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Abstract—In this work, we propose a new clustering algorithm
to group nodes in networks based on second-order simplices (aka
filled triangles) to leverage higher-order network interactions. We
define a simplicial conductance function, which on minimizing,
yields an optimal partition with a higher density of filled triangles
within the set while the density of filled triangles is smaller across
the sets. To this end, we propose a simplicial adjacency operator
that captures the relation between the nodes through second-
order simplices. This allows us to extend the well-known Cheeger
inequality to cluster a simplicial complex. Then, leveraging the
Cheeger inequality, we propose the simplicial spectral clustering
algorithm. We report results from numerical experiments on
synthetic and real-world network data to demonstrate the efficacy
of the proposed approach. *

Index Terms—Cheeger inequality, clustering, higher-order
cuts, simplicial complexes, triangle conductance.

I. INTRODUCTION

Networks model complex interactions (as edges) between
entities (as nodes). Networks often have community structures,
and determining these communities is a topic of significant in-
terest in network science [1], [2]. Clustering algorithms detect
communities by partitioning the nodes in a network into sets
with high edge density within a set while maintaining a low
edge density between nodes of different sets. Such partitioning
is promoted by cut criteria, such as modularity [3] or edge
conductance [4], [5]. Spectral clustering [6], [7] is a well-
known heuristic obtained by relaxing the edge conductance cut
criterion and relating it to the second smallest eigenvalue of
the graph Laplacian through the so-called Cheeger inequality.
However, these methods only capture the pairwise relations
between nodes. In many real-world networks [8], [9], supra-
pairwise relations, i.e., beyond pairwise relationships, e.g., tri-
adic or more, are common [10], and preserving such structures
while clustering is paramount.

Higher-order spectral clustering algorithms account for
higher-order interactions, wherein the cut of triangles (cap-
turing triadic interactions) is minimized for network partition-
ing [2], [11], [12]. These methods can be broadly classified
into two classes. The first class encodes higher-order structures
in an affinity tensor (a higher-order generalization of a sim-
ilarity matrix), then apply spectral clustering on it [11]. The
second class directly constructs the so-called motif Laplacian
matrix by counting higher-order structures in the network, then
apply spectral clustering on it [2], [12]. An affinity tensor or
motif adjacency matrix assumes that all pairwise interactions
lead to a higher-order (e.g., triadic) relation. That is, it assumes
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Fig. 1: (a) Simplicial complex with a 2-simplex cut. (b)
Simplicial adjacency matrix. (c) Triangle motif adjacency
matrix.

all triangles are filled, while we may have hollow triangles
in some cases. As an example, the network in Fig. 1(a) has
only pairwise relations between the nodes {5, 7, 8}, through
{5, 7}, {7, 8}, {8, 5}, and the triangle {5, 7, 8} is hollow. This,
in other words, means that the network does not contain a
triadic interaction between nodes {5, 7, 8}. A triangle motif,
on the contrary, counts {5, 7, 8} as a triangle and assumes it
as equally important as other filled triangles, e.g., {1, 3, 4},
{1, 2, 4}, {2, 4, 7} and {5, 6, 8} (see its adjacency matrix in
Fig. 1(b)). To distinguish filled higher-order structures, we
model networks as simplicial complexes (see its adjacency
matrix in Fig. 1(c)). Simplicial complexes [13] are mathemat-
ical objects that model higher-order interactions in networks
and are composed of simplices of different orders, such as
nodes (0-simplices), edges (1-simplices), and filled triangles
(2-simplices) as basic building blocks.

This work focuses on clustering a network modeled as a
simplicial complex using 2-simplices. Specifically, we develop
a simplicial conductance function, which, when minimized,
outputs a partition with a higher density of 2-simplices within
the set and a lower density of 2-simplices across the sets. To
circumvent the combinatorial optimization problem when min-
imizing the simplicial conductance, we propose a new operator
called simplicial adjacency to encode the similarity between
the nodes through the 2-simplices. The simplicial adjacency
matrix can be computed in closed form as a boundary of a
boundary matrix associated with the simplicial complex. We
then relate the spectrum of the simplicial Laplacian matrix
(derived from the simplicial adjacency matrix) to simplicial
conductance through the Cheeger inequality. This allows us to
propose a simplicial spectral clustering algorithm.

II. SIMPLICIAL ADJACENCY MATRIX

A simplex is a subset of the vertex set V = {v1, . . . vN} of
a graph with a k-simplex (or simplex of order k), denoted as



σ
(k)
i = {vi1 , vi2 , . . . vik+1

}, being a subset of V of cardinality
k + 1. For instance, σ

(2)
i = {vi1 , vi2 , vi3} ⊆ V denotes a

2-simplex. An undirected simplicial complex X is a finite
collection of simplices such as nodes (0-simplices), edges (or
1-simplices), and filled-triangles (or 2-simplices). The order
of a simplicial complex is the highest order of the simplices it
contains. The boundary matrix Bk ∈ RNk−1×Nk encodes the
relation between (k−1)-simplices and k-simplices, i.e., it en-
codes which (k−1)-simplex is adjacent to which k-simplices.
For an undirected simplicial complex X , the boundary operator
Bk has entries as

[Bk]ij =

{
1, if σ(k−1)

i ⊂ σ
(k)
j ,

0, otherwise.

Since we do not account for any orientation in Bk, the bound-
ary of a boundary map is not equal to zero, i.e., BkBk+1 ̸= 0.

We define the simplicial adjacency matrix A0,2 that encodes
the relations between 0-simplices through 2-simplices with its
(i, j) entry [A0,2]ij equal to the number of 2-simplices the
nodes vi and vj appear in, i.e.,

[A0,2]ij =

N2∑
p=1

I({vi, vj} ∈ σ(2)
p ) (1)

for i ̸= j and [A0,2]ii = 0. Here, I(·) is the indicator function
that returns 1 when its argument is true. Let us define the
diagonal degree matrix D0,2 ∈ RN0×N0 matrix with entries
[D0,2]ii =

∑
j [A0,2]ij and the simplicial Laplacian matrix as

L0,2 = D0,2 −A0,2. The normalized simplicial Laplacian is
given by L̃0,2 = D

−1/2
0,2 L0,2D

−1/2
0,2 . The simplicial adjacency

matrix in (1) can also be obtained using the boundary operators
as follows.

Proposition. The simplicial adjacency matrix [A0,2]ij can be
computed from the boundary matrices B1 and B2 as

[A0,2]i,j =

[
B12B

T
12

]
ij

4
. (2)

where B12 = B1B2 ∈ RN0×N2 .

Since each row of B1 corresponds to a 0-simplex and
has nonzero entries where 1-simplices are incident on the 0-
simplex and each column of B2 corresponds to a 2-simplex
and has nonzero entries where 2-simplices are incident on
1-simplices. Therefore, the inner product between ith row
and jth column gives a nonzero value if a 0-simplex is
incident upon a 2-simplex. Hence B12 has nonzero entries
only if a 0-simplex is incident on a 2-simplex. In other words,
[B12]ij = 2I(vi ∈ σ

(2)
j ). Here, the factor 2 appears as we

consider undirected simplices. Now, [A0,2]i,j is obtained by
taking the inner product between the ith row and jth column
of B12 that counts the total number of 2-simplices the edge
between nodes vi and vj appear in. The factor of 4 is due to
undirected simplices.

III. CLUSTERING USING 2-SIMPLICES

This section discusses the proposed algorithm for clustering
0-simplices (i.e., nodes) in a simplicial complex X by lever-
aging the higher-order relation through 2-simplices.

A. Simplicial conductance

The 2-way partitioning of the undirected simplicial complex
X based on 2-simplices corresponds to finding a nodal par-
tition such that 0-simplices within a set have a high density
of 2-simplices, and 0-simplices across sets have a low density
of 2-simplices. To obtain this, we define the following cut
measure:

ϕ0,2(S) =
cut0,2(S, S̄)

min{vol0,2(S), vol0,2(S̄)}
, (3)

where we call ϕ0,2(S) the simplicial conductance induced by
2-simplices. In (3), cut0,2(S, S̄) measures the number of 2-
simplex cut of S, i.e., the number of 2-simplices that have
one vertex in S and other vertices in S̄; vol0,2(S) measures
the total number of 2-simplices having vertices in S. For the
optimal partitioning of the simplicial complex, we minimize
ϕ0,2(S) as

ϕ⋆
0,2(S) = minimize

S⊂V
ϕ0,2(S). (4)

Solving (4) is NP-hard as it involves evaluating all the possible
cuts. To circumvent the difficulty, we develop an algorithm
similar to spectral clustering, namely, simplicial spectral clus-
tering.

B. Cheeger inequality with simplicial adjacency

We now discuss the relationship between simplicial con-
ductance to the second smallest eigenvalue of the simplicial
Laplacian matrix L0,2 in the following theorem.

Theorem. For an undirected simplicial complex X having the
normalized simplicial Laplacian matrix L̃0,2 with λ2 being its
second smallest eigenvalue, we have

λ2

2
≤ ϕ⋆

0,2(S) ≤
√

2λ2.

Proof. We prove the above Cheeger inequality for an undi-
rected simplicial complex by relating the simplicial conduc-
tance ϕ0,2(S) to the quadratic form of simplicial Laplacian
L0,2. Let us define zi(S) as number of 2-simplices with
exactly i vertices in S. We can express the vol0,2(S) that
measures the total number of 2-simplices having vertices in S
as:

vol0,2(S) = 3z3(S) + 2z2(S) + z1(S).

The factors 3 and 2 are due to the undirectedness of the
simplicial complex. Similarly, the cut function cut0,2(S, S̄)
can be expressed as cut0,2(S, S̄) = z2(S) + z1(S). Therefore
the simplicial conductance is

ϕ0,2(S) =
z2(S) + z1(S)

min(vol0,2(S), vol0,2(S̄))
. (5)



Algorithm 1 Clustering 0-simplices based on 2-simplices

1: Input: Simplicial complex X , boundary matrices B1, B2

2: Output: Clusters (S, S̄) based on 2-simplices
3: Compute A0,2 from (2), D0,2, and L̃0,2 =

D
−1/2
0,2 L0,2D

−1/2
0,2

4: ẽS ← Eigenvector of L̃0,2 corresponding to its second
smallest eigenvalue

5: γk ← Node index corresponding to the kth smallest entry
of D−1/2ẽS

6: S ← min
1≤k≤N0

ϕ0,2(Sk), where Sk = {γ1, γ2, . . . , γk}.

Next we express the numerator in (5) using the quadratic
form of the simplicial Laplacian matrix. Let us first define the
3× 3 symmetric matrix M(σi) with the following entries:

[M(σ
(2)
i )]mm =

{
2, if vm ∈ σ

(2)
i ,

0, otherwise

and

[M(σ
(2)
i )]mn =

{
−1, if {vm, vn} ∈ σ

(2)
i ,

0, otherwise.

Let us also define the vector eS ∈ {0, 1}N0 with entries
[eS ]i = I(vi ∈ S). For a 2-simplex, say σ

(2)
i = {vi1 , vi2 , vi3},

we define the 3 × 1 vector c(σ
(2)
i ) = [I(vi1 ∈ S), I(vi2 ∈

S), I(vi3 ∈ S)]T . Then the quadratic form can be expressed
as

1

2
eTSL0,2eS =

N2∑
i=1

cT (σ
(2)
i )M(σ

(2)
i )c(σ

(2)
i )

= (z2(S) + z1(S))
= cut0,2(S, S̄). (6)

Similarly, we can express vol0,2(S) in the quadratic form of
the degree matrix as

1

2
eTSD0,2eS =

N2∑
i=1

cT (σ
(2)
i )diag

(
M(σ

(2)
i )

)
c(σ

(2)
i )

= 3z3(S) + 2z2(S) + z1(S)
= vol0,2(S). (7)

Hence, (4) can be equivalently expressed as

minimize
S

eTSL0,2eS
eTSD0,2eS

s.t. 1TD0,2eS = 0, (8)

where 1 is the all-one vector, the constraint ensures a non-
trivial solution.

By defining ẽS = D
1/2
0,2 eS , (9) can be transformed to

minimize
S

ẽTS L̃0,2ẽS

s.to 1TD
1/2
0,2 ẽS = 0,

ẽTS ẽS = 1. (9)

TABLE I: DATASETS.

Dataset # of nodes # of edges # of clusters
Zachary [15] 34 78 2
Polbooks [3] 105 441 3
Football [3] 115 613 12

Thus solving the above problem to minimize the simplicial
conductance as in (4) is analogous to the well-known 2-
way spectral clustering problem based on edge cuts and
deriving the related Cheeger inequality [14], [7] remains the
same, but with the main difference being that the simplicial
conductance is now bounded by the second smallest eigenvalue
of normalized simplicial Laplacian. 2

Based on this theorem, we propose the simplicial spectral
clustering algorithm as detailed in Algorithm 1, which ex-
tends classical spectral clustering to obtain an optimal 2-way
partition of the simplicial complex using 2-simplices.

IV. NUMERICAL EXPERIMENTS

Numerical experiments to test the proposed method are
conducted on synthetic and real datasets. We compare the
proposed approach with triangle motif-based [2] and graph-
based [7] spectral clustering algorithms. As a performance
metric, we use normalized mutual information (NMI) [16].

A. Synthetic dataset

We generate the simplicial complex shown in Fig. 1(a),
which has N0 = 8 0-simplices, N1 = 13 1-simplices,
and N2 = 5, 2-simplices. So the boundary matrices are
B1 ∈ R8×13 and B2 ∈ R13×5. For this curated simplicial
complex, the 0-simplices are categorized into 2-classes as
shown in Fig. 2(a). Ground truth class labels for 0-simplices
are based on their relationship with neighboring 0-simplices
through 2-simplices. We compute the simplicial adjacency
matrix A0,2 ∈ R8×8 using (2), and obtain the clusters using
simplicial spectral clustering (Algorithm 1). They are shown
in Fig. 2(d). Given that it relies on adjacency through 2-
simplices, it recovers ground truth. As a comparison, motif-
based spectral clustering [2] (Fig. 2(c)) and graph spectral
clustering (Fig. 2(b)) do not recover it. For motifs, it assumes
that every triangle is filled, while spectral clustering ignores
them. NMI between the obtained clusters and ground truth is
reported in Fig. 4. The proposed method is optimal with NMI
= 1.

B. Real datasets

We also apply the proposed method on the Zachary Karate
Club network [15], the Polbooks network [3], and a foot-
ball network [3]; for details about the datasets see Table I.
Although information about filled triangles is not directly
available in these datasets, we report observations about what
happens when we assume that some triangles are not filled.



Fig. 2: Synthetic dataset. (a) Ground truth. (b) Communities from graph spectral clustering. (c) Communities from motif
spectral clustering. (d) Communities from simplicial spectral clustering.

Fig. 3: Zachary Karate network data. (a) Ground truth network. (b) Communities obtained from motif spectral clustering. (c)
Communities obtained from simplicial spectral clustering. (d) Removed triangles.

Fig. 4: Normalized mutual information.

1) Zachary karate club network: This dataset [15] is a
well-known community detection dataset about the social
relationships of members in a karate club, where the members
belong to 2 groups within the club as shown by two different
colors in Fig. 3(a). We follow the procedure from [2] to obtain
the triangle motif adjacency matrix. The cluster assignments
from motif spectral clustering are shown in Fig. 3(b), and NMI
is reported in Fig. 4.

For the proposed simplicial spectral clustering, we study
the impact of filled triangles with respect to (w.r.t.) the hollow
ones. Towards that end, we conduct the following analysis:
out of all triangles listed by the triangle adjacency matrix, we

remove a few triangles assuming they are open. We remove the
triangles formed with edges {9, 31} and {9, 34} with members
from the 2 ground truth groups. These triangles act as a bridge
between the two groups (as shown in Fig. 3(d)). The proposed
simplicial spectral clustering significantly improves NMI (see
Fig. 4). This asserts our claim that assuming all the open
triangles as filled overlooks the importance of filled triangles
for graph partitioning.

2) US Polbooks data [3]: This network has 3 clusters.
Hence we use motif clustering with multiple clusters as a
baseline [2]. For simplicial spectral clustering, the method
is: 1) Compute the eigenvectors of the normalized simplical
Laplacian matrix; 2) Collect the eigenvectors corresponding to
the 3 smallest eigenvalues of L̃; 3) Run K-means algorithm
on obtained eigenvectors with K = 3 to obtain the clusters.

The ground truth network results from motif clustering, and
simplicial spectral clustering are in Figs. 5(a)-(c). As before,
we assume a few triangles as hollow. The obtained NMI is
reported in Fig. 4, where the proposed simplicial clustering
outperforms the baselines.

3) American Football network data [3]: American football
club network is a multicluster dataset with 12 communities,
where we consider a few triangles as hallow. The simplicial
spectral clustering for obtaining multicluster assignments is as
before.

Figs. 6(a)-(c) show the ground truth network along with the
cluster assignments from motif spectral clustering and simpli-
cial spectral clustering. NMIs for these methods are reported in
Fig. 4, where it can be seen that the proposed method achieves
better performance at finding the communities.



Fig. 5: US Polbooks data. (a) Ground truth network. (b) Communities obtained from motif spectral clustering. (c) Communities
obtained from simplicial spectral clustering.

Fig. 6: Football network data. (a) Ground truth network. (b) Communities obtained from motif spectral clustering. (c)
Communities obtained from simplicial spectral clustering.

V. CONCLUSIONS

We proposed a simplicial conductance function to leverage
higher-order network interactions while clustering. We defined
a simplicial Laplacian operator that captures the relation-
ship between the nodes through 2-simplices and developed a
Cheeger inequality relating the second smallest eigenvalue of
the proposed simplicial Laplacian matrix to the optimal simpli-
cial conductance. Further, leveraging the Cheeger inequality,
we developed a new simplicial spectral clustering algorithm,
which was found to cluster networks better than edge cut-
based and triangle motif-based spectral clustering methods
while being able to distinguish filled and hollow triangles.
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