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Abstract

In recent years, an increasing number of diverse Engineered Nano-Materials
(ENMs), such as nanoparticles and nanotubes, have been included in many
technological applications and consumer products. However, the desirable
and unique properties of ENMs are accompanied by potential hazards whose
impact is not always (well) evaluated or even known. Alongside established
methods for experimental and computational characterisation, physics-based
modelling tools like molecular dynamics are increasingly considered for safe
and sustainable by design strategies that put user safety and sustainability at
the centre of the design and development of new products. Hence, the further
development of such tools is stimulated by numerous regulatory agencies.

This paper stems from a community effort and present the outcome of
a four-year long discussion on the benefits, capabilities and limitations of
adopting physics-based modelling for computing suitable features of nano-
materials that can be used for toxicity assessment of nanomaterials in com-
bination with data-based models and experimental assessment of toxicity
endpoints. We review how modern multi-scale physics-based models can
generate advanced system-dependent (intrinsic) or time-dependent (extrin-
sic) descriptors/features of ENMs, with the former being related to the bare
nanoparticle and the latter to the dynamic fingerprint upon entering bio-
logical media. The focus is on: (i) effectively representing all nanoparticle
attributes for multicomponent nanomaterials, (ii) generation and inclusion of
intrinsic nanoform properties, (iii) inclusion of selected extrinsic properties,
(iv) the necessity of considering a distribution of structural advanced features
rather than an average, (v) the implementation of adverse outcome pathways
methodology into nanoinformatics. Such a review enables us to identify and
highlight a number of key challenges associated with ENMs data generation,
curation, representation and use within machine learning or other data based
models. Finally, the set up of dedicated databases as well as the develop-
ment of grouping and read-across strategies based on the mode of action
of ENMs using omics methods are identified as emerging methodologies for
safety assessment and reduction of animal testing.

Keywords: nanoinformatics, nanosafety, engineered nanomaterials,
physicochemical descriptors, safe and sustainable by design, materials
modeling, machine learning, grouping approaches, multiscale modeling
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Nomenclature

AIMD ab initio Molecular Dynam-
ics

AO(P) Adverse Outcome (Path-
way)

API Application Programming
Interface

BD Brownian Dynamics

CG(MD) Coarse-Grained (Molecu-
lar Dynamics)

CSS Chemicals Strategy for Sus-
tainability

DFT Density Functional Theory

DFTB Density Functional Tight-
Binding

DLVO Derjaguin-Landau-Verwey-
Overbeek

ENM Engineered NanoMaterials

FAIR Findable, Accessible, Inter-
operable and Reusable

GA Genetic Algorithm

GAN Generative Adversarial Net-
work

HOMO Highest Occupied Molecu-
lar Orbital

hPF hybrid Particle-Field

KE Key Events

LCA Life Cycle Assessment

LDM Liquid Drop Model

LUMO Lowest Unoccupied Molec-
ular Orbital

MD Molecular Dynamics

MDReaxFF Reactive Force Field
Molecular Dynamics

MIE Molecular Initiating Events

ML Machine Learning

MoA Mode of Action

MODA MOdelling DAta fiche

NAM New Approach Methodolo-
gies

PMF Potential of Mean Force

QM Quantum Mechanics

QNAR Quantitative Nanostructure-
Activity Relationship

QSAR Quantitative Structure-
Activity Relationship

QSPR Quantitative Structure-
Property Relationship

RNN Recurrent Neural Network

S(S)bD Safe (and Sustainable) by
Design

SASA Solvent Accessible Surface
Area

SCFT Self-Consistent Field The-
ory

VAE Variational Autoencoder
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1. Introduction

ENMs perform dedicated tasks in catalysis [1], medicine [2, 3], agriculture
[4], food [5] and energy [6, 7] among many others, because of their exceptional
characteristics. ENMs underpin new products and devices requiring control
of matter at the nanometer scale, and the possibility to fine-tune their syn-
thesis protocols results in countless variants with different physicochemical
properties. The exceptional properties of ENMs - stemming from the manip-
ulation of matter at the atomic scale - can also come with yet little-known
risks to human health and the environment. In fact, the biological activity of
ENMs is thought to be closely related to their physicochemical characteris-
tics, which may be altered by the biological medium itself during the lifetime
of ENMs (e.g., protein corona formation and structural modifications). Both
the intrinsic and extrinsic physicochemical features of ENMs are key for
recognizing and predicting hazards as well as assessing safety characteristics.
The former are related to chemical composition, crystal structure, size, shape
and surface structure, whereas the latter pertain to the non-trivial interac-
tion with the environment. As such, a complete set of those features (here
referred to as advanced descriptors) are critical in nanoinformatics for data-
based model development, such as the popular quantitative nanostructure-
activity/property models (QSAR/QSPR). In this respect, predictive models
offer unprecedented opportunities for knowledge-based optimization and de-
velopment of new ENMs improving their functionality and - at the same time
- minimizing unexpected health and/or environmental risks. Preliminary in
silico screening of possible versions of new ENMs can thus lead to optimal
nanostructures with reduced hazardous characteristics even before the pro-
duction stage. However, the pace of further progress in nanotechnology will
critically depend on a synergistic knowledge integration of experimental ev-
idence with data from reliable theoretical and computational models.

The combined study of materials modeling (nanostructure characteriza-
tion) and predictive models for the design of safe nanostructures with de-
sired properties (safe and sustainable by design perspective, SSbD) brings
along new opportunities both in the academic and the industrial context.
Nonetheless, significant challenges stemming from both the extremely de-
manding computational models (physics-based and data-based) and the prac-
tically unlimited number of possible combinations of different substances and
nanoforms are ahead. Even for a single material, there is a plethora of pos-
sible bulk and surface structures, defects and terminations, each delivering
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unique properties. This general challenge can only be tackled by an inte-
grated approach. Here, we critically analyze the process associated with the
in silico evaluation of the ENMs descriptors, with the aim of highlighting
challenges and opportunities when using physics-based modelling for gener-
ating them.

Our discussion takes place under the broad perspective of the European
and US legislation and their strategies related to risk assessment of nanoma-
terials (e.g., the EU Materials Modelling Council, the EU REACH regulation,
US-EU nanoEHS initiative, the EU US Nanoinformatics Roadmap 2030[8]).
Despite the well-accepted relationship between physicochemical properties
(i.e. descriptors) and the (eco)-toxicological endpoints, a comprehensive com-
putational description of ENMs (and understanding of the basic mechanisms
behind their interaction with biological media) is still very challenging.

First, in this work we focus on some of the (physics-based) computational
approaches for estimating advanced descriptors at time and space scales rele-
vant to nanosafety. In this respect, we provide an overview on the approaches
for investigating ENMs electronic and atomistic structure (thus focusing on
intrinsic features) up to the mesoscopic description of interactions with bi-
ological matter, such as proteins or cell membranes (hence moving towards
more extrinsic features).

Second, more recent data-based models and approaches for nanosafety
assessment are analyzed. As shown in the pictorial representation reported
in the top part of Figure 1, computations can be performed at different
space/time scales by solving appropriate physical model equations with ad-
vanced descriptors collected from each simulator. Advanced descriptors can
be passed across different time and space scales, realizing a chain of multiscale
simulations. [9] This vision is certainly fascinating, however, as discussed be-
low, it comes with formidable challenges: as opposed to the high accuracy
data extracted by the physics-based models, the inherent computational cost
is often prohibitively high. This leads to a low data variance that renders the
subsequent translation of such data into input for QSAR/QSPR (or other
data-based) models extremely difficult if not impossible. Details on obstacles
at every relevant scale are discussed, and the current status and challenges
with the European regulatory context on materials modeling and in silico
estimate of descriptors for nanosafety purposes are reported below.[10]
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Figure 1: TOP: Physics-based models ensure high fidelity at a high computational cost,
making it possible to investigate only a restricted region of the ENM design space. Hence,
the necessary variance is needed to describe the large variety of parameters of interest
(e.g., particle size, coating, etc.). Thus, predicting advanced descriptors for nanosafety has
to stem from different sources, such as literature data and crude approximation models
characterized by a lower fidelity level. BOTTOM: Discrepancy in fidelity and variance is
to be properly orchestrated, possibly using ML models.[11]
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2. Safe-and-sustainable-by-Design (SSbD) strategy: From nanoform
description to safety modeling

Within the European Green Deal, the Chemicals Strategy for Sustainabil-
ity (CSS)[12] identified several actions to reduce negative impacts on human
health and the environment associated with chemicals, materials, products,
and services commercialized or introduced onto the EU market. In particu-
lar, the ambition of the CSS is to phase out the most harmful substances and
substitute, as far as possible, all other substances of concern and otherwise
minimize their use and track them. This objective requires novel approaches
to analyze and compare all life cycle stages, effects, releases, and emissions
for specific chemicals, materials, products, and services, and moving towards
zero pollution for air, water, soil, and biota. The SSbD framework aims to
support the design and development of safe and sustainable chemicals and
materials with research and innovation (R&I) activities.

Although the safety of nanomaterials has been of concern to the scientific
community for more than two decades, there is still a limited number of
validated and regulatory accepted alternative nano-specific approaches for
assessing their human safety. In fact, the current knowledge about various
adverse effects induced by nanomaterials after exposure does not yet enable
a broad development of the SSbD strategy.

2.1. The safety and sustainability assessment
Reliable and efficient methods allowing, in a timely manner, to assess

exposure risks should be first developed. In this context, the development of
new alternative methods combining in vitro, chemical analysis as well as in
silico models to predict the potential adverse impact of chemicals, including
nanomaterials, on human health is highly needed.[13] These tools are ex-
pected to be useful for regulators and policymakers; therefore, they need to
consider biologically plausible and regulatory-relevant events essential for the
occurrence of possible adverse outcome.[14] In line with this point of view is
the strategy that integrates nanoinformatics models with the Adverse Out-
come Pathways (AOPs).[15, 16] The AOP is a framework that describes a
sequence of biological events following stressor exposure and leading to vari-
ous Adverse Outcomes (AO). This concept links Molecular Initiating Events
(MIE) to the series of key cellular- or tissue-level changes (so-called Key
Events, KE) that culminate in the manifestation of AO. By supporting the
identification of AOP-relevant events and information that might be applied
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to the weight of evidence safety decisions, AOP can serve as a framework for
developing nanoinformatics models useful for regulatory actions. This would
mean that events recognized as crucial to manifest nano-specific adverse ef-
fects should be considered for modeling. As an example, recently, Jagiello et
al.[15] proposed a model that linked the structural properties of multiwalled
carbon nanotubes with the recruitment of pro-inflammatory mediators into
the lungs, that finally leads to lung fibrosis according to AOP173. Apply-
ing the AOP framework in this model enables to understand events triggers
following nanotube exposure and occurring in different biological organiza-
tions (molecular, cellular, tissue, organ, individual). To sum up, with the
development of the AOP-anchored nanoinoformatics models (models for key
biologically plausible and regulatory-relevant events), the usage and accep-
tance of those approaches in making regulatory decisions about the safety of
nanomaterials exposure can increase.

Additionally, the JRC (2022)[17] reviewed previous decision frameworks
for materials safety to investigate how sustainability (broadly including social
and economic aspects) was considered, and define a set of criteria to integrate
safety and sustainability. Sustainability assessment can use conventional
sustainability metrics adapted for nanotechnology products and processes.
In this context, Stieberova et al.[18] used techno-economic and life cycle
environmental criteria for sustainability assessment, to compare alternative
nanoparticle production technologies; García-Quintero and Palencia[19] ana-
lyzed conventional quantitative sustainability metrics and proposed Life Cy-
cle Assessment (LCA) as a suitable metric to compare, optimize and quantify
bio-based nanobiotechnology and nanosynthesis protocols.
2.2. Regulatory actions to drive SSbD chemicals and materials

Predictive in silico modeling, accessible and searchable databases and
quantitative tools for risk assessment and prevention are critical for the suc-
cessful implementation of SbD/SSbD strategies in the nanosafety context and
to develop relevant protocols, reference materials, realistic in vitro and com-
putational models, as well as grouping and read-across methods.[20] Addi-
tional challenges stem from the need to assess the fate and reactivity of next
generations of nanomaterials[21] including smart nanomaterials and nano-
enabled products,[22]. New Approach Methodologies (NAMs), comprise a
wide range of such models and tools[23] to conduct robust and reliable chem-
ical safety assessments and reduce animal testing.

With substantial funding, the European Commission has supported NAMs
for nanomaterials Refs.[24, 25], acknowledging their potential in regulatory
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decision-making and innovation. NAMs could increase regulatory prepared-
ness through fit-for-purpose data and standardized tests specific to nanomaterials,[26]
and their potential would be better exploited within tiered regulatory schemes.[27]
Consideration of available standards (as the OECD standard for QSARs[28]
and recommendations of the European Materials Modelling Council for val-
idating in silico tools is essential to promote their adoption for regulatory
use. On the technical side, this also enables model integration into complete
computational IATA workflows.[29]

There is already a quite rich literature on the development of tools for
designing ENMs with defined properties. As a representative example, pre-
liminary works considered a conditional deep convolutional Generative Ad-
versarial Network (GAN) using competitive learning to suggest nanophotonic
structures with desired optical properties,[30] a GAN to generate crystalline
porous materials, in particular pure silica zeolite structures.[31] However,
since there is still much to do for understanding the behavior of ENMs, sev-
eral projects have been funded by the EU in the last years[32, 33, 34, 35] to
address safety and risk governance issues.

With this in mind researchers in NanoInformaTIX[36] project have de-
veloped an optimization methodology to guide the search for safer ENMs
and to support the application of safe(r)-by-design (SbD) approaches. The
implemented tool can be trained using available datasets and can enable the
assessment of various design options generated during the optimal search.
The assessment and screening processes use efficient representations coupled
with quantitative tools for similarity assessment to investigate morphology-
based behavior.[37]

2.3. Hazards of ENM
As mentioned above, physicochemical properties of nanomaterials may

significatly differ from their bulk counterparts. Despite the beneficial tech-
nological consequences associated with this, ENMs might exhibit hazardous
effects for the human health or the environment. The experience gathered
from the employment of asbestos fibers decades ago, serves as cautionary tale
for the potential hazard of nanomaterials. Asbestos were extensively used in
various products with a wide range of applications because of the advanta-
geous properties, like heat resistance/isolation and durability. However, after
many years of ubiquitous cotidian presence, the insidious harmful effects on
health became evident. In this regard, it was discovered that after a long la-
tency period asbestos were able to cause lung cancer and mesothelioma [38].
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This effect was linked with its high-aspect ratio fiber structure and frustrated
phagocytosis. Gathering materials by common features leading to similar ad-
verse effects is a first step to group and read-across. Therefore, investigating
the potential hazards of nanomaterials is crucial to guarantee their safety
enabling their responsible usage. Understanding their potential hazard is
important to engineer relevant modifications and undertake the necessary
measurements to minimize exposure, while still profiting from their various
beneficial properties. Understanding their potential hazard requires describ-
ing surface structure, properties and reactivity, which determines how these
engineered nanomaterials interact with each other and with the environment.
The latter determines trend to aggregate, which affects fate and exposure;
moreover it shapes their surface properties, thus altering interaction among
particles (fate, exposure) and modifying its reactivity. Although there are
several exposure scenario for nanomaterial toxicity, inhalation is considered
the most critical uptake route since it allows the particles to reach the sensi-
tive tissues deep within the lungs [39]. There, the particles could be taken up
by lung cells or interact with the immune system, leading to harmful effects.
Asbestos is not the only 1-dimensional material potentially harmful. Other
materials, with very different chemistry and composition, share common fea-
tures. Studies on specific types of carbon nanotubes suggested that they
may show similar toxicity as asbestos fibers at lung level [40, 41]. Similarly,
research on silver nanoparticles showed genotoxicity and pointed out that
smaller-sized particles exhibited higher toxicity in in vitro settings [42]. It is
important to emphasize that not all nanomaterials are associated with risks
for human health. Their toxicological potential depends on different factors
such as size, shape, functionalization, besides its chemical composition. Ulti-
mately, toxic effect is a phenomenon triggered at the surface of nanomaterials,
and how it interacts with its environment. Bulk properties do not typically
correlate with surface properties or structure; therefore, no direct translation
of bulk characteristics can be made to surface reactivity. Experimental char-
acterization may be hampered by this, which must be taken in consideration
when defining characterization strategies. From a more methodological per-
spective, material characterization should include detailed info on the surface
and its defects, how the latter and the former depend on the underlying bulk
structure and defects and how those are affected and, ultimately, shaped by
the interaction with the environment or biological media. The combination
of these properties results in countless possible nanomaterials that can en-
ter the market, which can rapidly overwhelm the current risk assessment
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procedure.
For this reason, SSbD strategies are a particularly important as they have

the potential to facilitate and expedite risk assessment, necessary to minimize
the potential risks associated with the use of nanomaterials throughout their
lifecycle. Moreover, SSbD strategies are crucial to ensure the responsible
development of nanomaterials and their applications.

2.4. The role of materials modeling in NM hazard assessment
It is worth stressing that accurate physics based modelling of materials

are typically not meant to directly simulate the basic mechanisms under-
pinning ENMs toxicity. On the contrary, such tools and methods can be
used to compute properties that can better capture the complexity of ENMs
composition and the influence of external conditions on toxicity, as opposed
to difficult, time consuming and expensive experiments (when experiments
are possible). Despite the benefits of using materials modelling to calculate
nano-descriptors, even until a few years ago, the scale and complexity of
system simulations were challenging, and there was shortage of models to
predict important properties, such as the NM dissolution rate.[8]

One may thus conclude that it is highly desirable to base nanosafety as-
sessment upon accurate intrinsic and extrinsic properties, i.e. features that
represent a particular structure and chemical nature of the ENMs of in-
terest and how these properties affect or are affected by their (biological)
environment. In the following, such features or advanced descriptors and
their evaluation by means of physics-based models is discussed in more de-
tails. Interpolation- or extrapolation-based methods like QSAR and ML
will be served by a deterministic calculation of such advanced descriptors
in a part of the parameter space that is expensive or hard to assess exper-
imentally, or when experimental data are unclear or incomplete. On the
other hand, physics-based models may also provide direct insight into the
relation between observed ensemble properties (phenomena) and system pa-
rameters (simple and advanced descriptors) that stems from a systematic
computational screening for one or more well-defined design parameters. Ex-
amples of phenomena considered in this review are protein absorption, NP
aggregation and membrane binding. An instance of direct insight gained by
computational means is the finding that small nanoparticles (≪d, with d
the membrane thickness, usually 4-5 nm) can simply permeate through the
membrane, similar to small molecules, while large nanoparticles (≫d) will
be fully engulfed or wrapped by the membrane upon binding. The binding
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characteristics for nanoparticle sizes comparable to the membrane thickness
is still unclear.[43]

A separation of descriptors into intrinsic and extrinsic provides a straight-
forward basis for the selection of the most appropriate physics-based model.
Section 3 discusses the current knowledge on ENMs and the (additional,
advanced) features that need to be considered, as well as the progress on
nanomaterial representations and on data-based models, like nano-QSARs,
that can receive and process the calculated nano-descriptors.
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3. Data-based models for for linking ENM features to safety

3.1. The critical role of a general representation of ENMs
In the attempt of gaining a deep rationale from data linking ENMs and

their observed safety properties, an essential prerequisite is the ability of rep-
resenting complex materials in well structured and machine readable format.
Unfortunately, to date, the lack of a standardized semantic characteriza-
tion of the structural ENMs features and environmental variables makes it
difficult to aggregate, curate and evaluate data from different sources and
to use them for simulations or for training new (data-driven) models; thus
making the meaningful integration of datasets a very demanding task. Web
databases and repositories for chemical substances (e.g., ChEMBL, PDBe,
ZINC15, Pubmed etc.) use standardized linear notations for substance iden-
tification (SMILES, SYBYL Line Notation, or InChI).[44, 45] These nota-
tions are also employed in deep learning tools to guide the generation of
feasible molecular structures with desirable properties (e.g., Generative Ad-
versarial Networks (GANs), Variational Auto-Encoders (VAEs), Recurrent
Neural Networks (RNNs), etc.). The extension of these notations to poly-
mers, mixtures, reactions, etc. has also been proposed, but ENMs entail
additional challenges compared to conventional chemicals. The key prop-
erties of ENMs have a strong dependence on the physical and structural
features. ENMs characteristics such as the spatial relationship between com-
ponents, their relative sizes, etc., all play an important role in their inher-
ent and emergent properties. What is more, many of these properties are
environment-dependent, as they are affected by various external factors such
as temperature and concentration through non-linear dependencies, making
ENMs descriptions even more subtle and complicated.

A complete ENM representation, therefore, would require the inclusion
of information on many more aspects than what current linear notations
provide. Extending the current representations to include such advanced
information content is not a straightforward task. Lynch et al.[46] have ini-
tiated an extensive discussion among various stakeholders and proposed a
framework for an InChI standard applied to ENMs as well as a roadmap
for its development. They aimed to address the variety of complex nanos-
tructures, using a hierarchical approach that introduces new layers on the
InChI notation for the size, shape, crystal structure, and ligand binding of
the ENM, and, possibly, extrinsic and surface properties. Recently, Blekos
et al. proposed principles for a more accurate, complete, flexible and incre-
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mental representation approach. The principles were demonstrated through
the development of extensions to nano-InChI to encode morphology/mixture
properties and statistical distributions of properties, and to store metadata
and enable their reuse.

The proposed representation framework could also provide the theoreti-
cal background to gradually capture the real particle dynamics under specific
environmental conditions. [37] These are currently under consideration in the
Nanomaterials InChI Working Group (https://www.inchi-trust.org/nanomaterials/)
and their proposal for a new InChI standard. A hope for the near future is
that an increasing number of advanced descriptors - as those discussed below
in Section 4 will be gradually incorporated into such standard notations.

3.2. Data-based models for safety assessment
In nanoinformatics, popular data-based models include Quantitative Struc-

ture Activity Relationship modeling (so-called nano-QSAR/-QSPR) that uti-
lizes Machine Learning (ML) and artificial intelligence to predict the desired
response (e.g., biological activity, toxicity endpoints or any physicochemical
property of interest). Those approaches are based on a set of computational
and/or experimentally developed descriptors representing nanoparticle struc-
ture. As a representative example, Wyrzykowska, Mikolajczyk, et al.[47]
proposed a concept in which a nanostructure is characterized by a triad that
describes: (i) molecular structure; (ii) molecular descriptors; (iii) molecular
properties that correspond to chemical composition and chemical structures
of its components. The proposed triad covers the characterization of the in-
trinsic properties of nanoparticle structure (so-called system-independent or
intrinsic (nano-)descriptors (S-descriptors in Figure 2, left panel).[48]

Recent advancements in nano-QSAR modeling have introduced hybrid
models that enhance predictive capabilities by integrating multiple modeling
approaches. These hybrid models often combine molecular dynamics simula-
tions data with machine learning techniques to better understand and predict
the complex behavior of nanomaterials in biological systems and their interac-
tions with the environment.[49, 50] Although QSAR/QSPR can be certainly
regarded as valuable tools to complement experimental studies on chemi-
cals and nanomaterials, they come with multiple challenges that should be
carefully analyzed. In particular, there is an absence of comprehensive meth-
ods to characterize nanoparticles, which are essential for a standard QSAR
procedure or a dependable computational approach that accurately repre-
sents the unique features of nanostructures – in short, a lack of trustworthy
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nanodescriptors.
Furthermore, depending on the surrounding environment, ENMs features

may change; thus, the data-based models should be developed based not only
on the characterization of ENMs chemical composition/chemical structures
of its components but also on the influence of the environment (including
experimental conditions, or biological medium). In other words, the so-
called system-dependent (extrinsic) nano-descriptors or the environment (E-
descriptors) should also be considered to describe nanostructure as a whole
(Figure 2, right panel).[47, 48] In the following two subsections, we provide
a brief critical review of intrinsic and extrinsic descriptors in preparation to
the most recent and advanced computational approaches to estimate them,
as discussed in detail in Section 4.

3.2.1. System-independent intrinsic features
System-independent (intrinsic) nano-descriptors refer to the composition,

components’ structures, and properties that may be measured or calculated
under a well-defined, unchanging set of conditions. A first example of ad-
vanced descriptors that were successfully applied for data-based modeling
of nanoparticles was developed based on quantum mechanical calculations
(so-called QM Descriptors).[51] The QM Descriptors that describe the core
chemistry of the structure were proposed in 2011 by Puzyn et al.[51] QM
descriptors reflect the electronic form of a chemical compound. They are ob-
tained by applying quantum mechanics to the appropriate molecular model
of an ENMs structure. During the last 10 years, different research groups
have been working to develop more sophisticated types of descriptors that are
not related to detailed atomistic simulations. For example, in 2012, Toropov
et al.[52] proposed SMILES-based optimal descriptors based on the encoded
one-, two- and three-element SMILES attributes of a compound and can be
calculated with the CORAL software.[53] This idea was then extended to
the simplex representation of molecular structure (SiRMS). Here, another
type of descriptor based on the Liquid Drop Model (LDM descriptors) was
proposed by Sizochenko et al. in 2014.[54] The methodology of LDM de-
scriptors calculation assumes that an ENM can be represented as a spherical
drop in which elementary molecules are tightly packed. At the same time,
the density of clusters is equal to the particle mass density.[55] The proposed
methodology is based on the thermodynamically most stable unit cell of the
considered crystal structure, that is replicated in three dimensions. After-
wards, a spherical ENM is created by removing all atoms outside the indi-
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cated diameter. This is a clear simplification: In fact, bulk-cut surfaces will
restructure, and even a spherical particle may exhibit regular regions as well
as a variety of defects. [56]. Moreover, surfactants may reorder the surface
differently.[57] Clearly, during the last decade, computational scientists and
nanoinformaticians active within the European safety community have made
a considerable effort to integrate knowledge from existing EU completed and
ongoing projects within EU FP7 and HORIZON 2020 to develop a more
comprehensive approach for nanostructure characterization.[58] However, we
should also recognize that several key challenges related to the appropriate
representation and description of ENMs structure are still ahead. Among
others, those aspects have been highlighted by results provided by Mikola-
jczyk et al., Wyrzykowska, Mikolajczyk, et al.[59, 48]. As far as intrinsic
properties of ENMs are concerned, one of the main challenges is related to
the description of the complexity of nanomaterials composition, thus clearly
requiring the development and use of more advanced computational tools
capable to evaluate/estimate descriptors that are difficult or even impossible
to access by current experiments.

While such aspects are discussed in detail below within Section 4, an
additional critical point, partly related to the latter computational assess-
ment of intrinsic ENMs features, is related to the lack of detailed material
characterization in the published literature. Too often, indeed, only nominal
composition, shape and size of nanomaterial are reported, with their possi-
ble coating only vaguely (if at all) defined. Clearly, those uncertainties add
even more complexity and make benchmarking of computational material
modeling particularly difficult.

3.2.2. System-dependent extrinsic features
While using QSAR/QSPR or other data-based models, a second chal-

lenge concerns representing the influence of external conditions (surrounding
environment).[47] A recently published study[48] indicates that the system-
dependent (extrinsic) nano-descriptors, also referred to as environment de-
scriptors (E-descriptors), are much more critical for controlling and managing
out the properties of ENMs than nanostructure characteristics themselves.
Thus, in addition to standard characterization, the experimentalist should
provide information about changes in the structure of the nanoparticles de-
pending on the environment (the surrounding conditions). As a result, next
to the core and coating, surface properties such as protein corona forma-
tion (so-called “biomolecular corona”) play an essential role in characterizing
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ENMs’ behavior and may be considered its fingerprint in a biological medium
see also Section 4.4 below for more details.

The system-dependent (extrinsic) nano-descriptors are crucial in describ-
ing physicochemical properties such as electrophoretic mobility or zeta poten-
tial value under specified conditions, reflecting the hydrophobicity, biomolec-
ular corona, dissolution rate, sorption, surface reactivity, degree of aggrega-
tion/agglomeration, or ENM persistence.

Developing the system-dependent (extrinsic) nano-descriptors is challeng-
ing because the nanostructure may change during its lifetime due to its trans-
port through different environments. In fact, nano-bio interactions are in
principle driven by the nanomaterials fate in biological and environmental
compartments, meaning how materials translocate, act as carriers of fur-
ther toxicants and finally come in touch with biological targets. Under this
perspective, the surface charge and wettability are considered the key deter-
minants of the fate and behavior of nanomaterials dispersed in the exposure
media.

Furthermore, the electrostatic interactions that keep particles dispersed,
preventing or promoting contact with cell membranes, depend on the sur-
face potential shown at the slipping plane (Zeta potential), as well as other
important properties that drive nano-bio reactivity such as hydrophilicity or
the surface interaction with biomolecules solubilized in the media. In this
respect, the identification of the pH at which the Zeta potential is equal to
zero (isoelectric point) allows making hypothesis on the type of acid/base
behavior of surfaces and on the presence of charged molecules specifically
adsorbed, as well as on the colloidal stability of nano dispersed phases and of
the occurring of hetero-aggregation phenomena.[59, 60, 61, 62] In addition,
the Zeta potential is very useful also for the design optimization of surface
functionalization strategies applied to the control of nanoparticles reactivity
both for nanosafety and nanomedicine purposes, because it is predictive of
the amount and type of coating that masks surface sites, providing a new
biological identity to the dispersed phases.[59, 63] Few studies report in silico
models for the prediction of Zeta potential based on physicochemical intrinsic
properties.[59, 64]

One of the most promising approaches that could cope with the chal-
lenge of extrinsic descriptors is an application of atomistic simulations com-
plemented with coarse-grained models of ENM and biomolecules (see the
dedicated sections below). In such multiscale approach, the coarse-grained
models (nano and microscale) are parameterized and possibly validated by
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Figure 2: Molecular and time-dependent descriptors: system-independent descriptors refer
to the composition, components’ structures, and properties that may be measured or cal-
culated under a well-defined, unchanging set of conditions; system-dependent descriptors
represent the influence of the surrounding environment.
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the data obtained from more detailed models at smaller scales (atomistic
and quantum chemical).In this context, novel descriptors can also be derived
from the statistics of adsorbed molecules after an analysis of the biomolecular
corona.[65, 66]

3.3. Modern machine-learning methods
Machine learning (ML) is a branch of artificial intelligence (AI) that in-

volves training computer programs to make predictions or take actions based
on data. In ML, algorithms are designed to learn from data, instead of being
explicitly programmed to perform specific tasks. The idea is to provide the
computer with a large amount of data, and then use this data to teach the
computer how to identify patterns, make predictions, or classify new data.
At its core, ML includes four basic notions: algorithms, models, data, and
training. ML algorithms are designed to learn from data and make predic-
tions or take actions based on that data. The algorithms generate models,
which are representations of the patterns and relationships in the data. The
quality of the model depends on the quality and quantity of the data used
to train it, as well as the algorithm’s ability to learn from that data. There-
fore, the process of training an ML model involves feeding it with labeled
data, measuring its performance, and refining the model until it achieves
satisfactory accuracy on new, unseen data.

The rationale for using ML approaches for nanosafety assessment is based
on the need to efficiently process, analyze, and extract meaningful informa-
tion from possibly vast amounts of data generated from both computational
and experiments. ML algorithms can learn complex relationships and pat-
terns from those data sets, enabling researchers to make predictions, optimize
material properties, and identify novel materials with desired (e.g. less toxic)
characteristics.

The advantages of using ML - as opposed to more traditional approaches
- include:

• Accelerated materials discovery and optimization: ML algorithms can
quickly process large amounts of data and identify potential new ma-
terial candidates or modifications for further investigation.

• Reduced experimental and computational costs: By predicting material
properties and hidden pattern identification, ML can help reduce the
number of experiments and simulations required in the development
process.
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• Enhanced understanding of complex material systems: ML can capture
non-linear relationships and intricate patterns in data, leading to better
insights into the underlying physics and chemistry of materials.

However, there are also challenges and limitations associated with such
ML approaches:

• Data quality and availability: ML algorithms rely on high-quality and
abundant data, which can be a limiting factor in materials science,
where data may be scarce, noisy or heterogeneous.

• Interpretability and explainability: ML models can be complex and dif-
ficult to interpret, making it challenging to understand the underlying
reasons for their predictions and build trust in their outcomes.

• Overfitting and generalization: ML models may be prone to overfitting,
namely they perform well on the training data but poorly on unseen
data, thus reducing predicting accuracy.

ML techniques have been applied to a wide range of applications and
fields including nanoinformatics [67]. In such a context, ML methods have
the potential to significantly impact the design, characterization, and safety
assessment of ENMs. Hovever, the availability of high-quality and abundant
data is still an important aspect to address.

Among other challenges, a particularly important aspect associated to
data-based modelling in nanoinformatics is the proper handling of highly
imbalanced datasets. Imbalanced datasets are characterized by a skewed class
distribution (e.g., over 1:100 observations in the minority class compared to
the majority class), where usually the minority (underrepresented) class is
the most interesting one to predict. For example, in an unbalanced dataset,
there could be a majority class of nanomaterials that are composed of a
single element (e.g. gold nanoparticles) and minority classes of nanomaterials
that are composed of multiple other elements. As a result, when training a
ML to classify the nanomaterials the model is likely to be biased towards
the majority class and may not perform well on the minority class of high
interest.

To address the issue of class imbalance, various data-level and algorithm-
level approaches have been proposed over the last decades [68, 69, 70]. Data
level approaches are addressing class imbalance via resampling (undersam-
pling and oversampling), as well as evolutionary algorithms for sampling,
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active learning for selecting the most appropriate data points or more re-
cently adversarial learning algorithms for new points generation and meta-
learning.[71] Random undersampling (i.e. removal of observations from the
majority class), Near Miss, Tomek links (i.e. removal of boundary observa-
tions) are examples of undersampling (or downsampling) algorithms. The
disadvantage of the latter methods is the loss of useful information as well
as possible increase of the data bias.

Oversampling approaches include random oversampling (multiplication
of observations from the minority class), SMOTE (finding nearest neigh-
bors of the minority class observations and adding points on the line joining
the point and the nearest neighbor).[72] Review of SMOTE variants can
be found in Ref.[73] SMOTE extensions to handle multiclass and multilabel
(MLSMOTE) classification and regression (SMOTER) have been proposed,[74]
and, more recently, DeepSMOTE[75] and GraphSMOTE.[76] Oversampling
has the advantage of retaining all the information and usually performs bet-
ter than undersampling. However, oversampling may increase the probability
of overfitting.

Another important aspect to be considered is that accuracy is not an
appropriate metric for assessing model performance on imbalanced datasets.
Algorithm-level approaches aim at modifying the loss metric, assigning differ-
ent costs to penalize errors in each class (cost-sensitive training) or introduc-
ing new algorithms which can inherently deal with imbalanced data. Instead
of accuracy, the recommended metrics are confusion matrix, precision and
recall, F1 score, Kappa, Area under curve (AUC) (see also Ref.[73]). Ensem-
ble algorithms using bagging and boosting (e.g., tree ensembles as Random
Forest) are known to be more robust in imbalanced settings. Recent litera-
ture addresses handling imbalanced data (also known as long tail learning)
by deep learning methods.[77, 78] Imbalanced datasets are typical in high
throughput screening[79, 80, 81] and chemogenomics.[82]

ML algorithms can be broadly categorized into supervised, and unsu-
pervised learning. We begin with a discussion of supervised learning in the
following subsection.

3.3.1. Supervised learning
Supervised learning works on labelled data, with the goal of approximat-

ing a function that maps input to labelled data. A prototypical example
would be the ability of linking a set of relevant intrinsic and extrinsic ad-
vanced descriptors for a number of ENMs to their observed (eco-)toxicological

23



endpoints (e.g. the survival and/or reproduction rate of a chosen organ-
isms. Supervised learning techniques include a large variety of algorithms
and methods like Decision Trees, Random Forest, Support Vector Machines,
various classifiers like k-Nearest Neighbors, Neural Networks and Instance-
Based Learning methods (see Figure 3, left panel).[83, 84]

In one of the earliest applications of ML methods in manufactured nanopar-
ticles, Fourches et al. used Support Vector Machine-based classification and
kNN-based regression to generate Quantitative Nanostructure-Activity Re-
lationship (QNAR) models to predict biological activity profiles of novel
nanomaterials.[85] Later, Puzyn et al.[51] presented a method to quickly
test the potential toxicity of engineered nanoparticles. They applied a mul-
tiple regression method combined with a Genetic Algorithm (GA-MLR) to
create a model that described the cytotoxicity of 17 different types of metal
oxide nanoparticles to bacteria Escherichia coli.[51] Gernand and Casman
performed a regression-tree-based meta-analysis on rodent pulmonary tox-
icity exposed to uncoated, non-functionalized carbon nanotubes. They re-
ported the application of Regression Tree models, Random Forest models,
and a random-forest-based dose-response model.[86] Winkler et al. used novel
sparse ML methods to model the biological effects of nanoparticles with var-
ious compositions, including iron oxide nanoparticles and gold nanoparticles.
They employed Bayesian neural networks using both linear and nonlinear
ML methods.[87]

Evolutionary approaches have also been explored. Le and Winkler,[88] for
example, reviewed the use of artificial evolutionary methods for the identifi-
cation and optimization of novel materials. They report uses of genetic algo-
rithms to investigate properties of bimetallic core-shell and titanium dioxide
nanoparticles.[89, 90] Martinez et al. presented decision tree models based
on evolutionary algorithms that classified nanoparticle aggregates into mor-
phological classes.[91] kNN algorithms have also been used to model the
toxicological properties of nanomaterials. Wang et al. used a kNN algorithm
to develop QNAR models for biological activity profiles like cellular uptake in
various human cells and the ability to induce oxidative stress.[92] Kovalishyn
et al. used kNN, random forest, and neural network methods to generate
models for the analysis of eco/toxicological and physicochemical properties
for metal and metal oxide nanoparticles.[93]

Various Neural Network architectures have also been investigated in re-
lation to predictive nanoinformatics. Gomez-Bombarelli et al. trained a
Deep Neural Network to automatically generate novel chemical structures
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and demonstrated their method on small drug-like molecules.[94] Hataminia
et al. used a neural network to model the cytotoxicity of iron oxide nanopar-
ticles in relation to kidney cells.[95] Lazerovits et al. trained a Deep Neu-
ral Network to predict nanoparticle biological fate immediately after intra-
venous injection and tested it by predicting nanoparticle spleen and liver
accumulation.[96] Very recently, Balraadjsing et al. investigated the perfor-
mance of various supervised ML algorithms in the context of acute Daphnia
Magna nanotoxicity prediction. Here, Authors created classification models
based on Random Forest, Neural Networks and kNN algorithms.[97]

Li et al. used multi-target Random Forest Regression to predict the per-
formance of sunscreen based on the type of titanium dioxide nanoparticle ad-
ditives. Based on those models, they demonstrated the use of inverse design
models that identify nanoparticle configurations based on desired sunscreen
properties.[98]

While the literature provides numerous examples of supervised learning
techniques applied to nanoinformatics, the choice of an appropriate method
is not always straightforward and often depends on several factors. For ex-
ample, the choice between classification and regression usually depends on
the type of problem being addressed: classification is used for categorical
output variables, while regression is used for continuous output variables.
Various factors, such as data size, dimensionality, complexity, and desired
model interpretability, influence the choice of a specific algorithm.

Some general guidelines that can be considered when selecting an algo-
rithm include the following: Decision Trees and Random Forest are well-
suited for problems with mixed data types (numerical and categorical), and
they provide easily interpretable results. Support Vector Machines (SVM)
are appropriate for high-dimensional data and complex decision boundaries;
however, they might be computationally intensive for large datasets. k-
Nearest Neighbors (kNN) is a simple, instance-based method that performs
well with small datasets but can be computationally intensive and sensitive
to noise for larger datasets. Lastly, Neural Networks are effective for mod-
eling complex patterns and relationships in high-dimensional data, but they
may require more extensive computational resources and may not provide
easily interpretable results.

3.3.2. Unsupervised learning
Unsupervised learning mostly deals with unlabelled data. This is par-

ticularly advantageous when data labelling is a resource-intensive task. The
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goal of unsupervised learning is to learn or discover the structure and pat-
terns of the input data, and is often based on exploring the similarity among
the input variables. In the case of nanomaterials, unsupervised learning is
thus useful to explore similarities based advanced descriptors. Clustering
algorithms are the most representative algorithms of unsupervised learning.
Popular examples include k-means, Principal Component Analysis, various
Neural Networks like Self-Organizing Maps and Hierarchical Clustering (see
Figure 3, right panel).[99, 83, 84]

Unsupervised learning techniques have been used for the classification of
nanomaterials or nanomaterial properties and quality assessment. They have
also been used in combination with supervised or other statistical methods
to assist, for example, the development of QSAR and neural network models.
Wang et al. used Principal Component Analysis to analyze the structure tox-
icity relationship for various nanoparticles and identified the physicochemical
properties of the nanoparticles that are risk factors for cytotoxicity.[100] Jha
et al. modeled the toxicity of nanomaterials using a multivariate statisti-
cal analysis approach: through a multivariate Principal Component Analy-
sis, they selected descriptors that optimally separated toxic from non-toxic
nanomaterials.[101] Sizochenko et al. used a Self-Organizing Map in their hy-
brid approach in order to identify hidden patterns of toxicity among nanopar-
ticles and to determine the underlying factors responsible for the toxicity.[102]
Sizochenko et al., in order to evaluate the genotoxicity of metal oxide nanopar-
ticles, developed another hybrid supervised and unsupervised ML approach
where they used a Self-Organizing Map to estimate relative distances between
nanoparticles.[84] Kotzabasaki et al. also used a hybrid approach in develop-
ing a predictive model for the prediction of the genotoxicity of Multi-Walled
Carbon Nanotubes. The latter Authors used the information derived from
the experimental characterization of CNTs and a combination of Principal
Component Analysis and supervised classification techniques to improve the
accuracy of the analysis in their parameters.[83]

Similarly to the supervised learning, selecting an appropriate method is
often contingent on the specific goals and data structure. Unsupervised learn-
ing aims to identify underlying patterns, structures, or relationships within
the data without relying on labeled outcomes. Several factors, including
data size, dimensionality, complexity, and the nature of the problem, influ-
ence the choice of a specific algorithm. Some general guidelines to consider
when selecting an unsupervised learning algorithm are as follows:

Clustering methods, such as K-means, DBSCAN, and hierarchical clus-
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Supervised ML Unsupervised ML

Decision Trees

Random Forest

Support Vector Machines

k-Nearest Neighbors

Neural Networks

Instance Based Learning

Clustering (e.g. k-means)

Hierarchical Clustering

Principal Component Analysis

Neural Networks (e.g. Self-Organizing 

Maps)

✓ Classify NMs

✓ Classify NM properties

✓ Quality assessment

✓ Explore NM similarities (structural, 

physiochemical & others)

✓ Create or assist predictive models 

(QNAR, QSAR, etc)

✓ Model biological effects

✓ Optimize novel NMs

✓ Generate new NM structures

Combine or 

assist

Figure 3: Use of Supervised and Unsupervised Machine ML in predictive nanoinformatics:
Supervised ML methods (Decision Trees, Random Forest, Neural Networks etc.) are often
used to create or improve predictive models while Unsupervised ML methods (Clustering,
Self-Organizing Maps, etc.) are more often used to group and explore nanomaterials
properties or in combination with Supervised ML methods.

tering, are suitable for partitioning data into groups based on similarity or
distance metrics. They are particularly useful when exploring the intrinsic
structure of the data or identifying previously unknown subgroups.

Dimensionality reduction techniques, including Principal Component Anal-
ysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE), are
employed to project high-dimensional data into lower-dimensional spaces.
These methods can aid in data visualization, noise reduction, and improving
the performance of other machine learning algorithms.

Autoencoders, a type of neural network, are effective for unsupervised
feature learning and representation. They can be used to reduce the dimen-
sionality of data, denoise data, or learn more complex and abstract features.

For the sake of clarity, in the Table 1 below, we summarize what we be-
lieve are the most important open issues in data-based modeling assessment
of ENMs safety. Concurrently, we provide recommendations on possible ef-
fective actions that could help addressing such challenges in the near future.
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Identified challenge Recommendations for future research
Representation and descrip-
tion of intrinsic properties of
ENMs is much more complex
and challenging as compared
to chemicals

Effort should be devoted in adding additional
and more comprehensive information layers to
the nano-InChI notation following the ongo-
ing effort in [46, 103]. Additional intrinsic de-
scriptors should be developed on the basis of
experimental data but also advanced material
modeling tools, such as quantum and atom-
istic simulations as discussed in Section 4 be-
low. Attention should be paid to the use of
computational techniques as their robustness
and the energetic needs associated with mas-
sive calculations might be a constrain in the
next future.

Detrimental lack of well char-
acterized ENMs data: go be-
yond nominal data

An effort should be made to design experimen-
tal and theoretical characterization including
interfacial regions, key in the ENMs reactivity.
In particular, the accurate description of the
electronic structure at the surface is needed to
capture specific interactions and mechanisms.

The influence of external con-
ditions may play an even more
critical role as compared to in-
trinsic ENMs properties

Experimental testing and characterization
should focus on approaches (and report data)
capable to track changes in the nanoparticle
structure as a function of environmental con-
ditions.

Unlike intrinsic features, ex-
trinsic ones are time depen-
dent and may change dur-
ing ENMs lifetime while trans-
ported through different envi-
ronments

As discussed in detail in Section 4, some of the
advanced material modeling approaches can
be used both for estimating the value of extrin-
sic advanced descriptors under disparate con-
ditions and for gaining further understanding
on the basic mechanisms underpinning their
change in time.
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Training datasets for ML
based models are often im-
balanced with the most
interesting material class
being underrepresented

Use of undersampling and/or oversampling
techniques trying to minimize loss of infor-
mation and overfitting. Explore data-level
and algorithm-level approaches. Develop new
methods or adapt existing techniques, such as
SMOTE and its variants. More focus on eval-
uating model performance using metrics suit-
able for imbalanced datasets, such as preci-
sion, recall, F1 score, Kappa, and AUC.

Addressing class imbalance is-
sues in supervised learning for
nanoinformatics.

Utilize data augmentation techniques, resam-
pling methods (e.g., undersampling and over-
sampling), cost-sensitive training, and ensem-
ble approaches to mitigate imbalance and im-
prove prediction accuracy.

Ensuring adequate data qual-
ity and quantity for effective
supervised learning.

Investigate ensemble methods such as bagging
and boosting, feature selection techniques,
and regularization methods to enhance model
performance and stability.

Ensuring generalizability of
ML models to new data.

Evaluate model performance on external
datasets to ensure generalizability and robust-
ness. Utilize cross-validation techniques to as-
sess model performance on different subsets of
the data. Pay attention to model overfitting,
which occurs when the model is too complex
and performs well on the training data but
poorly on new, unseen data. Regularization
methods such as L1 and L2 regularization can
be used to reduce overfitting and improve gen-
eralizability.
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Selecting appropriate ML algo-
rithms for specific data struc-
tures and goals.

Consider various factors, such as data size, di-
mensionality, and complexity when selecting
specific ML algorithms. For example, Decision
Trees and Random Forests are good for mixed
data types and provide interpretable results,
while Support Vector Machines (SVM) are
suitable for high-dimensional data and com-
plex decision boundaries. k-Nearest Neighbors
(kNN) is a simple, instance-based method for
small datasets, while Neural Networks are ef-
fective for modeling complex patterns and re-
lationships in high-dimensional data but may
require more computational resources.

Integration of different ML
models for a comprehensive
understanding of ENM safety.

The literature provides numerous examples of
ML models applied to nanoinformatics. How-
ever, the majority of the published studies fo-
cus on a single ML algorithm or approach. A
comprehensive understanding of ENM safety
requires the integration of multiple sources of
data, including experimental and theoretical,
and the use of different ML models to capture
the complexity and variability of the system.
The integration of different ML models can en-
able a more accurate and robust prediction of
ENM safety by incorporating different types
of information and reducing the uncertainty
associated with each individual model. How-
ever, integrating different models poses sev-
eral challenges, including data compatibility,
model complexity, and the need for appropri-
ate validation methods.

Table 1: Summary of the main challenges associated to data-based modelling in the ENMs
safety context
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4. Physics-based models for nanostructure characterization

In general, physics-based modelling techniques can be grouped accord-
ing to the dominating length and time scales (or resolution), and equivalent
representations at different resolutions can be related to each other via a
coarsening or fine-graining procedure, in which degrees of freedom (electrons,
atoms) are averaged out (forward-mapping) or introduced (back-mapping).
For instance, the familiar quantum methods at the electronic level explic-
itly consider electrons and atoms, enabling them to calculate several intrin-
sic properties of the material with great precision, including the electronic
bandgap and surface reactivity. At the atomistic level considered by classi-
cal molecular dynamics, explicit electronic structures like the bonds are only
implicitly represented in a force field. The resulting enhanced sampling rates
can be exploited to study larger system, for instance, the long-term confor-
mational dynamics of one protein or the interaction between a nanoparticle
and several biomolecules.

Moving to even larger scales, interactions between ENMs and their sur-
roundings, reflected by extrinsic ENM properties, often involve processes that
exhibit a considerable disparity in length and time scales. From a compu-
tational perspective, they therefore require yet another - mesoscopic - level
to be tractable in silico: a level that is and will not be genuinely within
reach of atomistic methods for some time despite the continuing advances
in computer power. For instance, even when investigating the uptake of
tiny particles such as fullerenes (<1 nm) by human cells (10-100 µm), which
first cluster to larger aggregates in solution before binding to a membrane
due to their hydrophobicity, the spatial scales that have to be adequately
represented span many orders of magnitude.

This challenge is even more significant for the (competitive) binding of
one or more molecules like proteins onto a nanoparticle, since they generally
experience conformational changes on various length scales upon absorption.
The same holds for time, as diffusion or translocation processes in dense
molecular environments like membranes and intracellular spaces take place
at timescales that are orders of magnitude greater than the fastest vibrations
inside a molecule - molecular bond stretching - that set the elementary time
scale. At the most basic level, this challenge can be faced by experiment, via
trial and error for individual setups. Yet, as the experimental resolution is
also essentially limited at the bottom where many relevant molecular mecha-
nisms of interest take place, one may formulate theoretical or computational
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answers for more well-posed questions.
In the following, we will concentrate on three extrinsic properties for

which classical molecular dynamics significantly falls too short: nanoparticle
clustering, the formation of a protein-corona, and nanoparticle uptake by a
lung membrane.

A subset of advanced descriptors also stemming from such calculations
is reported in the Appendix, where more detailed info are reported. We
note that, especially at the mesoscopic level, this overview of progress in
the field of nanoparticle simulations is not exhaustive. It should also be
noted that much effort has been put into ensuring equivalence at the highest
level of resolution, e.g. by proper parameterization of tight-binding methods
at the quantum level and determination of proper force fields for atomistic
molecular dynamics. At the mesoscopic level, many developments are quite
recent and the issue of equivalence is more complicated to satisfy, which
hampers the application range of genuine multi-scale methodology based on
systematic coarse graining. For this reason, many mesoscopic investigations
have focussed on evaluating mechanisms for generic setups, which cannot be
directly related to specific systems that are needed for advanced descriptors.
For details of such activities, we refer the reader to published reviews.[104]

4.1. Intrinsic advanced descriptors: Electronic level
The quantum-mechanical computations of nanoparticle properties rele-

vant to nanotoxicology is still a challenge as it typically involves large size
and time scales. The key question is to reveal the electronic structure nature
in the complex toxicity mechanisms. A valid strategy involves the accurate
determination of descriptors (heat of formation, lattice energy, enthalpies of
cation detachment) and band structure (bandgap, HOMO and LUMO lev-
els) that could be later related to toxicity endpoints by data-based modelling.
This approach was successfully proved in Nano-QSAR models [51].

The computational cost of ab initio calculations, typically density func-
tional theory DFT, remains a strong limitation to the deployment of quantum-
chemical descriptors, mainly due the size of realistic nanoparticles (from few
nanometers to hundreds of nanometers) and the complexity of the surface
region (often unknown in experimental data). A detailed quantum chemical
description of those systems severely increases the time to acquire data.

Faster computational schemes use the so-called quasi-ab initio methods
based on DFT applying expansions of the atomic electronic structure us-
ing the Tight Binding approximation (DFTB) [105]. Such techniques, 3,000
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to 30,000 times faster than regular DFT, allow considering more realistic
sizes and conditions such as solvation or molecule adsorption. To compute
dynamic effects, ab initio molecular dynamics (AIMD) is a promising tech-
nique, yet at a too high computational cost.

In the last years, some of the aforementioned techniques have been suc-
cessfully applied to investigate nanosized titania with sizes 2.2-4.4 nm. An
example of a spherical 3 nm titanium dioxide nanoparticle is shown in Figure
4, panels A and B. The model contains more that 1200 atoms, 6000 electrons
and 50000 cpu hours [58] for routine DFT characterization.In panel A, the
titanium dioxide nanoparticle is shown (left), with an inset highlighting some
surface atoms (middle); it can be seen that they differ from the bulk geome-
try . A scheme of DOS (Density of States) is shown (right) as an example of
electronic descriptor associated with chemical reactivity. In panel B, the de-
crease in energy during a DFTB simulation in water is shown (left, middle),
and the corresponding RDF (radial distribution function) for pairs of atoms
(right), accounting for the surface structure in the proximity of the solvent
molecules.

Other properties recently reported in the literature for titanium dioxide
nanoparticles concern crystallinity [106] and hydration [107, 108]. Interest-
ingly, DFTB tools have been recently applied to understand biological pro-
cesses such as the inactivation of SARS-CoV-2 virus [109], or the coating
by biological molecules [110, 111]. It is however advised to carefully check
the applicability of DFTB methods for electronic structure characterization
as their accuracy critically depend on the parameterization; for instance the
oxygen vacancy energy for different titanium dioxide termination is not al-
ways well captured by DFTB [112].

The extension of quantum-based methods to the field of (nano)toxicology
should be naturally observed in the next years, provided that a fundamental
understanding of the physicochemical behavior behind toxicological effects is
achieved. This involves several aspects.

First, the identification of new relevant descriptors based on a detailed
knowledge of the electronic structures of realistic complex interfaces. The
quality of the descriptors is crucial for the precision of the results and should
be carefully addressed. Experiments focused on revealing the role of the
surface in the toxicology mechanisms should be designed to properly interplay
with electronic structure calculations.

Second, we envision interesting progress in the near future due to the de-
velopment of faster and more accurate techniques to account for the complex
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structure and reactivity, based on machine and deep learning [113, 114, 115,
116] or automatized structure screening tools (like Grand Canonical [117],
evolutionary [118] or clustering [119] algorithms). However, they should be
still tested on realistic nanotoxicity models and could possibly become rou-
tine methods accounting for composition, coating and biological media.

4.2. Intrinsic advanced descriptors: Atomistic and Molecular level
In atomistic (also called classical or all-atom) MD simulations, atoms

are represented by particles interacting according to Newton’s second law.
In such an approach, electron dynamics is neglected, dramatically speeding
up the simulations (as compared to DFT calculations), and system with
larger dimension become affordable (with the typical computational domain
having up to dozens of nanometers edge length). Given the size range of
nanoparticles, MD is a powerful tool to study such systems in a detailed way
that is often far from the experimental capabilities.

With respect to the interaction of nanoparticles with biological moieties,
MD was recently used to determine the binding energies for nanoparticles
made from three bare materials (silver, silica and titanium dioxide) of three
different sizes (1, 3 and 5 nm diameter) via MD-based Potential of Mean
Forces (PMFs) using umbrella sampling.[120] To cover the diversity of re-
sponses that are possible for nanoparticle binding of a real human lung
membrane, which is facilitated by a mixture of different lipids with their
own phase behavior, a membrane with an equivalent lipid composition was
considered. Calculating binding free energies via the PMF along a normal
reaction coordinate (typically the nanoparticle-membrane distance) for real
materials provides a new and useful advanced descriptor for QSAR, espe-
cially when the particle size effect can be explored within the domain where
the membrane response is sensitive. For non-spherical nanoparticles, how-
ever, the PMF calculation becomes less trivial and involves several reaction
coordinates. Moreover, the nanoparticle sizes within reach of MD typically
only cover part of the domain of interest, and are significantly below the
experimental sizes.

While current MD results are exciting and make a first step towards the
in silico assessment of advanced nano-descriptors for nanosafety, they also
illustrate the essential challenge associated with MD. In the first place, ex-
perimental nanoparticles are usually at least 50 nm in size, meaning that the
maximum sizes considered in current studies,[104] i.e. in the order of the
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membrane thickness, are still far from most of the real applications, espe-
cially given that many advanced descriptors are size-dependent and that it
is unknown if and how one may extrapolate. The most important drawback,
however, is the cost of individual simulations given the immense nanopar-
ticle design space, which comprises size, shape, elasticity, charge, composi-
tion/hydrophobicity, and surface modification,[104] if we leave dynamic sur-
face modifications, such as the formation of a protein corona, by the sur-
rounding medium out of the picture. The majority of existing MD studies
of nanoparticle-nanoparticle and nanoparticle-membrane interactions focus
on the molecular understanding that can be gained for specific experimental
setups. A very promising application of MD is the calculation of binding
energies between vitamins and specific nanoparticle interfaces, represented
as an infinite slab, using metadynamics, for the purpose of validating QSAR
predictions and nano-descriptors.[121]

Theoretical descriptors for small organic molecules[122] can be readily
calculated with various levels of theory to represent most molecular features.
In the case of nanoparticles, the size is the obvious limiting factor for the cal-
culation of whole particle nano-descriptors where all atoms are considered.
To address those issues, full particle molecular nano-descriptors developed by
Tämm et al.[123, 124] were calculated directly and solely from the structure
of the considered nanoparticles. Such calculations can be performed with
LAMMPS program[125] together with Buckingham potential[126] and Wolf
summation.[127] The developed set of atomistic nano-descriptors is based
on the chemical composition, potential energy, lattice energy, topology, size,
and force vectors. Reported studies based on the latter approach can cover
different properties of the nanoparticles including also differentiating such
properties in core and shell regions of the nanoparticle.[123, 124, 128] The
core region usually captures similar properties to bulk material, while the
shell region is expected to account for the special nanoparticle properties.
While there are different methods for the in silico generation of nanopar-
ticles, there is still a need to define and study the property differences
in core and shell regions of the nanoparticle. Therefore, a software tool
has been recently developed to defines the shell depth for all nanoparticles
(https://nanogen.me/shell-depth). The tool requires the xyz type files as in-
put and calculates the optimal shell depth for nanoparticles together with the
average coordination numbers for different atom types in the nanoparticle.

As far as reactive phenomena are concerned, attempts to go beyond classi-
cal force field simulations could be based on reactive force fields (ReaxFF).[129,
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130, 131] Such an approach unlocks the possibility of studying larger com-
putational systems at a fraction of the cost as compared to quantum-level
simulations (i.e. DFT and DFTB). However, it requires a delicate tuning of
several dozens of parameters against energetics from first principle simula-
tions at lower scales. This fine-tuning often leads to a lack of generality of
force field parameters and may need a case-by-case optimization.

Nanomaterial dimension and shape are important to determine the cor-
responding toxicological endpoints: the formation of aggregates from small
nanoparticles modulates the amount of material entering the cells, regulat-
ing its interaction with the DNA. Aggregates are too large to study using
Classical Molecular Dynamics: this kind of system can be simulated at the
mesoscopic level, as discussed below.

4.3. Moving from intrinsic to extrinsic descriptors
For the physics-based determination of intrinsic and extrinsic descriptors,

DFT or classical MD are the first methods of choice. In contrast to meso-
scopic methods, which are based on averaging, they incorporate the most
direct and material-specific reaction, chemical, conformational, and interac-
tion detail possible. Yet, for all these methods, the total computational effort
invested for the determination of material properties is proportional to the
number of degrees of freedom (basis functions, atoms or groups of atoms)
that have to be taken into account multiplied by the number of discrete
(time) steps needed for numerically stable minimization or equilibration of
the system at hand. Even on exascale high-performance computing environ-
ments, where the original calculation/simulation can be divided into parts
and distributed over multiple processors, nowadays even up to a million, this
proportionality represents a serious computational limitation.[132]

Intrinsic properties, which are determined for (solvated) isolated molecu-
lar systems, generally fall inside the reach of the most detailed DFT or MD
modelling, because the system size and equilibration times usually remain
manageable. Yet, although quantum methods have a clear advantage over
classical MD, their applicability is restricted to small systems compared to
most experimental ENMs, see section 4.1, meaning that one should extrapo-
late or concentrate on surface properties. Classical MD pushes this boundary
up somewhat, and is capable of simulating, for instance, the formation of a
stable ligand coating around a nanoparticle of relevant size, or the explo-
ration of the protein folding funnel on a second scale in explicit solvent. The
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Figure 4: Multi Scale Materials Modelling: from the electronic level to the atomistic de-
scription up to the mesoscopic level. Panel A: DFT level allows accounting explicitly for
electrons, providing accurate descriptors for geometry, energetics and electronic structure;
Panel B: (left) Energy and temperature stabilization of ZnO nanoparticle of 2 nm in water
medium at 300 K for 10 ps simulation (centre) ZnO nanoparticle of 2 nm in diameter in
water (right) Radial Distribution Function of ZnO nanoparticle of 2n in water medium at
300 K. Panel C: bare and coated nanoparticles on the left and the potential of mean force
for the approaching of two identical nanoparticles in a vacuum and in water and the com-
parison with the original DLVO theory (Reproduced from Ref. [9] with permission from
the Royal Society of Chemistry); Panel D: Brownian Dynamics simulations of nanoparticle
clustering, cluster size distribution on the left and snapshot of the simulated system on the
right (Reproduced with permission from Mancardi et al., MDPI Manomaterials 2022.[58])
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most detailed methods are thus particularly useful for providing implicit de-
scriptors.

This situation changes when dealing with extrinsic descriptors. Nanopar-
ticle aggregation and uptake, as well as biomolecule absorption, are at play
upon the release of nanoparticles into an biological environment. The length
and time scales involved in these processes are many orders of magnitude
greater than the elementary Angstrom and femtosecond scales of classical
MD. In particular, when computationally evaluating the nanoparticle inter-
action with a surrounding bio-matrix of structured lipid envelopes and un-
structured mixtures of shorter and longer bio-molecules, care should be taken
in selecting proper system sizes. After all, these systems should sufficiently
represent the key elements in the larger open system, and be large enough
to avoid computational artifacts due to boundary conditions.

As such, multi-scale approaches, in which the system is evaluated at a
coarse time and length scale at some stage, become compulsory.[132] In this
context, fine grained electronic and atomistic methodology still serves a dis-
tinct role as a reference for equivalence, via systematic mapping, or by pro-
viding structural input for realistic evaluation at a coarser level, e.g. relevant
nanoparticle-nanoparticle interaction potentials or (static) protein conforma-
tions for docking to a nanoparticle.

A general issue in assessing ecotoxicity by multiscale physics-based mod-
elling is that, historically, mesoscopic modelling primarily aims at providing
fundamental insight into phenomena at a structural or kinetic level rather
than determining accurate extrinsic descriptors, since it puts stringent con-
straints on the way atomistic or molecular detail is absorbed into a coarser
description. Also after coarsening it is wise to build up complexity step-
by-step, testing the averaging procedure at each increment. Therefore, in
membrane binding, the current focus is on calculating advanced extrinsic de-
scriptors like binding energies for passive rather than spontaneous (protein-
induced) binding. In the foreseeable future, the addition of more players,
including the many lipid types that render a cellular membranes, membrane-
bound and adsorbed proteins, and the cytoskeleton, will become an option,
and the particular role of these actors can be studied in-silico.

4.4. Extrinsic advanced descriptors: Mesoscopic level
The simulation of aggregation phenomena involving thousands of nanopar-

ticles is simply too demanding to be carried out by all-atom MD and coarse-
graining procedures are mandatory to make such simulations feasible. An
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effective strategy is to employ Brownian Dynamics (BD) simulations, see
Figure 4, panel D.[9, 58] Here, each nanoparticle is represented by a spher-
ical bead characterized by the nanoparticle’s diameter and interacting with
other beads according to mathematical equations describing the interaction
potential (e.g. calculated by means of classical Molecular Dynamics for a
nanoparticle pair, see Figure 4, panel C). Applying this coarse-graining pro-
cedure makes it possible to calculate new molecular descriptors ruling particle
aggregation that could be fed into QSAR models.[58] Additional challenges
faced by developing general computational and theoretical modelling for un-
derstanding the nanosafety of ENMs stem from the role of the environment
in determining the observed toxicity. Once the ENM enters a living organ-
ism, it gets in contact with the biological molecules, in particular proteins
and lipids.

Nanoparticle-proteins and nanoparticle-lipids interaction could in theory
be investigated using Brownian Dynamics simulations, which can run even
on a 16 core workstation, provided that all pair interactions are known; in
practice, this has not yet been done because the calculation of the free energy
profiles for each pair by all-atom MD is too computationally demanding.
Anyway, this could be an interesting attempt to bridge the gap between the
molecular simulations scale and the experimental scale.

The oldest approach for computationally determining material properties,
i.e. the continuum mechanics pioneered in the 19th century by Cauchy, is in
fact most suited for screening purposes, since it combines modest computa-
tional costs for realistic system sizes with a few effective screening parameters.
This screening idea is at the basis of continuum Self-Consistent Field Theory
(SCFT), which was developed to describe phase behavior and phase separa-
tion dynamics in block copolymers (represented as flexible chains) based on
an implicit molecular representation [133].

Rigid objects like nanoparticles have also been incorporated into SCFT,
primarily for the purpose of modelling polymer nanocomposites,[134] and we
refer to early papers for details about the different approaches.[135, 136, 137]
While these field-based methods possess a clear advantage of efficiency over
particle-based methods like AAMD and CGMD, which stems from the choice
to deal with ensembles rather than individual chains, and SCFT interactions
are of the desired many-body type by definition, this is offset by the seri-
ous disadvantage of not being able to represent specific interactions at the
molecular level and having no access to conformational detail. In addition,
the commonly used excluded volume interactions in SCFT do not allow for

39



phase transitions that can play a role in membrane binding processes. Only
recently, hybrid particle-field (hPF) approaches such as hPF-MD[138] and
single chain in mean field (SCMF)[139] have introduced the ability to combine
particle-based (atomistic or segmental) molecular detail with the efficiency
and multi-body nature of Hamiltonians from continuum theory like SCFT.
Phase transitions and/or coexistence has also been added recently.[140] Until
these hybrid methods offer a validated solution for the need to combine effi-
ciency with specificity and molecular detail, we conclude that SCFT is useful
for the investigation of general phenomena, but not suited for the extraction
of extrinsic material descriptors.

A popular and very efficient representation of lipid membranes is that
of a thin elastic sheet without any molecular detail. Shape, dynamics and
responses to deformation are dictated by a continuum Helfrich free energy
that depends on a few collective properties like bending rigidity and lat-
eral membrane tension, which can be directly related to specific membrane
compositions via particle-based simulation. An extended Helfrich model de-
veloped later provided straightforward conditions for nanoparticle uptake,
i.e. the balance of energy needed to stretch and bend the membrane around
the nanoparticle and the energetic gain of nanoparticle binding. The latter is
provided by the adhesion energy density of (coated) nanoparticles in the con-
tact region and, as was later found, also in near-contact regions. Extracting
adhesion energy density for real materials from more detailed descriptions
is unfortunately a far from simple task.[141] Early on, Deserno et al. used
this continuum model to show that a tensionless membrane can only adopt
two states: an unbound state where the membrane is flat, or a state where
the nanoparticle is fully wrapped by the membrane.[142, 143]. Accounting
for factors that were missing in the original Helfrich-based analysis, such as
the membrane thickness and interaction range, Raatz et al. and Spangler et
al. found that also partially wrapped cases could be stable.[144, 145]. While
providing important energetic insight, and therefore being of potential use for
restricted but quick screening, the lack of lipid detail already seriously ham-
pers the use of such methods for extracting extrinsic material descriptors.
Another disadvantage is that the nature of the membrane deformation upon
nanoparticle binding is not an outcome, but required a priori, introducing a
risk of overlooking alternative binding mechanisms. The historical solution
to this issue is to employ highly coarse-grained particle-based models with
implicit solvent for studying generic membrane dynamics and nanoparticle-
membrane interactions. Using such a model, the wrapping characteristics

40



for nanoparticles up to 40 nm was considered, i.e. the entire range for the
mechanism is expected to switch, and a discontinuous transition from partial
to full wrapping was predicted around 10 − 15 nm nanoparticles.[145, 146]
Since these models lack solvent, which is known to modulate the (free) energy
landscape, and they also lack the resolution to distinguish between different
lipids, they do not represent a decisive step forward in the search for for
accurate descriptors.

Summarizing, one may conclude that these efficient molecule-based meso-
scopic methods are useful for extracting information about general balances
and mechanisms for systems of relevant size, but they were never meant to
provide extrinsic nanoparticle descriptors. Just this, balancing (chemical)
information and efficiency with the aim to retain the necessary detail, is the
main purpose of recent developement in systematic coarse-grained methodol-
ogy. Although there are several ways to perform systematic coarse graining,
depending on the characteristics of the reference atomistic system that one
wants to reproduce, they are all based on lumping groups of atoms into CG
particles or beads. The most popular method, CG Martini, combines 2-4
heavy atoms in a single bead. Generating a description in terms of CG
beads does not only reduce the computational load, but it also softens the
interactions. As a result, also the system evolution is significantly acceler-
ated. Methods based on such types of coarse graining have been applied to
study lipid partitioning in general, the binding of elastic nanoshells,[147, 148]
the adhesion of anisotropic nanoparticles[149, 150] and of functionalized
nanoparticles.[151, 152] Also the role of bending and adhesion in the dis-
tribution of multiple nanoparticles inside the membrane has been investi-
gated, both in terms of a generic representations in a highly CG method[153]
and for more chemically resolved CG representations.[154, 155, 156] Yet,
while these CGMD studies have either been designed to properly represent
a particular experimental nanoparticle or to obtain insight into more general
binding mechanisms, very few have focused on the challenge of developing a
transferable representation or map from the atomistic to the coarse-grained
domain. Yet, determining such a map that is valid for all nanoparticles of
the same material is a prerequisite for the extraction of advanced descriptors
and trends that enable extrapolation.

One very recent example of such a new development is the special CG
nanoparticle representation within the familiar Martini CG approach that
is required for studying binding and translocation pathways of realistic sil-
ver nanoparticles across solvated lipid barriers in the lungs, see Figure 5.
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(a) (b) (c)

(d) (e)

Figure 5: (a) All-atom MD of nanoparticle/membrane/water system, (b) all-atom MD
binding free energy for three different sizes of Ag nanoparticles, (c) all-atom MD binding
free energy for silica for three nanoparticle sizes (graphs reproduced from Ref. [120] with
permission from the Royal Society of Chemistry). (d) Standard uniform CG model and
the new core-shell CG model, reproduced with permission from Singhal et al., MDPI
Nanomaterials, 2022[158]. (e) With increasing hydrophobicity, the mechanism of direct
insertion into the model lung membrane switches to a wrapping mechanism.

Whereas the modelling community has thus far generally approached the fun-
damentals of such large-scale phenomena via implicit-solvent continuum[142,
143] or highly coarse-grained descriptions[145, 146, 157], a core-shell CG rep-
resentation was developed that is transferable with respect to size and enables
the simulation of relevant nanoparticle sizes including solvation effects, in the
size range where interesting switching in binding behavior is expected.[158]
The development of this transferable map was based on matching poten-
tials of mean force (PMFs) for silver nanoparticles obtained using all-atom
molecular dynamics.[120] The systematic development of transferable CG
representations for the other materials, such as the silica and titanium diox-
ide that were also considered in atomistic studies, is a future desire. As the
determination of binding free energies for CGMD NP by standard methods
like umbrella sampling gets prohibitive with increasing size, string methods
could be employed as an alternative.[159]
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A key requirement in nanosafety assessment is how to include system-
atically a detailed molecular description of ENM-protein interactions. In
biological environments, proteins organize on ENM surfaces forming the so-
called nanoparticle protein corona (NPC) structures which play a central role
in biological interactions and nanotoxicity.[160, 161, 162] The NPC formation
around a variety of nanoparticles was evidenced and characterized in terms
of its biochemical composition by several experimental studies,[163, 164].
However, its effects on biological interactions and implications to nanosafety
considerations remain largely unknown.[163, 165, 166, 167, 168, 169] Sim-
ilarly as above, a main research challenge is how to develop efficient yet
accurate computational methods and tools that can bridge the gap between
a detailed, molecular-level description of ENMs interacting with solvents and
biomolecules such as proteins an atomistic level, and the much larger scale
(i.e., tens or hundreds of nanometers to micrometers) corresponding to bio-
logical structures such as NPCs or cellular membranes.[170] Coarse-grained
computational methods of protein-covered nanoparticles are often limited
to modeling entire proteins as single particles. Such models are success-
ful in showing how nanomaterials type, size, and shape can lead to diverse
protein composition of the NPC.[171, 172] However, detailed atomistic as-
pects of modeling protein interactions are required to calculate other key
experimentally-relevant mesoscopic descriptors such as the hydrophobic frac-
tion of the solvent accessible surface area (SASAH) (see Figure 6 (a-b-c)).
Recent developments in atomistic and multiscale computational methods al-
low unique opportunities to probe the detailed molecular mechanisms that
modulate interactions at bio-nano interfaces.[173, 174, 29] This approach can
be extended to the calculation of mesoscopic biophysical descriptors for an
NPC and relies on simplified models allowing further computational studies
of protein interactions with ENMs (see Figure 6 (a-b-c)).[163]. This has the
potential of (i) unveiling the role of specific proteins in NPC’s stability and
biophysical properties (e.g., hydrophobic surface area, charged patches), and
(ii) quantifying the way in which nanoparticle corona properties and protein-
protein interactions in the corona are modulated for different nanoparticle
types. First, all-atom molecular dynamics (MD) simulations of key plasma
proteins (e.g., human serum albumin, fibrinogen, immunoglobulin gamma-1
chain-C, complement C3, and apolipoprotein A1) can be used to study ad-
sorption on typical nanoparticle surfaces (e.g., titanium dioxide or silica). For
binary protein-protein interactions (e.g., only two interacting proteins) it is
possible to perform exhaustive atomistic MD simulations, both in the vicinity
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of nanoparticle surfaces and in bulk to compare directly the results and infer
the influence of the presence of the specific nanoparticles on the dynamic
and thermodynamics aspects of protein-protein interactions. Figure 6 (c))
illustrates the possibility to identify residues crucial to protein-nanoparticle
interactions in a specific system (human serum albumin-titanium dioxide).
In the second stage, the molecular mechanisms of protein-nanoparticle inter-
actions are probed by looking at the dynamic and structural proteins of sev-
eral proteins (and possibly lipids) in the crowded environment of nanoparticle
coronas, using also molecular docking simulations and, depending on systems
size, coarse-grained simulations of mixtures of multiple proteins[175, 176] that
can investigate the formation of the protein layer on the nanoparticle sur-
face, as illustrated in Figure 6 (d-e-f). Preliminary studies on multi-protein
docking on nanoparticles, suggest that knowledge of protein composition and
conformations (e.g., refined from MD simulations) can be used to estimate
the overall biophysical properties of NPCs, such as the hydrophobic fraction
of their solvent-accessible surface area, and surface charge distributions.[177]
Outstanding challenges in modeling the interactions of biological molecules
in contact with ENMs are to extend the capability of docking programs to
include more than just a few tens of proteins,[178, 179, 180, 181] and to in-
clude detailed information on the specific corona molecular composition that
is seldom available.[170] Additionally, besides proteins, it is expected that
future studies will also include (i) other components such as lipids[182] and
glycans[183] which play pivotal roles in ENMs uptake and could also be key
for the modeled ENM systems, as well as (ii) an accurate description of the
corresponding surface functionalization.[184] Finally, metallic nanoparticles
deserve a special mention as they are routinely employed in cancer therapy,
where they need to be selectively delivered to the tumor tissues. Among all
metals, gold nanoparticles are widely used as radiosensitizing agents because
of their biocompatibility and simplicity of synthesis.[185] Coated metallic
nanoparticles are used in catalysis, self-assembly, imaging, drug delivery,
and sensing applications. Metallic nanoparticles are very sensitive to the
local environment because of a phenomenon called “localized surface plas-
mon resonance” deriving from the collective oscillation of surface electrons.
[186] When coated with a monolayer ligand, the metallic nanoparticles’ prop-
erties such as metal reduction and colloidal stability can be adjusted for the
desired application.[187] Atomistic and mesoscale simulations allowed an un-
derstanding of the atypical distribution of multiple ligands on gold and silver
nanoparticles observed in the experiment,[188], as well as the adsorption
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Figure 6: (a) Schematic atomistic model of an NPC. A “soft corona" layer (dashed line) of
loosely bound proteins surrounds a “hard" corona layer (continuous black line), proximal
to the ENM’s surface. Even for spherical nanoparticles, the overall shape and biophysical
properties of the NPC surface will depend on its composition. (b) Comparing values
of the SASAH for various coronas around a 4 nm spherical silica nanoparticle (dashed)
with the values calculated for similar protein aggregates without including a nanoparticle
(continuous). (c) Atomistic corona models allow the identification of protein residues
that may play significant roles at the nanoparticle-protein interfaces. (d-e-f) Building
an atomistic model of an NPC by sequential docking of protein structures (mucin, pre-
equilibrated using MD) on a spherical silica nanoparticle. Mesoscopic descriptors such
as SASAH can be estimated as statistical averages over results from docking multiple
representative structures.
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Figure 7: Upper panel: MD snapshots of self-assembly simulations of 60 PLGAs and the
Au nanoparticle in aqueous solution at 0, 0.5, 50, and 100 ns, reproduced with permission
from Cappabianca et al., ACS Omega, 2022[190]; Bottom panel: Equilibrium structures
obtained by mesoscale simulations of self-assembly of binary mixtures of surfactants with
varying length difference or bulkiness difference on a spherical nanoparticle. Dark (red)
beads and light (yellow) beads represent head groups of the two species of surfactants,
from Ref.[188]. See text for more details.

of biomolecules on gold nanoparticles of different sizes,[189]. We report in
Figure 7 an example of how molecular modelling simulations (here all-atom
molecular dynamics simulations) can be used to investigate the behavior of
metallic nanoparticles, in particular, to capture adsorption phenomena of
polymers. Interestingly in [190], it is clearly shown that the design of shape
and topology of the surface in metallic nanoparticles is a rather effective
strategy to control the preferential polymer coating in some particle regions
as compared to others. Furthermore, using similar simulations tools, other
works [188] have investigated precise patterning of coadsorbed surfactants
on silver and gold nanoparticles. Hence, by targeting more effective control
on the crystallographic features of metallic nanoparticles, we can envision
an improved control of ENMs coating thus also significantly affecting their
toxicological properties.
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Modelling tech-
nique

Recommendations for future research

Quantum compu-
tations (DFT and
DFTB)

Those are among the most time-consuming methods
for extracting advanced descriptors. The most recent
methodologies based on machine learning algorithms are
promising to expand the set of systems, but attention
should be paid to their robustness and the energetic
needs associated with massive calculations. Pluridisci-
plinar physico-chemical approaches, such as those widely
used in other technological fields like catalysis, should be
used on a regular basis, to capture toxicity mechanisms
on the molecular level. This may lead to new descriptors
and increase the predictive power.

Reactive atomistic
simulations

Suitable reactive force fields are still to be developed for
accurately predicting the development of ENMs surface
electrical charges. In this respect, reaxFF [191] or the
more recent Machine Learning based potentials [192] are
expected to likely play an important role for coping with
sufficiently large particles beyond capacity of standard
DFT and DFTB computations.

Classical All-Atom
molecular dynam-
ics (MD)

Calculate the adsorption affinity of small metabolites on
nanoparticles using enhanced sampling techniques such as
metadynamics. Molecular nano-descriptors in [124] have
proved very computationally effective to cope with large
size particles, nonetheless they are limited to non-metallic
particles: Additional effort should be spent to relax this
constraint. MD is also needed for molecular docking of
proteins to ENM surfaces (see below). To speed up future
calculations, an MD database of typical conformations
and their corresponding thermodynamic weights could be
pre-built for proteins that play a major role in interacting
with ENMs (i.e., albumin, mucin, etc.) in order to in-
crease the accuracy of docking-based calculations of nano-
descriptors (e.g., SASAH).
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magentaProtein
docking

Current docking software is optimised for protein-drug
and protein-protein interactions (PPIs). Future research
would benefit from optimization for sampling efficiently
and accurately protein-ENM surfaces (i.e., inorganic ma-
terials). Future docking programs should be able to han-
dle multiple molecules, including larger proteins with di-
verse conformations and in a much larger number than
currently possible (i.e., from tens to hundreds or even
thousands). One possible approach to bridge the gap be-
tween the limitations of docking programs and the com-
plex and large-scale nature of PPIs and protein-ENM in-
teractions is the development of advanced machine learn-
ing approaches.

Coarse-Grained
Molecular Dynam-
ics (CGMD)

Estimating absorption energy densities by AAMD for pre-
screening by continuum Helfrich methods. Calculating
CG PMFs for all possible core-shell combinations to gen-
erate a matrix for mapping material-specific atomistic
PMFs. When addressing extrinsic descriptors for ENMs-
cell membrane binding, overcoming the current passive
configurations, by adding many lipid types rendering the
cellular membranes as well as membrane proteins and the
cytoskeleton.

Brownian Dynam-
ics

Simulating nanoparticles in contact with biological
molecules to bridge the gap between the molecular mod-
elling scale and the experimental scale. More effective
approaches are needed to campute and use PMFs in case
of non-spherical or anisotropic particles.

Table 2: Summary of recommendations and possible future research avenues in the context
of using material modeling techniques for computing advanced descriptors.
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5. Discussion: Challenges and perspectives

On one hand, from the above overview, it clearly emerges that the accu-
racy in predicting possible hazard of ENMs critically relies upon the ability
of using features beyond what can be accessed in typical experimental test
and characterization. Importantly, those features depend on intrinsic and
extrinsic properties aiming at describing both materials and biological envi-
ronments.

Nonetheless, when it comes to the direct link of ENMs to their expected
toxicity endpoints, it is fair to say that the current status of development
of the hardware and algorithms does not allow a brute-force assessment of
nanosafety. A more viable approach is expected to be the calculation of in-
trinsic and extrinsic advanced descriptors using a plethora of methodologies
mostly developed and used in other fields (e.g. materials modeling and bio-
chemistry) to extract input features for data based or statistical models (e.g.
QSAR, ML algorithms) to finally link them to the toxicity endpoints.

However, even the latter approach comes with formidable challenges,
mostly associated to the size and complexity of ENMs of practical use. On
one hand, ENMs of experimental interest may have dimensions orders of
magnitude larger than their computationally affordable counterparts. On
the other hand, precise compositions of particles and their coating are often
known with little detail level: This calls for a crucial effort of the relevant
scientific community in future experimental works where, in addition to the
valuable measurement of toxicological endpoints, a more comprehensive char-
acterization beyond nominal values of ENMs is requested.

Furthermore, currently, an interesting (and perhaps necessary) approach
seems to be hybridization of pure physics-based models with disparate data
sources. In particular, due to a practically unlimited number of different
ENMs with great chemical and geometrical variety, a truly extended adop-
tion of advanced descriptors in data-based models for nanoinformatics looks
inconceivable without leveraging high-fidelity multiscale modeling data from
both literature and crude or analytical (yet computationally efficient) ap-
proximations models. As a representative example, biased classical molec-
ular dynamics simulations can certainly be used to accurately compute the
Potential of Mean Force between nanoparticle pairs. At the same time, clas-
sical approaches such as the theory of Derjaguin-Landau-Verwey-Overbeek
(DLVO) cannot be discarded and efforts should be devoted to finding new
approaches capable of orchestrating and integrating such multi-fidelity and
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multi-source data. Another example of a similar synergy has been described
above in the manuscript and it has to do with CGMD based simulations of
cell membranes and the corresponding continuum Helfrich free energy mod-
els.

One possibility would be the adoption of descriptors from crude approxi-
mation models, characterized by a lower fidelity level and available literature
data as a subset of features for ML models where physics-based model results
are used as training sets. Such an approach has been proven successful in
significantly improving ML model predictions in the presence of a small or
incomplete training dataset.[11, 193] We thus envision a more comprehensive
and multi-layered approach where detailed physics-based models (first layer),
literature/experiment data (second layer), and crude approximation models
(third layer) are synergetically managed for the estimate of relevant descrip-
tors by means of surrogate (statistical) and ML models (see Figure 1, bottom
panel). In this respect, further research is requested to investigate to what
extent the small variance of high-fidelity data from physics-based model pre-
dictions combined with the high-variance (and low-fidelity) of other sources
can deliver descriptors predictions with high/medium fidelity and variance
that are suitable for QSAR/QSPR models.

It is also worth stressing that, beyond the mere usefulness of advanced
descriptors for data based models targeting nanosafety assessment, further
improved physics-based models describing phenomena from the electronic up
to the mesoscopic level can offer the unique opportunity of gaining insights
at the nano-level, which are hardly accessible by experimental techniques
and therefore remain critical for: i) unveiling basic mechanisms behind the
possible hazardous character of ENMs; ii) possibly complement information
from less detailed and less demanding models.

For all the above reasons, we expect and hope that the progress of high-
performance computing power combined with advanced tools for acceleration
of atomistic simulations [194] can soon make the calculation of advanced
descriptors more competitive as compared to experiments in terms of both
the amount and quality of generated data.

Another interesting aspect to highlight is related to the possible exploita-
tion of the large body of knowledge available in the context of modern compu-
tational approaches to investigate nanoparticles in other technological fields
such as catalysis and materials science [195, 196, 197, 76, 198, 199, 200].
Specifically, we refer to:
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1. High-throughput screening of nanoparticles in drug delivery [201]
2. Barcoded nanoparticles for high throughput in vivo discovery of tar-

geted therapeutics,[202].
3. Computational high-throughput screening of alloy nanoclusters for elec-

trocatalytic hydrogen evolution [203]

It would be desirable that the safe and sustainable design strategies in
toxicology could take advantage of this knowledge and tools, combining effi-
ciently biology and medicine with physics and chemistry.

Furthermore, it is likely that an even larger amount of data on nanosafety
of ENMs will be generated in the near future. It is therefore of increasing
importance to comply with the FAIR principles, so that metadata and data
can be efficiently reused in data-based models for predicting the hazard of
ENMs. Specifically, in this respect, the role of databases for collecting and
storing a large amount of curated and well structured data is likely to play
a major role in the near future. As such, we discuss one prototypical case
study in the following subsection.

Finally, as a long-term goal, we expect that nanoinformatics models based
on advanced descriptors could be integrated with AOPs, in order to better
assess the potential exposure throughout the entire life of the nanoparticles.
In this respect, modern grouping strategies taking into account the mode of
actions and developed based on ML techniques processing data from omics
studies appear particularly promising and therefore it will be specifically
discussed below in a dedicated subsection.

5.1. Databases: The eNanoMapper case study
Storage and organization as well as organization of curated data from dis-

parate sources within databases appears critical for nanosafety assessment.
To this end, below we review a prototypical case study. The eNanoMapper
database is an open-source chemical substance data management solution,[204]
adopted by more than 20 European projects and facilitating the Findable,
Accessible, Interoperable and Reusable (FAIR) data collection and reuse of
the nanosafety community. To provide aggregated findability, accessibility,
and interoperability across project-specific databases, the Nanosafety Data
Interface (https://search.data.enanomapper.net) was created, and currently
represents one of the largest searchable nanosafety data collections.[205] The
eNanoMapper is based on data and software originally developed to repre-
sent industrial chemicals and related experimental or calculated data. It
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was one of the first cheminformatics platforms to offer open REST Appli-
cation Programming Interface (API) supporting integrated services such as
data, descriptor calculations, and ML.[206, 207] A visual representation of
the eNanoMapper data model is reported in Figure 8, where substances are
characterized by names and IDs, which can be multiple, the composition
refers to the components of the material (core, coating, chemical structure),
each of them having different properties; the same material can have differ-
ent compositions. A protocol consists in measurements of a specific endpoint
in given conditions, related protocols form an investigation entity; finally,
different substances can be grouped into an assay entity when the same pro-
tocol applies, giving an extremely flexible structure.[208] With the explosive
growth of material databases, ML frameworks, and their success in material
modeling, it is critical to explore the link between the estimated material
properties and experimentally measured safety or functional properties. In
NanoInformaTIX,[36] both experimental data from selected use cases and
also calculated descriptors are stored into the eNanoMapper database and
an effort is devoted towards providing open source libraries to facilitate in-
tegration with data analysis frameworks and developing exploratory data
analysis methods. The validation of computational models relies on high-
quality experimental data; such data may not always be complete, and it
is necessary to identify data gaps and, eventually, to generate additional
data based on experimental and theoretical chemistry and on biology. The
goal of this computational and theoretical endeavor is the realization of safe
nanoparticles and nanomaterials. To fulfil such expectation, theoretical de-
scriptors must be translated into measurable parameters, and this challenge
entails a deep knowledge of the mode of actions of nanoparticles that lead
to harmful outcomes. On another level, identification and estimation of the-
oretical drivers of toxicity can facilitate the prioritization of experimental
tests, which, due to the uncontrollable inhomogeneity of any ensemble of
nanoparticles, is always needed for a robust risk assessment of nano-enabled
technology.

5.2. Grouping approaches
Regulatory processes, which often rely on in vivo testing, are outpaced

by the increasing number of ENMs on the market. To cope with this situ-
ation, the lack of data and to ensure the safety of new materials, grouping
approaches emerge as an interesting method. Those approaches are accepted
within the overarching EU chemicals regulation REACH (EC 1907/2006)
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Figure 8: eNanoMapper/Ambit data model adapted from Ref.[208]. Substances are char-
acterized by their composition and identified by name and ID, which can be multiple.
Complex relations between the substance components can be specified.
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and are commonly used to consider more than one chemical at the same
time.[209, 210, 211] Within an established group, data gaps can be filled by
read-across. Here, existing data on a particular (eco)toxicological endpoint
linked to one or several source chemicals can be employed to estimate the
same property of one or more target chemical(s).

Chemicals can be grouped together on the basis of well-defined physic-
ochemical similarities, like common functional groups, precursors, and/or
breakdown products. However, ENMs pose an additional challenge com-
pared to chemicals, since there is a very limited understanding on how in-
dividual physicochemical parameters influence cellular uptake and toxicity.
In addition, the properties of ENMs can change depending on the surround-
ing medium and over time. To establish grouping approaches for ENMs,
it is essential to understand how the individual physicochemical properties
are linked to toxicity. To support a grouping justification, additional in-
formation on a common Mode of Action (MoA) or toxicity mechanism is
advantageous.[209] The MoA of a substance describes the functional or phys-
iological changes it causes to a living organism or cell. One of the drawbacks
is that toxicity mechanisms are only partially understood, and for plenty of
ENMs variants the precise MoA remains elusive. In this regard, the poten-
tial of systems biology to contribute to the development of reliable grouping
approaches for ENMs should not be obliterated. Modern omics-based ap-
proaches (transcriptomics, proteomics, metabolomics), in combination with
sophisticated bioinformatics and data analysis tools, are very important to
characterize toxicity pathways and unravel relationships between individual
physicochemical properties and cellular responses. This knowledge can then
be applied in the context of grouping and categorization. Moreover, omics
approaches are of relevance for the development of AOPs and to establish
reliable, comprehensive testing strategies building on the known MoA.[212]
AOPs are a conceptual construct that integrates known information from
various sources in a sequential chain of causally linked key events that cover
different levels of biological organization (i.e. cellular, organ level) starting
with a molecular initiating event leading to the final adverse outcome.[213]
The knowledge gained from grouping approaches can then be directly used
for SSbD of ENMs. Currently, there are several ENM grouping frameworks
with different approaches.[214, 215, 216]. However, there are only very few
case studies for which the frameworks have been applied to ENMs.

Recently, several publications have taken advantage of different tech-
niques, including ML approaches. [217, 218, 219] Additionally, the incorpora-
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tion of omics datasets to support the development of more accurate grouping
strategies of ENMs take into account the mode of action [220, 221, 222, 223].

Bioinformatics and ML techniques are thus essential when approaching
cellular effects in a comprehensive manner, particularly in combination with
high-throughput techniques like omics. Figure 9 depicts the ML random
forest approach used for the grouping of ENMs, with this strategy, the bi-
ological activity of ENMs can be predicted provided that physicochemical
properties are known. Omics studies are a massive source of data sets, which
comprehensively describe the cellular alterations caused by any treatment,
importantly in this case, by ENMs. Thus, omics methods are highly useful
to identify the MoA of ENMs to be employed in the grouping approaches as
additional biological descriptors. So far, most of the efforts to understand the
MoA of ENMs have been undertaken in the field of transcriptomics.[224, 225]
However, proteomics can be even more informative since it depicts the cel-
lular alterations much closer to the phenotype than transcriptomics. The
challenge here is the standardization of the methods, particularly for data
analysis and interpretation.[226, 227]

Meta-analysis of publicly available proteome data targeted to specific
organ alterations is being carried out to investigate the MoA of ENMs within
the organ, based on proteome alteration evidence. Relevant datasets from
publicly accessible proteomics databases such as PRIDE are identified in
the first step. These data do not necessarily involve only ENM treatments,
but also other alterations like disease, cancer, and chemical treatments. A
recently developed workflow by the BfR for standardized data analysis was
applied to the data sets. These results are then integrated into proteomics
data de novo generated from studies evaluating the effect of ENMs in vitro.
Correlations between nanomaterials effects and organ-specific alterations can
thus be detected.[228]

55



Nanomaterials

1 2 3

Activity labels

A1 A2 A5A4 A6A3 P4P1 P2 P3

Tree 1 Tree n…

A4

A3, A5 P2, P3

P4 A3

P3

P1 A2, A5, A6

Prediction stepA1 A1

Prediction Tree 1: active Prediction Tree n: active

Majority voting (predicted class): active (empirical frequency: 0.8)

Recursive
Feature
Elimination
(RFE)

…

Random
Forest
classification
(RF)

Sort physico-chemical properties by importance

Le
av

e-
o

n
e-

o
u

t 
cr

o
ss

-v
al

id
at

io
n

Delete least important physico-chemical property

Select best model

Physico-chemical properties

Model building step

Evaluate model performance: balanced accuracy

4 5 6 87

1

6

5

6

8

3

4 2 8

…2 84

Figure 9: Schematic representation of the random forest approach used for grouping of
ENMs. ENMs are described by a set of different physicochemical properties, and an
activity label is assigned to each ENM (based on the outcome of biological assays). ENMs
are then subjected to a random forest model, in which ENMs are divided into active and
passive materials, based on splits made on their physicochemical properties in each tree.
Recursive feature elimination is used to select only the most important physicochemical
properties for achieving maximum accuracy. To address and avoid a large overfitting bias,
the model is validated in a leave-one-out approach. This approach can be used to predict
the biological activity of new ENMs, for which the physicochemical properties are known.
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6. Concluding remarks

Gaining a clear and deep rationale behind the safety properties of nano-
materials is a multifaceted issue still posing formidable challenges: Nano-
materials are far more complex than their macroscopic counterparts, having
high surface reactivity and the ability to enter living cells, potentially causing
damage to the organisms.

In this work, mostly taking a computational perspective, we made an
effort in analyzing state of the art physics-based models for computing both
intrinsic and extrinsic ENMs properties that are crucial for setting up reliable
data-based models for nanosafety assessment. In this spirit, one major aim
of this work was the identification of the most critical roadblocks towards
computer-aided support nanosafety assessment. Importantly, we have iden-
tified and discussed opportunities in advancing the field and open research
points, as conveniently summarized in Tables 1 and 2. We have extensively
illustrated the methods for computing advanced descriptors and the cur-
rent associated challenges mainly leading to low data variance despite the
expected higher fidelity. Hence, possible suggestions on hybridization strate-
gies for moving towards models with higher data variance and fidelity, as well
as the inclusion of Adverse Outcome Pathways (AOPs) are envisioned.

We stress that the reported analysis and suggested guidelines for future
reflect our current best understanding of the field after several years of dis-
cussion among experts in disparate related fields. As such, our main hope
is that this work can serve as a stimulus for future research, and could thus
help triggering next breakthroughs in nanosafety assessment.
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Appendix A. List of physics-based descriptors that can be calcu-
lated through materials modelling techniques
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