6 √ ρt u 1/3 L 2 t 3/2 ∇ u 2/3 L 2 ≤ ε t 3/2 ∇ Ṗ 2 L 2 + C ε √ ρt u 2 L 2 + C ε t 1/6 v 6 L 6 t 3/2 ∇ u 2 L 2 , J 5 ≤ ε t 3/2 √ ρü 2 L 2 + C ε ρ * t 3/2 F 2 L 2 .
Thanks to Hölder inequality, (0.7) and (5.4), we have

t 3/2 F 2 L 2 ≤ √ t∇v 2 L 4 t(∇P, ∇ 2 u) 2 L 4 + t∇ 2 v 2 L 4 √ t∇u 2 L 4 , √ t∇v 2 L 4 √ ρt u L 2 t 3/2 ∇ u L 2 + t∇ 2 v 2 L 4 √ t∇u L 2 √ t∇ 2 u L 2 √ ρt u 2 L 2 + √ t∇ 2 u 2 L 2 + √ t∇v 4 L 4 t 3/2 ∇ u 2 L 2 + t∇ 2 v 4 L 4 √ t∇u 2 L 2 .
To close the estimates, we need to bound t 3/2 ∇ Ṗ and t 3/2 ∇ 2 u in L 2 (R + × Ω). Now, we observe that the couple ( u, ∇ Ṗ ) satisfies the inhomogeneous Stokes system (2.25)

-∆ u + ∇ Ṗ = F -ρü and div u = Tr(∇v • ∇u) in Ω with boundary condition u| ∂Ω = 0 if Ω is a bounded domain, u(t) → 0 at infinity (due to u(t) ∈ L 2 for all t > 0) in the case Ω = R 2 , and

T 2 ρ u dx = 0 if Ω = T 2 .
Hence, applying (5.4) with p = 2 guarantees that (2.26)

∇ 2 u, ∇ Ṗ 2 L 2 F 2 L 2 + ρü 2 L 2 + ∇ 2 v ⊗ ∇u 2 L 2 + ∇v ⊗ ∇ 2 u 2 L 2 .
The last two terms are parts of F. Hence bounding t 3/2 F L 2 as above and putting together with the previous inequalities, we conclude after time integration that

X 3 (t) := t 3/2 ∇ u(t) 2 L 2 + t 0 τ 3/2 ( √ ρ ü, ∇ Ṗ , ∇ 2 u) 2 L 2 dτ t 0 v 4 L 4 + τ 1/6 v 6 L 6 + τ 1/2 ∇v 4 L 4 τ 3/2 ∇ u 2 L 2 dτ + t 0 τ 1/2 ∇ 2 u, √ ρτ u 2 L 2 dτ + t 0 τ v τ 4 L 4 + τ ∇ 2 v 4 L 4 τ 1/2 ∇u 2 L 2 dτ + t 0 τ 1/6 v 2 L 6 √ τ ∇v 2 L 6 √ τ ∇u 2/3 L 2 τ ∇ 2 u 4/3 L 2 dτ.
After using Gronwall lemma and the inequalities of the previous steps, we get

(2.27) X 3 (t) ≤ C u 0 2 L 2 e C v 3 (t) with C v 3 (t) := C t 0 v 4 L 4 + (1 + τ 1/4 v 4 L 4 ) v 3 L 6 + τ 1/6 v 6 L 6 + √ τ ∇v 3 L 6 + τ 1/2 v τ 2 L 2 + τ 1/2 ∇v 4 L 4 + τ ∇ 2 v 4 L 4 + τ v τ 4 L 4 dτ.
2.2. The proof of Theorem 1.1. Let us fix some data (ρ 0 , u 0 ) such that u 0 ∈ L 2 and 0 < ρ * ≤ ρ 0 ≤ ρ * < ∞. Then we smooth out the velocity so as to get a sequence (u n 0 ) n∈N of H 1 divergence free vector-fields (vanishing at ∂Ω in the bounded domain case) that converges strongly to u 0 in L 2 . It is known (see [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF] for the bounded domain or torus cases, and [START_REF] Paicu | Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density[END_REF] for the R 2 case) that such data generate a unique global solution (ρ n , u n , ∇P n ) with relatively smooth velocity. In particular, the computations leading to the estimates of the previous subsection may be justified for ρ = ρ n , u = v = u n , and we get for all t ≥ 0 for some constant depending only on ρ * , ρ * and Ω, (2.28)

X n 0 (t) := ( √ ρ n u n )(t) 2 L 2 + 2 t 0 ∇u n 2 L 2 dτ ≤ √ ρ 0 u n 0 2 L 2 , (2.29) X n 1 (t) ≤ √ ρ 0 u n 0 2 L 2 e C n 1 (t) with C n 1 (t) := C t 0 u n 4 L 4 dτ, (2.30) X n 2 (t) ≤ √ ρ 0 u n 0 2 L 2 e C n 2 (t) with C n 2 (t) := C sup τ ∈[0,t] τ 1/4 u n (τ ) 4 L 4 + t 0 u n 4 L 4 + √ τ ∇u n 4 L 4 + √ τ u n τ 2 L 2 dτ , (2.31) X n 3 (t) ≤ C u n 0 2 L 2 e C n 3 (t) with C n 3 (t) := C t 0 (1 + τ 1/4 u n 4 L 4 ) u n 3 L 6 + τ 1/6 u n 6 L 6 + √ τ ∇v n 3 L 6 + τ 1/2 v n τ 2 L 2 + u n , τ 1/2 ∇u n , τ ∇ 2 u n , τ u n τ 4
L 4 dτ. Above, X n j for j ∈ {1, 2, 3} are the quantities defined in (2.12), (2.22) and (2.27), respectively, pertaining to (ρ n , u n , ∇P n ).

The fundamental point is that all the norms coming into play in C n 1 , C n 2 and C n 3 may be bounded by means of M := sup n∈N u n 0 L 2 , ρ * and ρ * . For C n 1 , this just stems from (2.5) with p = 4. Hence we have for some

C M := C(ρ * , ρ * , M ), sup t∈R + X n 1 (t) ≤ C M .
Combining with (0.7) and (2.28), we thus get

sup t∈R + t 1/4 u n (t) 4 L 4 u n 2 L ∞ (L 2 ) √ t∇u n 2 L ∞ (L 2 ) M 2 C M , (2.32) √ t∇u n 4 L 4 (L 4 ) √ t∇u n 2 L ∞ (L 2 ) √ t∇ 2 u n 2 L 2 (L 2 ) C 2 M , (2.33) √ ρtu n t 2 L 2 (L 2 )
C M , (2.34) whence, remembering (2.30), we have up to a change of C M , X n 2 (t) ≤ C M for all t ≥ 0. Finally, one has to bound the terms of C n 3 independently of n. Let us just treat the third one as an example. We write that, owing to (5.1) with p = 6,

∞ 0 t 1/6 u n 6 L 6 dt ∞ 0 u n 2 L 2 √ t∇u n 2 L 2 ∇u n 2 L 2 dt ≤ u n 2 L ∞ (L 2 ) √ t∇u n 2 L ∞ (L 2 ) ∇u n 2 L 2 (L 2 ) M 4 C M .
As a conclusion, we deduce that there exists a constant, still denoted by C M such that, for all n ∈ N, we have

sup t∈R + X n 0 (t) + X n 1 (t) + X n 2 (t) + X n 3 (t)) ≤ C M .
Regarding the density, the divergence free property of u n clearly ensures that

∀n ∈ N, ∀t ∈ R + , ρ * ≤ ρ n (t) ≤ ρ * .
At this point, arguing like in the classical proofs of global existence of weak solutions for (INS) (see e.g. [START_REF] Boyer | Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF][START_REF] Lions | Incompressible Models[END_REF]), one can conclude that (ρ n , u n , ∇P n ) n∈N converges weakly, up to subsequence to a global distributional solution of (INS) satisfying not only (2.2) and the usual energy inequality (0.3), but also

sup t∈R + X 1 (t) + X 2 (t) + X 3 (t) ≤ C M .

More decay estimates

The final goal of this section is to prove that the solutions to the linearized momentum equation (2.1) with ρ satisfying (2.2) and v verifying the regularity properties listed in Theorem 1.1, supplemented with divergence free u 0 in B 0 ρ 0 ,1 satisfy (0.8). Achieving the result requires several steps. The cornerstones are real interpolation, the use of Lorentz spaces for the time variable and estimates in Ḣ1 and Ḣ-1 for the solution to (2.1) (in addition to those that have been proved hitherto).

3.1.

A priori estimates involving Ḣ1 regularity of u 0 . In this part, we prove estimates for (2.1) in terms of ∇u 0 ∈ L 2 .

3.1.1.

Basic estimates in Ḣ1 . Taking the L 2 scalar product of the first line of (2.1) with u t yields, after integrating by parts in the term with ∆u,

(3.1) 1 2 d dt ∇u 2 L 2 + √ ρ u t 2 L 2 = Ω √ ρ(f -v • ∇u) • ( √ ρ u t ) dx.
By virtue of Young and Hölder inequality, we have

Ω √ ρ(f -v • ∇u) • ( √ ρ u t ) dx ≤ 1 2 √ ρ u t 2 L 2 + √ ρ f 2 L 2 + √ ρ v • ∇u 2 L 2 .
Since u = u t + v • ∇u, we may write

√ ρ u L 2 ≤ √ ρ u t L 2 + √ ρ v • ∇u L 2 .
Remembering (2.10), this yields for some constant c Ω depending only on Ω:

(3.2) d dt ∇u 2 L 2 + 1 4 √ ρ (u t , u) 2 L 2 + c Ω ρ * ∇ 2 u, ∇P 2 L 2 ≤ 4 √ ρ f 2 L 2 .
In the end, combining with Gronwall lemma, we get

(3.3) ∇u(t) 2 L 2 + 1 4 t 0 √ ρ (u t , u) 2 L 2 dτ + c Ω ρ * t 0 ∇ 2 u, ∇P 2 L 2 dτ ≤ e Cρ * t 0 √ ρ v 4 L 4 dτ ∇u 0 2 L 2 + 4 t 0 e -Cρ * τ 0 √ ρ v 4 L 4 dτ √ ρ f 2 L 2 dτ • 3.1.2.
Decay estimates with weight √ t: Assuming that f ≡ 0, we proceed as for proving (2.22) except that we take the L 2 scalar product of (2.13) with tu t , instead of t 2 u t . In this way, we get

(3.4) 1 2 d dt √ ρtu t 2 L 2 + 1 2 ∇u 2 L 2 + √ t∇u t 2 L 2 = Ω tdiv (ρv) u • u t dx - Ω tρ(v t • ∇u) • u t dx - Ω ρ(v • ∇u) • u t dx.
Combining (5.1), Young inequality and (2.10) gives

-2 Ω ρ(v • ∇u) • u t dx ≤ 1 2 √ ρu t 2 L 2 + c Ω ρ * ∇ 2 u 2 L 2 + Cρ * √ ρv 4 L 4 ∇u 2 L 2 .
Hence, adding up half (3.2) to (3.4) yields

(3.5) 1 2 d dt √ ρtu t 2 L 2 + ∇u 2 L 2 + √ t∇u t 2 L 2 + 1 6 √ ρ(u t , u) 2 L 2 + c Ω ∇ 2 u, ∇P 2 L 2 ≤ C √ ρv 4 L 4 ∇u 2 L 2 + Ω tdiv (ρv) u • u t dx - Ω tρ(v t • ∇u) • u t dx.
We integrate by parts in the second term of the right-hand side, and get:

Ω tdiv (ρv) u • u t dx = - Ω t ρv • ∇ u • u t dx - Ω t ρv • ∇u t • u dx.
The two integrals may be handled as for proving (2.22). We get

Ω tdiv (ρv) u • u t dx ≤ 1 4 √ t(∇ u, ∇u t ) 2 L 2 + C √ ρ v 4 L 4 √ ρt( u, u t ) 2 L 2 .
To bound the last term of (3.5), we proceed as follows (for all ε > 0):

Ω tρ(v t • ∇u) • u t dx ≤ √ ρtv t L 2 √ ρtu t L 4 ∇u L 4 ≤ ε ∇ 2 u 2 L 2 + ε √ t∇u t 2 L 2 + C ε √ ρtv t 2 L 2 √ ρtu t L 2 ∇u L 2 .
From the definition of u and (2.11), it is easy to get

(3.6) √ t(∇ 2 u, ∇P, √ ρ u) L 2 ≤ C √ ρt u t L 2 + √ ρ v 2 L 4 √ t∇u L 2 •
By Hölder inequality, (5.1) and (5.4) with p = 4, we also notice that

√ t∇ u L 2 - √ t∇u t L 2 √ t∇v L 4 ∇u 1/2 L 2 ∇ 2 u 1/2 L 2 + v L 4 √ ρt u 1/2 L 2 √ t∇ u 1/2 L 2 which implies that √ t∇ u L 2 ≤ 2 √ t∇u t L 2 + 1 4 ∇ 2 u L 2 + C √ t∇v 2 L 4 ∇u L 2 + v 2 L 4 √ ρt u L 2 •
Inserting all the above inequalities in (3.5), then using Gronwall lemma and (2.12), we discover that

(3.7) Y 1 (t) ∇u 0 2 L 2 e C v 1 (t) with C v 1 (t) := C t 0 √ τ ∇v, v 4 L 4 + √ ρτ v τ 2 L 2 dτ and Y 1 (t) := √ ρt(u t , u) 2 L 2 + ∇u 2 L 2 + c Ω ρ * √ t(∇ 2 u, ∇P ) 2 L 2 + t 0 √ τ (∇u τ , ∇ u) 2 L 2 + √ ρ(u τ , u) 2 L 2 + c Ω ρ * ∇ 2 u, ∇P 2 L 2 dτ.
3.1.3. Decay estimates with weight t: Still assuming f ≡ 0, we now take the L 2 scalar product of (2.23) with tD t (t u) and get 1 2

d dt ∇(t u) 2 L 2 + √ ρD t (t u) 2 L 2 = Ω tF -t∇ Ṗ + ρ u • D t (t u) dx + Ω ∆(t u) • (v • ∇(t u)) dx.
Hence for all ε > 0,

(3.8) 1 2 d dt ∇(t u(t)) 2 L 2 + √ ρ D t (t u) 2 L 2 ≤ ε ∇ 2 (t u) 2 L 2 + √ ρ D t (t u) 2 L 2 + 1 ε v • ∇(t u) 2 L 2 + √ ρ u 2 L 2 + tF -t ∇P √ ρ 2 L 2 •
To continue the computations, we need to estimate t Ṗ and t∇ 2 u. To this end, one can remember Inequality (2.26) and observe that

√ ρtü L 2 ≤ √ ρ D t (t u) L 2 + √ ρ u L 2 .
Hence, taking ε small enough in (3.8) yields:

(3.9) ∇(t u(t)) 2 L 2 + √ ρD t (t u), ∇(t Ṗ ), ∇ 2 (t u) 2 L 2 √ ρ u 2 L 2 + v • ∇(t u) 2 L 2 + t∇ 2 v ⊗ ∇u 2 L 2 + t∇ 2 u ⊗ ∇v 2 L 2 + t∇v • ∇P 2 L 2 .
The first term of the right-hand side may be bounded according to (3.3). So we are left with bounding all the other terms. We have

v • ∇(t u) 2 L 2 ≤ C ε v 4 L 4 ∇(t u) 2 L 2 + ε ∇ 2 (t u) 2 L 2 t∇ 2 v ⊗ ∇u 2 L 2 t∇ 2 v 2 L 4 ∇u 2 L 2 ∇ 2 u 2 L 2 1/2 t∇ 2 u ⊗ ∇v 2 L 2 + t∇v • ∇P 2 L 2 √ t(∇ 2 u, ∇P ) 2 L 4 √ t∇v 2 L 4 .
Using regularity estimates for (2.6) and (0.7) yields

√ t(∇ 2 u, ∇P ) 2 L 4 √ t u 2 L 4 u L 2 t∇ u L 2 . Hence t∇ 2 u ⊗ ∇v 2 L 2 + t∇v • ∇P 2 L 2 √ t∇v 2 L 4 u L 2 t∇ u L 2 u 2 L 2 + √ t∇v 4 L 4 t∇ u 2 L 2 .
Plugging all these inequalities in (3.8), using (3.3) and integrating on [0, t] gives

Y 2 (t) := ∇(t u(t)) 2 L 2 + t 0 √ ρD τ (τ u), ∇(τ Ṗ ), ∇ 2 (τ u) 2 L 2 dτ t 0 v 4 L 4 + √ τ ∇v 4 L 4 τ ∇ u 2 L 2 dτ + ∇u 0 2 L 2 e C t 0 v 4 L 4 dτ 1 + τ ∇ 2 v 4 L 4 t (L 4 ) •
At this stage, Gronwall lemma enables us to conclude that

(3.10) Y 2 (t) ≤ C ∇u 0 2 L 2 e C v 2 (t) with C v 2 (t) := C t 0 v, √ τ ∇v, τ ∇ 2 v 4 L 4 dτ.

3.1.4.

Estimates in Ḣs for s ∈ (0, 1). If we denote by E the linear operator that associates to (u 0 , f ) the solution u to (2.1) on R + × Ω, then the previous inequalities (2.4) and (3.3) and the fact that the norms in L 2 (ρ dx) or L 2 (dx) are equivalent (recall (0.4)) ensure that:

• E maps L 2 (Ω) × L 2 (R + ; ρ Ḣ-1 (Ω)) to L ∞ (R + ; L 2 (Ω)) ∩ L 2 (R + ; Ḣ1 (Ω)); • E maps Ḣ1 (Ω) × L 2 (R + ; ρL 2 (Ω)) to L ∞ (R + ; Ḣ1 (Ω)) ∩ L 2 (R + ; Ḣ2 (Ω)).
Consequently, the complex interpolation theory ensures that, for all s ∈ [0, 1],

E : Ḣs (Ω) × L 2 (R + ; ρ Ḣs-1 (Ω)) → L ∞ (R + ; Ḣs (Ω)) ∩ L 2 (R + ; Ḣs+1 (Ω))
with, for some constant C ρ depending only on ρ * and ρ * , the bound:

(3.11) sup t∈[0,T ] u(t) 2 Ḣs + T 0 u 2 Ḣs+1 dt ≤ C ρ e Csρ * T 0 √ ρ v 4 L 4 dt u 0 2 Ḣs + T 0 ρf 2 Ḣs-1 dt •
In the case f ≡ 0, due to (2.22), (3.10), for all t > 0, the linear operator that associates to u 0 the function t u(t) with u being the solution to (2.1) with no source term maps L 2 to L 2 and Ḣ1 to Ḣ1 . Hence it maps Ḣs to Ḣs for all s ∈ [0, 1] and we have:

(3.12) t u(t) Ḣs ≤ Ce s 2 C v 2 (t) u 0 Ḣs for all t > 0.
3.2. Estimates in negative Sobolev spaces. We here prove estimates for (2.1) in the case of initial data in Sobolev space with negative regularity. For simplicity, we just consider the situation where f ≡ 0.

3.2.1. Data in Ḣ-1 . To estimate √ ρ u in L 2 (0, T × Ω), we consider the following backward parabolic system:

(3.13)      ρw t + ρv • ∇w + ∆w + ∇Q = ρu, div w = 0, w| t=T = 0.
By definition of w, we have

T 0 Ω u • (ρu) dx dt = T 0 Ω u • ρw t + ρv • ∇w + ∆w + ∇Q dx dt.
Integrating by parts and remembering that ∂ t ρ + div (ρv) = 0 and div w = 0 yields

T 0 Ω ρ|u| 2 dx dt = - T 0 Ω ρ u -∆u + ∇P • w dx dt + Ω (ρu)(T ) • w(T ) -ρ 0 u 0 • w(0) dx.
As w(T ) = 0 and u satisfies (2.1) with f ≡ 0, we conclude that

T 0 Ω ρ|u| 2 dx dt = - Ω ρ 0 u 0 • w(0) dx ≤ ρ 0 u 0 Ḣ-1 ∇w(0) L 2 .
Now, adapting the proof of (3.3) to (3.13) yields

∇w(0) 2 L 2 ≤ e ρ * T 0 √ ρ v 4 L 4 dt √ ρu 2 L 2 (0,T ×Ω) . Hence we have (3.14) √ ρ u L 2 (0,T ×Ω) ≤ ρ 0 u 0 Ḣ-1 e ρ * 2 T 0 √ ρ v 4 L 4 dt .
In order to bound ρu(T ) in Ḣ-1 , we start from

(ρu)(T ) Ḣ-1 = sup w T Ḣ1 =1 Ω ρ(T )u(T ) • w T dx,
and solve (3.13) with no source term and data w T at time t = T. Hence,

0 = T 0 Ω ρw t + ρv • ∇w + ∆w + ∇Q • u dx dt = - T 0 Ω ρ(∂ t u + v • ∇u -∆u • w dx dt + Ω ρ(T )u(T ) • w T -ρ 0 u 0 • w(0) dx.
Since u satisfies (2.1) with f ≡ 0 and div w = 0, we get

(3.15) Ω ρ(T )u(T ) • w T dx = Ω ρ 0 u 0 • w(0) dx. As ∇w(0) L 2 ≤ e ρ * 2 T 0 √ ρ v 4 L 4 dt ∇w T L 2 , we conclude that (3.16) (ρu)(T ) Ḣ-1 ≤ ρ 0 u 0 Ḣ-1 e ρ * 2 T 0 √ ρ v 4 L 4 dt • 3.2.2.
Estimates in Ḣ-s for s ∈ (0, 1). We start from:

(ρu)(T ) Ḣ-s = sup w T Ḣs =1 Ω ρ(T )u(T ) • w T dx.
Using (3.15) and, again, the duality between Ḣs and Ḣ-s , we get for any w T ∈ Ḣs with norm equal to 1,

Ω ρ(T )u(T ) • w T dx ≤ ρ 0 u 0 Ḣ-s w(0) Ḣs ,
where w is the solution of (3.13) with no source term and data w T at time T.

Keeping (3.11) in mind, we easily conclude that

(3.17) (ρu)(T ) Ḣ-s ≤ C ρ 0 u 0 Ḣ-s e Cs 2 ρ * T 0 √ ρ v 4 L 4 dτ .
Finally, as the linear operator that associates to (u 0 , 0) the solution u to (2.1) maps ρ 0 Ḣ-1 to L 2 (0, T ; L 2 ) and ρ 0 L 2 to L 2 (0, T ; Ḣ1 ) (see (3.14) and (2.4)), it maps ρ 0 Ḣ-s to L 2 (0, T ; Ḣ1-s ) with the estimate • For any 0 ≤ s ≤ 2 and 0 ≤ s ≤ 1, we have

(3.18) u L 2 (0,T ; Ḣ1-s ) ≤ C ρ 0 u 0 Ḣ-s e Cs 2 ρ * T 0 √ ρ v 4 L 4 dτ .
(3.19) u(t) Ḣs ≤ C ρ,v t -s+s 2 ρ 0 u 0 Ḣ-s , t > 0.
• For any 0 ≤ s, s ≤ 1,

(3.20) tu t (t) Ḣs + t u(t) Ḣs ≤ C ρ,v t -s+s 2 ρ 0 u 0 Ḣ-s , t > 0.
• For any 0 ≤ s ≤ 1,

t u(t), u(t) Ḣ1 ≤ Ce C v 2 (t)+ C v 3 (t) t s-1 2 u 0 Ḣs , (3.21) u(t), u t (t) L 2 ≤ Ce C v 2 (t)+ C v 3 (t) t -2-s 2 u 0 Ḣs , (3.22) u(t) Ḣs ≤ Ce C v 2 (t)+ C v 3 (t) t -1+s 2 u 0 Ḣ1 . (3.23)
Proof. The previous parts guarantee that:

t k/2 ∇ k u(t) L 2 ≤ C ρ,v u 0 L 2 for k = 0, 1, 2, (3.24) t 1+k/2 ∇ k (u t , u)(t) L 2 ≤ C ρ,v u 0 L 2 for k = 0, 1. (3.25) Since ρu L 2 u L 2 , Inequality (3.19
) in the case s = 0 immediately follows from (3.24) with k = 0, 2 and complex interpolation. In order to attain negative values of s one can argue by duality as follows for all t > 0:

ρ(t)u(t) L 2 = sup w L 2 =1 Ω ρ(t)u(t) • w dx = sup w L 2 =1 Ω ρ 0 u 0 • w(0) dx ≤ ρ 0 u 0 Ḣ-s sup w L 2 =1 w(0) Ḣs ,
where w(0) stands for the solution at time 0 of the backward Stokes system (3.13) with no source term and data w at time t. Now, using the inequality we have just proved (that, obviously, also holds true for (3.13)), we discover that w(0) Ḣs ≤ Ct -s /2 w L 2 , whence:

(3.26) ρ(t)u(t) L 2 ≤ Ct -s /2 ρ 0 u 0 Ḣ-s .
Since Inequality (3.24) is valid on any interval [t 0 , t] (if replacing u 0 by u(t 0 ) of course), one can assert that for all s ∈ [0, 2], we have 

u(t) Ḣs ≤ Ct -s 2 (ρu)(t/2) L 2 ,
• If 1 < p ≤ 2 ≤ q ≤ ∞ then (3.27) u(t) L q + √ t ∇u(t) L q ≤ C ρ,v t 1 q -1 p u 0 L p . • If 1 < p ≤ 2 ≤ q < ∞ then (3.28) t( u, u t , ∇ 2 u, ∇P )(t) L q ≤ C ρ,v t 1 q -1 p u 0 L p .
Proof. Combining Gagliardo-Nirenberg inequality (5.1) and (3.24) with k = 0, 1, 2, it is easy to get:

(3.29) u(t) L q + √ t∇u(t) L q ≤ C ρ,v t 1 q -1 2 u 0 L 2 , 2 ≤ q < ∞ while (3.25) ensures that (3.30) u t (t), u(t) L q ≤ C ρ,v t 1 q -3 2 u 0 L 2 .
Since (u, ∇P ) satisfies the Stokes system (2.6), Inequality (5.4) gives

(3.31) ∇ 2 u(t) L q + ∇P (t) L q ≤ C ρ,v t 1 q -3 2 u 0 L 2 , 2 ≤ q < ∞.
Remember that 5

(3.32) z L ∞ ≤ C z 1/2 L 4 ∇z 1/2 L 4 .
Taking first z = u and using (3.29) with p = 4, then z = ∇u and using (3.31) with p = 4 allows to reach the index q = ∞ in (3.29).

In (3.29) and (3.31), the term u 0 L 2 may be replaced with u(t/2) L 2 . Consequently, using (2.2), (3.26) and Sobolev embedding L p → Ḣ-1+2/p for all 1 < p ≤ 2 ensures that

u(t) L 2 ≤ C ρ,v t 1 2 -1 p ρ 0 u 0 Ḣ1-2 p ≤ C ρ,v t 1 2 -1 p u 0 L p
which, plugged into (3.29) and (5.4) completes the proof of (3.27) and of (3.28) for all admissibles values of p and q. 

t 0 ∇u 2 L 2 + √ τ (∇ 2 u, ∇P ) 2 L 2 + √ τ ( u, u τ ) 2 L 2 + τ (∇u τ , ∇ u) 2 L 2 + τ 3/2 ü 2 L 2 + τ 3/2 (∇ 2 u, ∇ Ṗ ) 2 L 2 dτ ≤ C ρ,v u 0 2 L 2 .
This will enable us to prove the following family of decay estimates: Proposition 3.3. The following inequalities hold true:

τ 1 2 -1 q ∇u L 2 t (L q ) ≤ C ρ,v u 0 L 2 for all 2 ≤ q ≤ ∞, (3.34) τ 1-1 q ( u, u t ) L 2 t (L q ) ≤ C ρ,v u 0 L 2 for all 2 ≤ q ≤ ∞, (3.35) τ 1-1 q (∇ 2 u, ∇P ) L 2 t (L q ) ≤ C ρ,v u 0 L 2 for all 2 ≤ q < ∞, (3.36) τ 3 2 -1 q ∇ u L 2 t (L q ) ≤ C ρ,v u 0 L 2 for all 2 ≤ q < ∞. (3.37)
Proof. Except for q = ∞, Inequality (3.34) follows from Gagliardo-Nirenberg inequality (5.1) and the fact that

∇u L 2 t (L 2 ) + √ τ ∇ 2 u L 2 t (L 2 ) ≤ C ρ,v u 0 L 2 .
Similarly, except for the case q = ∞, Inequality (3.35) for u stems from (5.1) and

τ ∇ u L 2 t (L 2 ) + √ τ u L 2 t (L 2 ) ≤ C ρ,v u 0 L 2 .
Now, since (u, P ) satisfies (2.6), the regularity properties of the Stokes system pointed out in (5.4), and (3.35) guarantee that τ 1-1 Note that (3.33) also implies that

τ 3/2 ∇ 2 u L 2 t (L 2 ) + τ ∇ u L 2 t (L 2 ) ≤ C ρ,v u 0 L 2 ,
and thus (3.37), by (5.1). Using it with q = 4 as well as (3.35) (also with q = 4) and (3.32) gives (3.35) for u and q = ∞.

To prove that u t satisfies (3.35), it suffices to check that

τ 1-1 q v • ∇u L 2 t (L q ) ≤ C ρ,v u 0 L 2 for all 2 ≤ q ≤ ∞
. Now, by Hölder inequality, we have

τ 1-1 q v • ∇u L 2 t (L q ) ≤ τ 1 2 v L ∞ t (L ∞ ) τ 1 2 -1 q ∇u L 2 t (L q ) .
The term with v is energy-like (see (3.27)), which completes the proof.

3.4. The Lipschitz control and other properties needed for stability. In the present subsection, we point out some additional properties of the velocity field that are valid in the case where u 0 is in B 0 ρ 0 ,1 . One of them is the Lipschitz control. We shall also prove that the regularity B 0 ρ 0 ,1 is preserved by the flow, and that other norms that will be needed in the proof of uniqueness and stability are finite.

All these results follow from the Sobolev estimates we proved in the previous pages and on the dynamic interpolation argument presented before : fix some u 0 in B 0 ρ 0 ,1 and a sequence (u 0,j ) j∈Z such that (3.38) u 0 = j∈Z u 0,j with ρ 0 u 0,j ∈ Ḣ-1/2 , u 0,j ∈ Ḣ1/2 for all j ∈ Z, and j∈Z 2 -j/2 u 0,j Ḣ1/2 + 2 j/2 ρ 0 u 0,j Ḣ-1/2 ≤ 2 u 0 B 0 ρ 0 ,1

.

Then, for each j ∈ Z, we solve the linear system

(3.39)      ρ∂ t u j + ρv • ∇u j -∆u j + ∇P j = 0, div u j = 0, u j | t=0 = u 0,j .
From (3.38) and the uniqueness properties of System (2.1) in the energy space, we deduce that

(3.40) u = j∈Z u j .
3.4.1. The Lipschitz bound. The starting point is the following Gagliardo-Nirenberg inequality:

(3.41) ∇z L ∞ ≤ C z 1/4 L 4 ∇ 2 z 3/4
L 4 , which, owing to the elliptic estimates for the Stokes system and Sobolev embedding implies that for all t > 0 and j ∈ Z,

∇u j (t) L ∞ ≤ Ct -3/4 u j (t) 1/4 L 4 t uj (t) L 4 ≤ Ct -3/4 u j (t) 1/4 Ḣ1/2 t uj (t) Ḣ1/2 .
Hence, taking advantage of (3.11) and of (3.12) gives

∇u j (t) L ∞ ≤ C ρ,v t -3/4 u 0,j Ḣ1/2 .
Combining with (3.19) and the fact that we also have

∇u j (t) L ∞ ≤ C ρ,v t -3/4 u(t/2) Ḣ1/2 , we conclude that ∇u j (t) L ∞ ≤ C ρ,v t -5/4 ρ 0 u 0,j Ḣ-1/2 .
Hence arguing as in for the heat equation in Section 1, we conclude that

(3.42) ∞ 0 ∇u L ∞ dt ≤ C ρ,v u 0 B 0 ρ 0 ,1 .
Remark 3.4. Recall the following more accurate interpolation inequality:

(3.43) ∇z Ḃ1/2 4,1 ≤ C z 1/2 L 4 ∇ 2 z 3/4 L 4 .
Consequently, the above dynamic interpolation procedure actually gives

∞ 0 ∇u Ḃ1/2 4,1 dt ≤ C ρ,v u 0 B 0 ρ 0 ,1 .
Since Ḃ1/2 4,1 → C b , this ensures that the flow of the velocity field is uniformly C 1 with respect to the space variable.

3.4.2.

Propagating the initial regularity. Owing to (3.11) and to (3.17) with s = 1/2, we have for all j ∈ Z and t ≥ 0,

u j (t) Ḣ1/2 ≤ C ρ,v u 0,j Ḣ1/2 and (ρu j )(t) Ḣ-1/2 ≤ C ρ,v ρ 0 u 0,j Ḣ-1/2 .
Hence, multiplying the first (resp. second) inequality by 2 -j/2 (resp. 2 j/2 ), then summing up on j ∈ Z yields

u(t) B 0 ρ(t),1 ≤ C ρ,v u 0 B 0 ρ 0 ,1 .

3.4.3.

Additional bounds for the pressure and the time derivative of the velocity. In addition to the Lipschitz bound on velocity, our proof of uniqueness will require that √ t u and √ t∇P are in L 4/3 (R + ; L 4 ), and we will also need the property that u and √ tD u are in L 1 (R + ; L 2 ) for proving the stability of the flow map. Again, in light of the decomposition (3.40) and of the triangle inequality, in order to prove that √ t u is in L 4/3 (R + ; L 4 ), it suffices to estimate t uj for all j ∈ Z. Now, owing to Sobolev embedding and the following inequalities (that stem from (3.12) and (3.20) with s = s = 1/2):

uj (t) Ḣ1/2 ≤ C ρ,v t -1 u 0,j Ḣ1/2 and uj (t) Ḣ1/2 ≤ C ρ,v t -3/2 ρ 0 u 0,j Ḣ-1/2 ,
we may write for all A j > 0,

√ t uj 4/3 L 4/3 (L 4 ) ≤ C ∞ 0 t 2/3 u j 4/3 Ḣ1/2 dt ≤ C ρ,v A j 0 t 2/3 (t -1 u 0,j Ḣ1/2 ) 4/3 dt + ∞ A j t 2/3 (t -3/2 ρ 0 u 0,j Ḣ-1/2 ) 4/3 dt ≤ C ρ,v A 1/3 j u 0,j 4/3 Ḣ1/2 + A -1/3 j ρ 0 u 0,j 4/3 Ḣ-1/2 ,
which gives, if taking A j = 2 -2j and using (5.4),

(3.44) ( √ t u, √ t∇ 2 u, √ t∇P ) L 4/3 (R + ;L 4 ) ≤ C ρ,v u 0 B 0 ρ 0 ,1 .
Similarly, in order to bound u in L 1 (R + ; L 2 ), it suffices to get appropriate bounds in terms of the data for uj in L 1 (R + ; L 2 ), for all j ∈ Z. The following inequalities (that stem from (2.22) and (3.7)):

uj (t) L 2 ≤ C ρ,v t -1 u 0,j L 2 and uj (t) L 2 ≤ C ρ,v t -1/2 ∇u 0,j L 2
and complex interpolation give

uj (t) L 2 ≤ C ρ,v t -3/4 u 0,j Ḣ1/2 .
Furthermore, owing to (3.20), we have for all j ∈ Z:

uj (t) L 2 ≤ C ρ,v t -5/4 ρ 0 u 0,j Ḣ-1/2 .
Hence , we have for all j ∈ Z and

A j > 0, ∞ 0 uj (t) L 2 dt ≤ A j 0 uj (t) L 2 dt + ∞ A j uj (t) L 2 dt ≤ C ρ,v A j 0 t -3/4 u 0,j Ḣ1/2 dt + ∞ A j t -5/4 ρ 0 u 0,j Ḣ-1/2 dt ≤ C ρ,v A 1/4 j u 0,j Ḣ1/2 + A -1/4 j ρ 0 u 0,j Ḣ-1/2 •
Taking A j = 2 -2j , summing up on j then using the regularity properties of the Stokes system thus gives

(3.45) ∇ 2 u, ∇P, u L 1 (R + ;L 2 ) ≤ C ρ,v u 0 B 0 ρ 0 ,1 .
In the same way, one can prove that

(3.46) √ tD u L 1 (R + ;L 2 ) ≤ C ρ,v u 0 B 0 ρ 0 ,1
.

It suffices to use that, as a consequence of (3.20) and (3.21), we have

√ t∇ uj (t) L 2 ≤ C ρ,v t -3/4 u 0,j Ḣ1/2 and √ t∇ uj (t) L 2 ≤ C ρ,v t -5/4 ρ 0 u 0,j Ḣ-1/2 .

A global well-posedness result for large data

This section is devoted to the proof of Theorem 1.3 and of stability estimates.

4.1. The proof of existence. Consider data (ρ 0 , u 0 ) satisfying the hypotheses of Theorem 1.3. As pointed out in the introduction, the space B 0 ρ 0 ,1 is embedded in L 2 σ . Hence Theorem 1.1 provides us with a global weak solution (ρ, u, ∇P ) satisfying the properties therein, and it is only a matter of checking that this solution has the additional properties that are listed in Theorem 1.3. To do so, we fix some decomposition j u 0,j of u 0 given by Definition 1.2 and look, for all j ∈ Z, at the solution u j to the linear system (2.1) with density ρ, transport field u and initial data u 0,j . Since each u 0,j is in L 2 σ ∩ Ḣ1/2 ∩ (ρ 0 Ḣ-1/2 ), standard techniques yield a unique global solution (u j , ∇P j ) that satisfies for all t ≥ 0,

1 2 ρ(t) u j (t) 2 L 2 + t 0 ∇u j 2 L 2 dτ = 1 2 √ ρ 0 u 0,j 2 L 2 , (4.1) (ρu j )(t) Ḣ-1/2 ≤ C(ρ * , ρ * , u 0 L 2 ) ρ 0 u 0 Ḣ-1/2 , (4.2) u j (t) Ḣ1/2 ≤ C(ρ * , ρ * , u 0 L 2 ) u 0 Ḣ1/2 . (4.3)
Remembering (1.9), this ensures that the L 2 -valued series j u j converges normally on R + . Its sum u thus also belongs to the energy space. Furthermore, as for each j ∈ Z, we have u j ∈ C(R + ; L 2 ) (observe that t 3/4 u j t is in L ∞ (R + ; L 2 ) owing to (3.22)), we deduce that u ∈ C(R + ; L 2 ). Next, if we denote u n := |j|≤n u j , then we see that for all n ∈ N,

∂ t (ρ(u n -u))+div (ρu⊗(u n -u))-∆(u n -u)+∇(P n -P ) = 0, div (u n -u) = 0, which implies 1 2 ρ(t) (u n -u)(t) 2 L 2 + t 0 ∇(u n -u) 2 L 2 dτ = 1 2 √ ρ 0 (u n (0) -u(0)) 2 L 2 .
As the right-hand side tends to 0 for n going to 0, the velocity field u satisfies the energy balance (0.3), and it is also easy to conclude that, like u, it satisfies (2.1) with density ρ, transport field u and initial data u 0 . In particular,

∂ t (ρ(u -u)) + div (ρu ⊗ (u -u)) -∆(u -u) + ∇(P -P ) = 0, div (u -u) = 0.
As (u -u)(0) = 0, and the two solutions are in the energy space, they must coincide. Now, Inequalities (4.2) and (4.

3) ensure that one can propagate the regularity B 0 ρ 0 ,1 , getting (1.10). Likewise, justifying that u satisfies (0.8), that ( u, √ tD u, D 2 u, ∇P ) ∈ L 1 (R + ; L 2 ) and that √ t u ∈ L 4/3 (R + ; L 4 ) may be achieved by following the arguments of the previous section. The fundamental point is that all the bounds that are needed for the u j 's in the process only depend on ρ * , ρ * , u 0 L 2 , ρ 0 u 0,j Ḣ-1/2 and u 0,j Ḣ1/2 .

4.2.

The proof of uniqueness. Let (ρ 1 , u 1 , ∇P 1 ) and (ρ 2 , u 2 , ∇P 2 ) be two solutions fulfilling the properties listed in Theorem 1.3, and corresponding to data (ρ 1 0 , u 1 0 ) and (ρ 2 0 , u 2 0 ), respectively. As in [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF], in order to prove that (ρ 1 , u 1 , ∇P 1 ) ≡ (ρ 2 , u 2 , ∇P 2 ) in the case where the two initial data coincide, we shall compare the solutions at the level of their own Lagrangian coordinates. To do so, we consider for i = 1, 2, the flow X i of u i that is defined by the following (integrated) ODE: (3.27) with p = 2 and q = ∞), there exists a unique continuous flow X i on (0, T ) × Ω, that is Lipschitz with respect to the space variable.

(4.4) X i (t, y) = y + t 0 u i (τ, X i (τ, y)) dτ. Since ∇u i is in L 1 (R + ; L ∞ ) and √ tu i is in L ∞ (0, T × Ω) (see
In Lagrangian coordinates the density is equal to the initial density. As for the velocity and the pressure, defined by (4.5)

Q i (t, y) = P i (t, X i (t, y)) and v i (t, y) = u i (t, X i (t, y)), they satisfy (4.6)

ρ i 0 v i t -div v i ∇ v i v i + ∇ v i Q i = 0, div v i v i = 0,
where ∇ v i := (A i ) ∇ y and div v i := div y (A i •) = (A i ) : ∇ y with A i := (DX i ) -1 . The fact that ∇u i is in L 1 (R + ; L ∞ ) and the other properties of regularity ensure that (INS) and (4.6) (with time independent density) are equivalent.

Observe that, due to (4.4) and to the definition of v i , we have Hence, since det DX i ≡ 1 (owing to div v i = 0), we have for i = 1, 2:

(4.8) A i (t) = Id + t 0 ∂ 2 v i,2 dτ - t 0 ∂ 2 v i,1 dτ - t 0 ∂ 1 v i,2 dτ t 0 ∂ 1 v i,1 dτ

•

Hence δA := A 2 -A 1 depends linearly on ∇δv (with δv := v 2 -v 1 ) as follows:

(4.9) δA(t) = t 0 ∂ 2 δv 2 dτ - t 0 ∂ 2 δv 1 dτ - t 0 ∂ 1 δv 2 dτ t 0 ∂ 1 δv 1 dτ • Now, setting ∆ v i := div v i ∇ v i and δQ := Q 2 -Q 1 , we discover that (δv, δQ) satisfies: (4.10) ρ 1 0 δv t -∆ v 1 δv + ∇ v 1 δQ = ∆ v 2 -∆ v 1 v 2 -(∇ v 2 -∇ v 1 )Q 2 -δρ 0 v 2 t , div v 1 δv = (div v 1 -div v 2 )v 2 = -div (δAv 2 ).
In order to prove uniqueness in the case where the initial data are the same and, more generally, stability estimates with respect to the initial data, using the basic energy method consisting in taking the L 2 scalar product of (4.10) with δv is not appropriate since one cannot eliminate the pressure term (there is no reason why we should have div v 1 δv = 0). To overcome the difficulty, we proceed as in [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF], solving first the equation (4.11) div v 1 w = -div (δAv 2 ) = -δA : ∇v 2 with δA := A 2 -A 1 , Then, we look at the system for z := δv -w, namely:

(4.12)

     ρ 1 0 z t -∆ v 1 z + ∇ v 1 δQ = ∆ v 2 -∆ v 1 v 2 -(∇ v 2 -∇ v 1 )Q 2 -ρ 1 0 w t + ∆ v 1 w -δρ 0 v 2 t , div v 1 z = 0,
supplemented with z| t=0 = δv 0 . Solving (4.11) relies on the following lemma: Lemma 4.1. Assume that Ω is a C 2 bounded domain, the torus or the whole space. Fix T > 0 and denote E T := w ∈ C([0, T ]; L 2 ), ∇w ∈ L 2 (0, T ×Ω), w| ∂Ω = 0 and w t ∈ L 4/3 (0, T ×Ω) • There exists a constant c depending only on Ω such that whenever the divergence free vector-field u satisfies (4. [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF] ∇u L 2 (0,T ×Ω) + ∇u L 1 (0,T ;L ∞ ) ≤ c, then, for all vector-field k ∈ C([0, T ]; L 2 ) such that div k ∈ L 2 (0, T × Ω) and k t ∈ L 4/3 (0, T × Ω), there exists a vector-field w in the space E T satisfying div (Aw) = div k,

where A is defined from u as in (4.8), and the inequalities:

w(t) L 2 ≤ C k(t) L 2 for all t ∈ [0, T ], (4.14) ∇w L 2 T (L 2 ) ≤ C div k L 2 T (L 2 ) , (4.15) w t L 4/3 T (L 4/3 ) ≤ C k t L 4/3 T (L 4/3 ) + ∇u L 2 T (L 2 ) w L 4 T (L 4 ) • (4.16)
Proof. With the notation of Lemma 5.1 in Appendix, we introduce the map

Φ : w -→ z := B k + (Id -A)w •
It is only a matter of proving that Φ admits a fixed point. That Φ maps E T to E T follows from Lemma 5.1 and easy modifications of the computations below. Hence, as E T is a Banach space, it suffices to show that the linear map Φ is strictly contractive. To do so, take two elements w 1 and w 2 of E T . Then, we have Φ(w 2 ) -Φ(w 1 ) = B (Id -A)δw with δw := w 2 -w 1 .

Remembering (4.8) and that B : L 2 → L 2 , we thus have

(4.17) Φ(w 2 ) -Φ(w 1 ) L ∞ T (L 2 ) ≤ C ∇u L 1 T (L ∞ ) δw L ∞ T (L 2
) . Next, using again (4.8) and the fact that div (Id -A)δw = Id -A : ∇δw, we readily get

(4.18) ∇(Φ(w 2 ) -Φ(w 1 )) L 2 T (L 2 ) ≤ C ∇u L 1 T (L ∞ ) ∇δw L 2 T (L 2 ) . Finally, using that (Id -A)δw t = (Id -A)δw t -A t δw yields for a.e. t ∈ [0, T ], Φ(w 2 ) -Φ(w 1 ) t (t) L 4/3 (Id -A(t))δw t (t) L 4/3 + A t (t)δw(t) L 4/3 ∇u L 1 t (L ∞ ) δw t L 4/3 + ∇u L 1 t (L 2 ) δw L 4 ∇u L 1 t (L ∞ ) δw t L 4/3 + ∇u L 1 t (L 2 ) δw 1/2 L 2 ∇δw 1/2 L 2 . (4.19)
Putting (4.17), (4.18) and (4.19) together, we conclude that

(Φ(w 2 ) -Φ(w 1 ) E T ≤ C ∇u L 1 T (L ∞ ) + ∇u L 2 T (L 2
) δw E T . Hence, if (4.13) is satisfied with a suitable small c > 0 then Φ is contractive, which ensures the existence of w in E T satisfying the desired equation. Finally, using the fact that we thus have w = Bk + B((Id -A)w), and that div ((Id -A)w) = (Id -A ) : ∇w and ((Id -A)w) t = (Id -A)w t -A t w, mimicking the above calculations gives (4.14), (4.15) and (4.16).

In what follows, we assume that T has been chosen so that (4.13) is satisfied for u 1 and u 2 , and we define w on [0, T ]×Ω according to the above lemma with k = -δA v 2 . We shall use repeatedly that, owing to (4.9) and Cauchy-Schwarz inequality, we have (4.20) max t -1/2 δA L ∞ T (L 2 ) , (δA) t L 2 (0,T ×Ω) ≤ ∇δv L 2 (0,T ×Ω) . Hence, thanks to (4.14), we have for all t ∈ [0, T ], (4.21)

w(t) L 2 ≤ C √ tv 2 (t) L ∞ ∇δv L 2 (0,t×Ω) .
Next, as (δAv 2 ) t = δA t v 2 + δA v 2 t , Inequality (4.16) (before time integration) and (4.9) guarantee that (4.22)

w t L 4/3 ≤ C ∇v 1 L 2 w L 4 + ∇δv L 2 v 2 L 4 + δA L 2 v 2 t L 4 •
Finally, using div (δAv 2 ) = δA : ∇v 2 , Inequalities (4.15) and (4.20) yields (4.23)

Dw(t) L 2 ≤ C ∇δv L 2 t (L 2 ) √ t∇v 2 L ∞ t (L ∞
) . Now, taking the L 2 (0, t × Ω) scalar product of the first equation of (4.12) with z and integrating by parts in some terms yields

(4.24) 1 2 ρ 1 0 z 2 L ∞ (0,t;L 2 ) + t 0 ∇ v 1 z 2 L 2 dτ = 1 2 ρ 1 0 δu 0 2 L 2 + 5 j=1 I j (t)
with

I 1 (t) := - t 0 Ω δA(A 2 ) + A 1 δA ∇v 2 : ∇z dx dτ, I 2 (t) := - t 0 Ω δA ∇Q 2 • z dx dτ, I 3 (t) := - t 0 Ω ρ 1 0 w τ • z dx dτ, I 4 (t) := - t 0 Ω (A 1 ) ∇w : (A 1 ) ∇z dx dτ, I 5 (t) := - t 0 Ω δρ 0 v 2 t • z dx dτ.
We shall often use that, due to (4.8), we have

(4.25) ∇z L 2 (0,T ×Ω) ∇ v 1 z L 2 (0,T ×Ω) .
From this, we easily get

I 1 (t) ≤ C t 0 τ -1 2 δA(τ ) L 2 √ τ ∇v 2 (τ ) L ∞ ∇ v 1 z(τ ) L 2 dτ.
Hence, using (4.20) and Young inequality, (4.26)

I 1 ≤ C √ τ ∇v 2 2 L 2 t (L ∞ ) ∇δv 2 L 2 (0,t×Ω) + 1 8 t 0 ∇ v 1 z 2 L 2 dτ.
Next, by (4.20), (4.25), Hölder inequality and (0.7), we have

I 2 ≤ C t 0 τ -1/2 δA L 2 √ τ ∇Q 2 L 4 z 1/2 L 2 ∇z 1/2 L 2 dτ, ≤ 1 8 t 0 ∇ v 1 z 2 L 2 dτ + C τ -1/2 δA 4/3 L ∞ t (L 2 ) z 2/3 L ∞ t (L 2 ) t 0 √ τ ∇Q 2 4/3 L 4 dτ.
Hence, in light of (4.20), of Young inequality and of (0.9), we have

(4.27) I 2 ≤ 1 8 t 0 ∇ v 1 z 2 L 2 + 1 4 ∇δv 2 L 2 dτ + C ρ 1 0 z 2 L ∞ t (L 2 ) √ τ ∇Q 2 4 L 4/3 t (L 4 )
.

In order to bound I 3 , we start with the inequality

I 3 ≤ ρ * t 0 w τ L 4/3 z L 4 dτ.
Taking advantage of (4.22) to bound w τ , and of Gagliardo-Nirenberg and Young inequalities yields Just using (4.20) yields

I 3 t 0 z 1/2 L 2 ∇z 1/2 L 2 ∇v 1 L 2 w L 4 + v 2 L 4 ∇δv L 2 + δA L 2 v 2 τ L 4 dτ ≤ 1 8 t 0 ∇ v 1 z 2 L 2 dτ + 1 32 t 0 ∇δv 2 L 2 dτ + C t 0 v 2 4 L 4 z 2 L 2 dτ + I 3,1 + I 3,
I 32 ≤ ∇δv 4/3 L 2 t (L 2 ) z 2/3 L ∞ t (L 2 ) √ τ v 2 τ 4/3 L 4/3 t (L 4 )
.

In order to bound I 31 , one has to use (4.21) and (4.23), which yields

I 31 ≤ C t 0 z 2/3 L 2 ∇v 1 4/3 L 2 √ τ v 2 2/3 L ∞ ∇δv 2/3 L 2 τ (L 2 ) τ -1/2 δA(τ ) 2/3 L 2 √ τ ∇v 2 2/3 L ∞ dτ ≤ C ∇δv 4/3 L 2 t (L 2 ) z 2/3 L ∞ t (L 2 ) t 0 √ τ v 2 2/3 L ∞ ∇v 1 4/3 L 2 √ τ ∇v 2 2/3 L ∞ dτ.
This enables us to get the following bound for I 3 :

(4.28)

I 3 (t) ≤ 1 8 ∇ v 1 z 2 L 2 t (L 2 ) + 1 16 ∇δv 2 L 2 t (L 2 ) + C v 2 4 L 4 t (L 4 ) + t 0 √ τ v 2 2/3 L ∞ ∇v 1 4/3 L 2 √ τ ∇v 2 2/3 L ∞ dτ 3 + √ τ v 2 τ 4 L 4/3 t (L 4 ) ρ 1 0 z 2 L ∞ t (L 2 ) .
Next, thanks to (4.23), (4.20), and Cauchy-Schwarz and Young inequality,

I 4 ≤ C t 0 ∇w L 2 ∇ v 1 z L 2 dτ ≤ C t 0 τ -1/2 δA L 2 √ τ ∇v 2 L ∞ ∇ v 1 z L 2 dτ, ≤ 1 8 t 0 ∇ v 1 z 2 L 2 dτ + C √ τ ∇v 2 2 L 2 (0,t;L ∞ ) ∇δv 2 L 2 (0,t×Ω) . (4.29)
Finally, it is obvious that (4.30)

I 5 (t) ≤ δρ 0 / ρ 1 0 L ∞ ρ 1 0 z L ∞ t (L 2 ) v 2 t L 1 t (L 2 )
. So plugging (4.26), (4.27), (4.28), (4.29) and (4.30) in (4.24) and taking t = T yields

ρ 1 0 z 2 L ∞ T (L 2 ) + ∇ v 1 z 2 L 2 T (L 2 ) ≤ ρ 1 0 δu 0 2 L 2 + A(T ) ρ 1 0 z 2 L ∞ T (L 2 ) + 1 8 + C √ t∇v 2 2 L 2 T (L ∞ ) ∇δv 2 L 2 T (L 2 ) + 2 δρ 0 / ρ 1 0 2 L ∞ v 2 t 2 L 1 T (L 2 ) with A(T ) := C v 2 4 L 4 T (L 4 ) + √ tv 2 t 4 L 4/3 T (L 4 ) + √ τ ∇Q 2 4 L 4/3 T (L 4 ) + t 0 √ τ v 2 2/3 L ∞ ∇v 1 4/3 L 2 √ τ ∇v 2 2/3 L ∞ dτ 3 •
The regularity properties of the constructed solutions guarantee that A(∞) is finite, and Lebesgue dominated convergence theorem thus ensures that if T is small enough, then

(4.31) max 8C √ t∇v 2 2 L 2
T (L ∞ ) , 2A(T ) ≤ 1. Under this hypothesis, the above inequality becomes

(4.32) 1 2 ρ 1 0 z 2 L ∞ T (L 2 ) + ∇ v 1 z 2 L 2 T (L 2 ) ≤ ρ 1 0 δu 0 2 L 2 + 1 4 ∇δv 2 L 2 T (L 2 ) + C δρ 0 2 L ∞ v 2 t 2 L 1 
T (L 2 ) . Since ∇δv = ∇z + ∇w, we may write owing to (4.20), (4.23) and (4.25),

∇δv 2 L 2 T (L 2 ) ≤ 2 ∇z 2 L 2 T (L 2 ) + 2 ∇w 2 L 2 T (L 2 ) ≤ 5 2 ∇ v 1 z 2 L 2 T (L 2 ) s + C √ t∇v 2 2 L 2 T (L ∞ ) ∇δv 2 L 2
T (L 2 ) . Hence, under assumption (4.31) (up to a change of C if needed), we have

(4.33) ∇δv 2 L 2 (0,T ×Ω) ≤ 3 ∇ v 1 z 2 L 2 (0,T ×Ω) . Plugging this inequality in (4.32) gives (4.34) 1 2 ρ 1 0 z 2 L ∞ T (L 2 ) + 1 4 ∇ v 1 z 2 L 2 T (L 2 ) ≤ C ρ 1 0 δu 0 2 L 2 + δρ 0 2 L ∞ v 2 t 2 L 1 
T (L 2 ) • In the case where the two solutions correspond to the same initial data, this ensures that z ≡ 0 on [0, T ]. Then, remembering (4.33) and (4.21), one can conclude to uniqueness on [0, T ], then on R + by standard bootstrap. 

ρ 1 0 δv L ∞ T 0 (L 2 ) + ∇ v 1 δv L 2 T 0 (L 2 ) ≤ C(1 + K) ρ 1 0 δu 0 L 2 + δρ 0 L ∞
where we have denoted for all T ∈ [0, ∞]:

A(T ) := v 2 4 L 4 T (L 4 ) + √ t(v 2 t , ∇Q 2 ) 4/3 L 4/3 T (L 4 ) +(1 + K) ∇v 1 2 L 2 T (L 2 ) + √ τ ∇v 2 2 L 2 T (L ∞ ) + v 2 t L 1 T (L 2 )
. Now, if we consider data that belong to a bounded subset of B 0 ρ 0 ,1 then K in (4.35) and A(∞) can be uniformly bounded. By iterating the procedure that led to (4.36), this allows to get in the end (4.37)

ρ 1 0 δv L ∞ T (L 2 ) + ∇ v 1 δv L 2 T (L 2 ) ≤ Ce C A(∞) ρ 1 0 δu 0 L 2 + δρ 0 L ∞ • Then,
reverting to the Eulerian coordinates gives the following stability statement: Theorem 4.2. Consider two solutions (ρ 1 , u 1 , P 1 ) and (ρ 2 , u 2 , P 2 ) corresponding to initial data (ρ 1 0 , u 1 0 ) and (ρ 2 0 , u 2 0 ) given by Theorem 1.3. Assume that 0 < ρ * ≤ ρ 1 0 , ρ 2 0 ≤ ρ * and max u 1 0 Ḃ0

ρ 1 0 ,1 , u 2 0 Ḃ0 ρ 2 0 ,1 ≤ M.
Then we have:

(4.38) ρ 1 0 δu L ∞ T (L 2 ) + ∇δu L 2 T (L 2 ) ≤ C ρ * ,ρ * ,M ρ 1 0 δu 0 L 2 + δρ 0 L ∞ ,
and, for all p ∈ [2, ∞), (4.39) δρ(t) Ẇ -1,p ≤ C p,ρ * ,ρ * ,M δρ 0 Ẇ -1,p + t

1 2 + 1 p ρ 1 0 δu 0 L 2 + δρ 0 L ∞ •
Proof. Although our regularity assumptions are weaker, we shall follow [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF] to bound the difference of the velocities. The starting point is the relation:

∇ y δv = K 1 +K 2 +K 3 with K 1 (t, y) := ∇ y δX(t, y) • ∇ x u 2 (t, X 2 (t, y)), K 2 (t, y) := ∇ y X 1 (t, y) • ∇ x δu(t, X 2 (t, y))

and K 3 (t, y) := ∇ y X 1 (t, y) • ∇ x u 1 (t, X 2 (t, y)) -∇ x u 1 (t, X 2 (t, y)) • Since ∇δu(t, X 2 (t, y)) = A 1 (t, y)K 2 (t, y) and the flow X 2 is measure preserving, the above decomposition implies that

∇δu L 2 ≤ A 1 L ∞ ∇δv L 2 + K 1 L 2 + K 3 L 2 •
Bounding K 1 may be done as in [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF]. We get for all t ≥ 0,

K 1 (t) L 2 ≤ C √ t∇u 2 (t) L ∞ ∇δv L 2 t (L 2 ) .
For bounding K 3 , we use the relation

K 3 (t, y) = ∇X 1 (t, y) • 2 1
∇ 2 u 1 (t, X s (t, y)) • dX s ds (t, y) ds where the 'interpolating flow' X s stands for the solution to X s (t, y) = y + t 0 (2 -s)u 1 (τ, X s (τ, y)) + (s -1)u 2 (τ, X s (τ, y)) dτ.

As X s (t, •) is also measure preserving, it is easy to prove that (again, see [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF]):

dX s ds (t, •) L 4 ≤ C δu L 1 t (L 4 ) .
Thanks to that and to Hölder inequality, we deduce that

K 3 (t) L 2 ≤ C 1 + ∇u 1 L 1 t (L ∞ ) ) t 3/4 ∇ 2 u 1 (t) L 4 δu L 4 t (L 4
) . Hence, in the end, if T is chosen so that max

T 0 ∇u 1 (t) L ∞ dt, T 0 ∇u 2 (t) L ∞ dt ≤ 1,
then we have, using also (5.4)

∇δu L 2 T (L 2 ) 1 + √ t∇u 2 L 2 T (L ∞ ) ∇δv L 2 T (L 2 ) + t 3/4 u1 L 2
T (L 4 ) δu L 4 T (L 4 ) . The last term may be handled by means of (0.7), and one ends up with ρ 1 δu L ∞ T (L 2 ) . Remember that the constructed solutions satisfy √ t∇u 2 ∈ L 2 (R + ; L ∞ ) and note that, since

t 3/4 u1 L 2 T (L 4 ) ≤ C t u1 1/2 L ∞ T (L 2 ) √ tD u1 1/2 L 1
T (L 2 ) , Inequalities (2.22) and (3.46) guarantee that t 3/4 u1 is in L 2 (R + ; L 4 ). So we are left with bounding √ ρ 1 δu in L ∞ (0, T ; L 2 ). To do so, we use, as in [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF] the following relation:

ρ 1 0 (y)δv(t, y) = ρ 1 (t, X 1 (t, y)) δu(t, X 1 (t, y))+ Since both the terms with √ tDu 2 and with tD 2 u 2 may be bounded in terms of ρ * , ρ * and u 2 0 L 2 only, we end up with

ρ 1 δu L ∞ T (L 2 ) ≤ 2 ρ 1 0 δv L ∞ T (L 2 ) + C(ρ * , ρ * , u 2 0 L 2 ) ∇δu L 2 T (L 2 )
. Putting this inequality together with (4.40) and remembering (4.37) allows to conclude that there exists an absolute constant C such that for small enough T, we have

ρ 1 0 δu L ∞ T (L 2 ) + ∇δu L 2 T (L 2 ) ≤ C ρ 1 0 δu 0 L 2 + δρ 0 L ∞ ,
then arguing by induction and using the bounds on u 1 and u 2 in terms of the data yields (4.38).

Finally, the difference between the (Eulerian) densities may be bounded by resorting to the classical theory of transport equation. Indeed, we have ∂ t δρ + div (δρ u 2 ) = -div (ρ 1 δu). Remark 4.3. In the bounded or torus cases, one can take advantage of exponential decay to get a time independent bound. The details are left to the reader.

Appendix

Here we recall some results that played a key role throughout the paper. The first one is the following Gagliardo-Nirenberg inequality that extends (0.7):

(5.1)

z L p ≤ C p z 2/p L 2 ∇z 1-2/p L 2 , 2 ≤ p < ∞.
It holds true with the same constant in R 2 and for any z ∈ H 1 0 (Ω) in a general domain Ω, or in the torus T 2 provided the mean value of z is zero. In the torus case however, we rather are in situations where ) p-2 .

Then, (5.2) follows from z L 2 ≤ z L 2 .

Next, we recall a well known result for the inhomogeneous Stokes equations:

(5.3) -∆w + ∇Q = f and div w = g in Ω with data f ∈ L p (Ω) and g ∈ Ẇ 1,p (Ω), 1 < p < ∞.

In the bounded domain case (with g having mean value 0), it is known (see e.g. [START_REF] Galdi | An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state problems[END_REF]) that (5.3) admits a unique solution (w, ∇Q) ∈ W 2,p (Ω) × L p (Ω) such that w| ∂Ω = 0, and that the following bound holds true:

(5.4)

∇ 2 w, ∇Q L p ≤ C f L p + ∇g L p •
A similar result holds true in Ω = R 2 or Ω = T 2 provided we consider only solutions such that w → 0 at infinity (R 2 case) or T 2 aw dx = 0 for some nonnegative bounded function a, with mean value 1 (torus case). Indeed: one can set ∇Q = Qf with Q := -(-∆) -1 ∇div , then solve the Poisson equation -∆w = f + ∇Q. Uniqueness is given by the supplementary conditions that are prescribed above.

Finally, in the proof of stability and uniqueness, we used the following result. Lemma 5.1. Assume that Ω is a C 2 bounded domain, the torus or the whole space. Then, there exists a linear operator B that maps L p to L p for all p ∈ (1, ∞) such that for all k ∈ L p (Ω; R d ) (with mean value 0 in the case Ω = T d ) we have div (Bk) = div k.

Furthermore, if div k ∈ L q (Ω) for some q ∈ (1, ∞), then we have Bk ∈ W 1,q 0 (Ω; R n ) with ∇Bk L q ≤ C div k L q and if k (seen as a function from R + to some space L r with 1 < r < ∞) is differentiable for almost every t ∈ R + , then so does Bk, and we have (Bk) t L r ≤ C k t L r for a.e. t ∈ R + .

Proof. In the case where Ω is a bounded domain, the existence of B as well as the first two properties have been established in [10]. The third one stems from the fact that, owing to the continuity of B, we may write in the L r meaning that (Bk) t (t) = lim h→0 Bk(t + h) -Bk(t) h = lim h→0 B k(t + h) -k(t) h = Bk t .

(0. 9 )

 9 ρ * := ess inf x∈Ω ρ 0 (x) > 0 and ρ * := ess sup x∈Ω ρ 0 (x) < ∞.
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 333131 More time decay estimates. In this paragraph, we point out a number of time decay estimates for (2.1) in Sobolev and Lebesgue spaces that may be deduced from what we proved hitherto and basic interpolation results. Sobolev decay estimates. They are summarized in the following proposition: The following estimates hold:

  which, combined with (3.26) (at time t/2) completes the proof of(3.19) for all 0 ≤ s ≤ 2 and 0 ≤ s ≤ 1.Next, using (3.25) with k = 0, 1 and complex interpolation yields (3.20) for s = 0 and all s ∈ [0, 1]. Since the inequality also holds true if u 0 is replaced with u(t/2), using again (3.26) yields the desired inequality for all s ∈ [0, 1].By the same token, combining the above result with the continuity properties resulting from Inequalities (2.27), (3.3), (3.7) and (3.10) gives the last three inequalities of the statement. The details are left to the reader. 3.3.2. Decay estimates in Lebesgue spaces. Inequalities (3.24) and (3.25) also imply the following result. Proposition 3.2. With the same convention as in Proposition 3.1, the following inequalities hold true:

(4. 7 )0

 7 DX i (t, y) = Id + t Dv i (τ, y) dτ.

2 with I 31 3 L 2 v 2 τ 4 / 3 L 4

 23132434 dτ.

( 4 . 2 T 2 T 2 T (L 2 )+ t 3 /4 u1 2 L 2 T

 42222322 40) ∇δu L (L ∞ ) ∇δv L (L 4 )

0 e -τ 0 ∇u 2 L 2 L

 022 Hence, we may write for all p ∈ [1, ∞] and t ≥ 0,δρ(t) Ẇ -1,p ≤ δρ 0 Ẇ -1,p + t ∞ dτ ρ 1 δu L p dτ e ∞ dτ .Combining Inequality (4.38) with Gagliardo-Nirenberg inequality provides us with a control of δu in L 2p p-2 (R + ; L p ) for all p ∈ [2, ∞). In the end, we get (4.39).

  4.3. Continuity of the flow map.Here we consider the case where the two solutions considered in the previous paragraph correspond to possibly different data. As a first, we have to observe that (4.33) and (4.34) together imply that if

	(4.35)	√	tv 2	L ∞ (R + ×Ω) ≤ K,
	then, in light of Inequalities (4.21), (4.33) and (4.34), there exists some constant
	c > 0 such that if A(T 0 ) ≤ c, then we have
	(4.36)			

2 1

 2 Du 2 (t, X s (t, y)) dX s ds (t, y) ds •Hence, as all the flows X s are measure preserving and ρ 1 is bounded from below,ρ 1 (t)δu(t) L 2 ≤ ρ 1 0 δv(t) L 2 + C ρ * Du 2 (t) L 4 δu L 1 L 2 + C t 3/4 Du 2 (t) L 4 δu L 4

							t (L 4 )	
	≤	ρ 1 0 δv(t) t (L 4 )	
	≤	ρ 1 0 δv(t) L 2				
		+ C	√	tDu 2 (t)	1/2 L 2 tD 2 u 2 (t)	1/2 L 2 ∇δu	1/2 L 2 t (L 2 )	ρ 1 (t)δu	1/2 L ∞

t (L 2 ) .

  for some nonnegative measurable function a with positive mean value (say 1 with no loss of generality). Then, we claim that(5.2) z L p ≤ C p,a zIndeed, decomposing z into z = z + z with z := T 2 z dx, we have:|z| 2 | z| p-2 dx |z| p-2 z 2 L 2 + z 2 L p z p-2 L p . Now,z is mean free and thus satisfies (5.1). Besides, according to [11, Ineq. (A.2)], |z| ≤ Clog e + a L 2 ∇z L 2 . Clog e + a L 2 ∇z p-2 L 2 z 2 L 2 + C p z 2 L p z

	|z| p dx =	|z| 2 | z + z| p-2 dx
	T 2	T 2
	|z| p-2 z 2 L 2 +	T 2
	Hence	
	z p L p ≤ 2/p L 2 ∇z	1-2/p L 2
		az dx = 0
		T 2
	2/p L 2 ∇z	1-2/p L 2

with C p,a := C p log p-2 p e + a L 2 •

q (∇ 2 u, ∇P ) L 2 t (L q ) ≤ C ρ,v u 0 L 2 for all 2 ≤ q < ∞. Putting together this latter inequality and (3.34) with q = 4, and remembering (3.32) yields (3.34) for q = ∞.[START_REF] Chemin | Inhomogeneous incompressible viscous flows with slowly varying initial data[END_REF] In the torus case, this inequality holds under the assumption T 2 az dx = 0 for some nonnegative function a with mean value 1. The idea of the proof is similar to that of (5.2).

If Ω is the torus or the whole space, then one can just set B := -(-∆) -1 ∇div .