

Modélisation du changement de phase dans les murs en maçonnerie

Fadi Al Nahhas, Ramdane Ami Saada, Guy Bonnet, Patrick Delmotte

► To cite this version:

Fadi Al Nahhas, Ramdane Ami Saada, Guy Bonnet, Patrick Delmotte. Modélisation du changement de phase dans les murs en maçonnerie. 17e Congrès Français de Mécanique, Aug 2005, Troyes, France. pp.1-6. hal-04226959

HAL Id: hal-04226959 https://hal.science/hal-04226959v1

Submitted on 3 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modélisation du Changement de Phase dans les Murs en Maçonnerie

Fadi Al Nahhas*, Ramdane Ami Saada*, Guy Bonnet*, Patrick Delmotte**

*LaM, Laboratoire de Mécanique, Université de Marne La Vallée 5, Bd Descartes, Cité Descartes, 77454, Marne La Vallée Cedex 2, France **CSTB, Centre Scientifique et technique du bâtiment B.P.2, F-77454 Marne La Vallée Cedex 2, France.

Résumé :

La présence d'eau dans les matériaux de construction joue un rôle significatif lorsque ceux-ci sont exposés au feu. Les résultats expérimentaux montrent que pendant le chauffage, la réponse thermique du matériau se caractérise par la présence d'un plateau autour de 100 °C sur la courbe « température – temps ». Ce travail présente un modèle de couplage thermo-hydrique développé pour étudier le phénomène de changement de phase (liquide-vapeur) dans des milieux poreux partiellement saturés exposés à de hautes températures (1100°C) en prenant en compte d'une part, les lois de conservation d'énergie et de masse (liquide, vapeur et air sec) ainsi que la loi de changement de phase ou de Clapeyron. Les équations couplées du modèle sont discrétisées par la méthode des « volumes finis » utilisant un schéma implicite. Cette modélisation a entre autre pour objectif de mettre l'accent sur la complexité de ce phénomène de changement de phase.

Abstract :

The behaviour of building materials submitted to fire points out the important role of water content. The experiments show that a significant plateau appears at a given range of temperature (about 100 °C). This work presents a coupled hydro-thermal model based on the mechanics of partially saturated porous media. Such a model is used to simulate a thermal loading up to 1100 °C of a part of a wall made from concrete blocks.

The effect of phase-change on the increase of temperature into the wall has been taken into account . Hence, the model is able to describe the duration of plateau which is due to energy absorption when the wall is submitted to various thermal loading. It is possible to predict the influence of various physical parameters characterizing the porous medium on the thermal behaviour of wall submitted to fire, such as intrinsic permeability, water content, initial hygrometry and sorption curve.

Mots clefs :

Couplage thermo-hydrique, Changement de phase, Résistance au feu.

1 Introduction

Les matériaux de construction sont souvent fabriqués à base de mélange de ciment, de granulats et d'une certaine quantité d'eau. L'effet du changement de phase dans ce type de matériaux joue un rôle important dans l'évolution de leur résistance au feu. Pour appréhender ce phénomène un grand nombre d'études ont été publiées sans tenir compte des effets hydriques modifiant considérablement la résistance au feu des matériaux de construction [1,2]. Ces dernières sont souvent limitées à la prédiction de la réponse thermique des murs en maçonnerie. Actuellement, peu de recherches ont été réalisées sur le séchage des milieux poreux soumis à de hautes températures. Ce travail montre la complexité du phénomène et le rôle prépondérant de l'ébullition à l'intérieur des milieux poreux. Il semble que le comportement de ces milieux

(1)

(2)

dépend fortement du mécanisme couplé de changement de phase, de flux des fluides et de transfert de chaleur. Dans cet article est présenté un modèle thermo-hydrique utlisant la méthode des « volumes finis » avec un schéma implicite [3] permettant de prédire ces effets couplés dans un milieux poreux soumis à de hautes températures. Le formalisme du modèle est obtenu en appliquant les lois de conservation, les principes de thermodynamique des milieux poreux partiellement saturés[4-6]. L'effet de la teneur en eau sur la réponse thermo-hydrique du mur exposé au feu a été alors étudiée.

2 Modèle thermo-hydrique (TH)

Les principales hypothèses du modèle thermo-hydrique du milieu poreux partiellement saturé sont :

H1 : Le milieu poreux est composé de trois phases (solide (indice s), liquide (indice ℓ) et gazeuse (indice g) comportant un mélange d'air sec (indice a) et de vapeur d'eau (indice v). H2 : Le milieu poreux est homogène, isotrope et supposé avoir un comportement thermo-poro-élastique non linéaire. H3: L'évolution du système est quasi-statique. H4 : La phase solide est incompressible et inerte vis-à-vis du fluide dans le milieu poreux. H5 : La phase gazeuse se comporte comme un mélange idéal de gaz parfaits. H6 : La phase liquide est incompressible et sa masse volumique est constante. H7 : Les seuls transferts de masse entre phases se développant dans le milieu poreux correspondent au changement de phase liquidevapeur. H8 : La porosité et la perméabilité intrinsèque du matériau sont supposées constantes. H9 : Le phénomène d'hystérésis des courbes de sorption n'est pas pris en compte, compte tenu du fait que le chargement thermique est monotone ce qui conduit en première approximation à une variation monotone du degré de saturation.

2.1 Equations de conservation

1. Equation de conservation de masse d'eau liquide :

 $\dot{m}_{\ell} + \operatorname{div} w_{\ell} = -m_{\ell-\mathbf{v}}$

2. Equation de conservation de masse de vapeur d'eau :	(1)
$\dot{m}_{\rm v} + {\rm div} w_{\rm v} = m_{\ell - {\rm v}}$	(9)

3. Equation de conservation de masse d'air sec :

$$\dot{m}_a + \operatorname{div} w_a = 0 \tag{3}$$

$$(D\mathbf{S}/Dt) \ge -\int_{\Omega t} (\vec{q}.\vec{n}/T) \, d\Omega_t + \int_{\Omega t} (r/T) \, d\Omega_t \tag{4}$$

2.2 Lois de comportement

1. Loi de Darcy pour le transfert de l'eau liquide :

$$w_{\ell} = k_{D\ell} \left(-\operatorname{grad} p_{\ell} + \boldsymbol{r}_{\ell} g \right)$$
(5)

2. Loi de Darcy pour le transfert du mélange gazeux :

$$w = k \left(- \operatorname{grad} n + r q \right)$$
(6)

$$w_g = k_{Dg} \left(-\operatorname{grad} p_g + \boldsymbol{r}_g g\right)$$
(6)
3. Loi de Fick :

$$\left(p_{v}p_{a}/p_{g}^{2}\right)\left(\vec{v}_{v}-\vec{v}_{a}\right)=-\boldsymbol{t}.\boldsymbol{D}_{va}\,\overline{\mathrm{grad}}\left(p_{v}/p_{g}\right)\tag{7}$$

4. Loi de Fourier :

$$q = -\mathbf{I} \operatorname{grad} T$$
(8)

5. Loi de Clapeyron pour le changement de phase liquide-vapeur[5] : $(dp_{\ell}/\mathbf{r}_{\ell}) = (dp_{\mathbf{v}}/\mathbf{r}_{\mathbf{v}}) - (L_{\ell \to \mathbf{v}}/T)dT$ (9)

2.3 Equations d'état

$$\dot{S} = s_i^m \dot{m}_i - 3a_i^p \dot{p}_i + \left(C_e^d / T_0\right) \dot{T}$$
(10)

$$\dot{m}_i = \mathbf{r}_i N_{ii} \dot{p}_i - 3\mathbf{r}_i \mathbf{a}_i^P \dot{T}$$
(11)

L'introduction des expressions des lois de comportement dans les équations de conservation de la chaleur et de masse permet d'aboutir au système d'équations (12) discrétisé par la méthode des «volumes finis» [3]:

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & 0 \\ \mathbf{A}_{31} & 0 & \mathbf{A}_{33} \end{bmatrix} \times \begin{bmatrix} \Delta p_{\mathbf{v}} \\ \Delta p_{\mathbf{a}} \\ \Delta T \end{bmatrix} + \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} & \mathbf{B}_{13} \\ \mathbf{B}_{21} & \mathbf{B}_{22} & \mathbf{B}_{23} \\ \mathbf{B}_{31} & \mathbf{B}_{32} & \mathbf{B}_{33} \end{bmatrix} \times \begin{bmatrix} \dot{p}_{\mathbf{v}} \\ \dot{p}_{\mathbf{a}} \\ \dot{T} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{1} \\ \mathbf{C}_{2} \\ \mathbf{C}_{3} \end{bmatrix}$$
(12)

3 Application numérique – comparaison théorie et expérience–

En figure 1 est simulé le séchage d'une paroi mince (représentant le mur) soumise d'un côté à une température normalisée iso et de l'autre à la température ambiante. L'échange thermique avec les parois du mur dépend du coefficient de convection h_T . Les propriétés du matériau étudié sont :

FIG. 1 - Géométrie du mur et définition des conditions aux limites et initiales

Porosité $f_0 = 0.3$, conductivité thermique I = 1.5 W/m. °C, masse volumique à l'état sec $r_a = 1500 \text{ Kg/m}^3$, chaleur massique $C_s = 990 \text{ J/Kg}$. °C, perméabilité intrinsèque $K = 1 \times 10^{15} \text{ m}^2$.

L'évolution de la température dans le mur est reportée sur la Figure 2 où x = 0 et x = 3 cm correspondent respectivement, à la face exposée ($T_{ext} = T_{iso}$) et non exposée au feu (T = 20 °C). On remarque une apparition de plateau au voisinage de la température d'ébullition (100 °C) plus marqué du côté froid de la paroi. Ce dernier est dû à l'absorption d'énergie durant le phénomène de changement de phase.

FIG. 2 - Evolution de la température dans la paroi du mur

Au point d'abscisse (x = 2.4 cm) la température correspondant à l'apparition du plateau est d'environ 110 à 120 °C. Cette augmentation de température de saturation est sans doute liée à l'augmentation de la pression de gaz en ce point dont la valeur maximale atteinte est de l'ordre de $P_g = 1.81 \times 10^5 Pa$ à 16 minutes (Figure 3).

FIG. 3 – Evolution de la pression de gaz dans la paroi du mur

Les plateaux sont quasiment inexistants sur le reste des courbes correspondant aux points (x = 1.2 cm, x = 0.6 cm et x = 0 cm)(Figure 2), ce qui peut s'expliquer par le fait que le changement de phase a lieu de manière instantanée.

FIG. 4 - Evolution de la température au point (1) de la première paroi exposée au feu (épaisseur 1.5 cm)

Sur la figure 4 sont reportés deux résultats de calcul obtenus en utilisant le modèle (TH) et le modèle thermique global [7] ainsi que la température mesurée au point (1) de la première paroi (épaisseur 1.5cm) d'un mur en parpaings alvéolés exposé au feu. Ces parpaings comportent trois parois. On peut constater que la température déterminée par le modèle TH ne fait plus apparaître de «court» plateau observé sur la courbe obtenue par le modèle thermique global. Ce résultat s'explique par la prise en compte dans le modèle TH d'un séchage continu sur la plage de température [20 - 100 °C]. La forme de la courbe obtenue par le modèle TH est ainsi plus conforme à ce qui peut être observé au cours de l'essai : le plateau à 100 °C n'apparaît pratiquement pas sur la courbe expérimentale. Un écart d'environ 30 °C peut être observé entre les courbes calculées par les deux modèles au delà de 50 minutes : cet écart peut s'expliquer par la prise en compte dans le modèle TH permet de mieux rendre compte des paliers de changement de phase dans le cas où l'épaisseur de la paroi est plus importante (Figure 2), ou dans le cas où nous modélisons la deuxième et la troisième paroi du mur en parpaings alvéolés pour les quelles le palier à 100 °C observé sur les courbes expérimentales est plus important.

4 Conclusion

Afin d'étudier les effets couplés du changement de phase, du transfert de chaleur et de masse fluide dans un milieu poreux, un modèle thermo-hydrique utilisant un schéma implicite en « volumes finis » a été établi. Cet effet de changement de phase liquide-vapeur apparaît sous forme d'un plateau dont la longueur est affectée par la teneur en eau totale dans la paroi. En un point donné du mur, l'effet de la pression de gaz sur la température d'évaporation a été mis en évidence. Grâce à ce modèle, il est possible de prédire l'influence de différents paramètres physiques (perméabilité intrinsèque, teneur en eau, humidité relative ainsi que la courbe de sorption) sur l'évolution de température dans une paroi.

References

- [1] C.L.D. Huang, G.N. Ahmed, Influence of slab thickness on responses of concrete walls under fire, Numerical Heat Transfer, Part A 19, 1991, 43-64.
- [2] Z.F. Jin, et al., Parametric study on thermal responses of highly water content fire wall, Numerical Heat Transfer, Part A 33, 1998, 403-414.
- [3] Al Nahhas F., Ami Saada R., Bonnet G., Delmotte P., Heat and Mass Transfer Coupling in Porous Media Under High Temperatures : Modelization and Parametric Study, Computers Methods In Applied Mechanics and Engineering (ref. #04-194) soumis en octobre (2004).
- [4] A. Al Najim, Modélisation et Simulation du Comportement du Beton sous Hautes Températures, Thèse de doctorat de l'Université de Marne La Vallée, 2004
- [5] O. Coussy, Mechanics of Porous Continua, Wiley, New York, 1995.
- [6] B.A. Schrefler, L. Simoni, Y.Z. Zhan, Advance in heat and mass transfer simulation in deforming porous media, in: Valliapan, Pulmano, Tin-Loi (Eds), Comput. Mech. Balkeman, Rotterdam, 1993.
- [7] Al Nahhas F., Ami Saada R., Bonnet G., Delmotte P., Resistance to Fire of Walls Constituted by Hollow Blocks : Experiments and Thermal Modeling, Applied Thermal Engrg, soumis en Mars 2005.

Annexe 1 : Différents termes des équations couplées du modèle

$\mathbf{A}_{11} = -\left[k_{D\ell} \frac{\boldsymbol{r}_{\ell}}{\boldsymbol{r}_{\mathbf{v}}} + k_{D\mathbf{v}} + k_{F\mathbf{v}} \frac{\boldsymbol{p}_{a}}{\left(\boldsymbol{p}_{\mathbf{v}} + \boldsymbol{p}_{a}\right)^{2}}\right]$	$\mathbf{A}_{12} = -\left[k_{D\mathbf{v}} - k_{F\mathbf{v}} \frac{p_{\mathbf{v}}}{\left(p_{\mathbf{v}} + p_{a}\right)^{2}}\right]$	
$\mathbf{A}_{13} = k_{D\ell} \boldsymbol{r}_{\ell} \frac{L}{T}$	$\mathbf{B}_{11} = \left[-\frac{\left(\boldsymbol{r}_{\ell} - \boldsymbol{r}_{v} \right)^{2}}{\boldsymbol{r}_{v}} N_{\ell} + \boldsymbol{r}_{v} \frac{\boldsymbol{f}_{s}}{K_{v}} \right]$	
$\mathbf{B}_{12} = (\boldsymbol{r}_{\ell} - \boldsymbol{r}_{\mathbf{v}}) N_{\ell}$	$\mathbf{B}_{13} = -\left[\left(\mathbf{r}_{\mathbf{v}}\mathbf{r}_{\ell} - \mathbf{r}_{\ell}^{2}\right)\frac{L}{T}N_{\ell} + 3\left(\mathbf{r}_{\ell}\mathbf{a}_{\ell}^{P} + \mathbf{r}_{\mathbf{v}}\mathbf{a}_{\mathbf{v}}^{P}\right)\right]$	
$\mathbf{C}_{1} = \operatorname{grad}\left[k_{D\ell} \frac{\boldsymbol{r}_{\ell}}{\boldsymbol{r}_{\mathbf{v}}} + k_{D\mathbf{v}} + k_{F\mathbf{v}} \frac{p_{a}}{\left(p_{\mathbf{v}} + p_{a}\right)^{2}}\right] \operatorname{grad} p_{\mathbf{v}} + \operatorname{grad}\left[k_{D\mathbf{v}} - k_{F\mathbf{v}} \frac{p_{v}}{\left(p_{v} + p_{a}\right)^{2}}\right] \operatorname{grad} p_{a}$		
$-\operatorname{grad}\left(k_{\scriptscriptstyle D\ell}oldsymbol{r}_\ellrac{L}{T} ight)\!\operatorname{grad}T-g\operatorname{grad}\left(k_{\scriptscriptstyle D\ell}oldsymbol{r}_\ell ight)$		
$\mathbf{A}_{21} = -\left[k_{Da} - k_{Fa} \frac{p_a}{\left(p_v + p_a\right)^2}\right]$	$\mathbf{A}_{22} = -\left[k_{Da} + k_{Fa} \frac{p_{\mathbf{v}}}{\left(p_{\mathbf{v}} + p_{a}\right)^{2}}\right]$	
$\mathbf{B}_{21} = \frac{\boldsymbol{r}_a}{\boldsymbol{r}_v} (\boldsymbol{r}_\ell - \boldsymbol{r}_v) N_\ell$	$\mathbf{B}_{22} = \boldsymbol{r}_a \left(\frac{\boldsymbol{f}_g}{K_a} - N_\ell \right)$	
$\mathbf{B}_{23} = -\left(\mathbf{r}_{\ell}\mathbf{r}_{a}N_{\ell}\frac{L}{T} + 3\mathbf{r}_{a}\mathbf{a}_{a}^{P}\right)$	$\mathbf{A}_{31} = Lk_{D\ell} \frac{\boldsymbol{r}_{\ell}}{\boldsymbol{r}_{\mathbf{v}}}$	
$\mathbf{C}_{2} = \operatorname{grad}\left[k_{Da} - k_{Fa} \frac{p_{a}}{\left(p_{\mathbf{v}} + p_{a}\right)^{2}}\right] \cdot \operatorname{grad} p_{\mathbf{v}} + \operatorname{grad}\left[k_{Da} + k_{Fa} \frac{p_{\mathbf{v}}}{\left(p_{\mathbf{v}} + p_{a}\right)^{2}}\right] \cdot \operatorname{grad} p_{a}$		
$\mathbf{A}_{33} = -\left(\boldsymbol{I} + \boldsymbol{k}_{D\ell} \boldsymbol{r}_{\ell} \frac{L^2}{T}\right)$	$\mathbf{B}_{31} = -\left(3T \frac{\mathbf{r}_{\ell}}{\mathbf{r}_{v}} \mathbf{a}_{\ell}^{p} + 3T \mathbf{a}_{g}^{p} - L\mathbf{r}_{\ell} N_{\ell} \frac{\mathbf{r}_{\ell}}{\mathbf{r}_{v}} + L\mathbf{r}_{\ell} N_{\ell}\right)$	
$\mathbf{B}_{32} = -\left(3T\boldsymbol{a}_{g}^{p} + L\boldsymbol{r}_{\ell}N_{\ell}\right)$	$\mathbf{B}_{33} = \left(C_{e}^{d} \frac{T}{T_{0}} + 6 \boldsymbol{a}_{\ell}^{p} \boldsymbol{r}_{\ell} L - N_{\ell} \boldsymbol{r}_{\ell}^{2} \frac{L^{2}}{T} \right)$	
$\mathbf{C}_{3} = \left[\operatorname{grad} \boldsymbol{l} + L \operatorname{grad} \left(k_{D\ell} \boldsymbol{r}_{\ell} \frac{L}{T} \right) \right] \cdot \operatorname{grad} T - w_{i} T \operatorname{grad} \left(s_{i}^{m} \right) - L \operatorname{grad} \left(k_{D\ell} \frac{\boldsymbol{r}_{\ell}}{\boldsymbol{r}_{v}} \right) \cdot \operatorname{grad} p_{v} + Lg \operatorname{grad} \left(k_{D\ell} \boldsymbol{r}_{\ell} \right)$		

	Pression de vapeur saturante	
Teneur en eau massique à la saturation	(T-273.15)	
$w_{\scriptscriptstyle sat} = oldsymbol{f}_0 oldsymbol{r}_\ell / oldsymbol{r}_d$	$p_{v_{sat}} = 611.\times\exp\left(17.08\times\frac{1-275115}{234.18+T-273.15}\right)$	
Courbe de sorption à température ambiante	Chaleur latente de vaporisation [5]	
$ w = 0.123 \times [H_r(T_0, w)]^3 - 0.0994 \times [H_r(T_0, w)]^2 + 0.0639 \times H_r(T_0, w)$	$L = L = \begin{pmatrix} a & a \\ b \end{pmatrix} \times \begin{pmatrix} T & T \\ T \end{pmatrix}$	
	$L = L_0 - (c_{p\ell} - c_{p\nu}) \times (I - I_0)$	
Incompressibilité de l'air ou de la vapeur [5]	Coefficient de dilatation thermique de l'air ou de	
K = n	la vapeur [5]	
a Pa	$a_a = 1/3T$	
Chaleur massique apparente	Conductivité thermique apparente	
$C_{apparente} = C_s + 21.0108 \times w$	$\boldsymbol{I} = \boldsymbol{I}_{s}^{(1-\boldsymbol{f}_{0})} \times \boldsymbol{I}_{\ell}^{\boldsymbol{S}_{\ell} \cdot \boldsymbol{f}_{0}} \times \boldsymbol{I}_{g}^{(1-\boldsymbol{S}_{\ell}) \cdot \boldsymbol{f}_{0}}$	
$\left(\frac{\partial \boldsymbol{e}}{\partial H}\right)_{T,\boldsymbol{s}} = 4 \times 10^6$	$b_{\ell} = H \frac{3M_{\nu}K^{d}}{RTr_{\ell}} \left(\frac{\partial e_{x}}{\partial H}\right)_{T,s}$	
$N_{\ell} = -H \frac{M_{\nu}}{RT} \cdot \frac{\mathbf{r}_{d}}{\mathbf{r}_{\ell}^{2}} \left(\frac{\partial w}{\partial H}\right)_{T} + H \frac{M_{\nu}}{RT} \cdot \frac{3b_{\ell}}{\mathbf{r}_{\ell}} \left(\frac{\partial \mathbf{e}_{x}}{\partial H}\right)_{T}$	$\boldsymbol{a}_{\ell}^{p} = -\frac{1}{3} \frac{\boldsymbol{r}_{d}}{\boldsymbol{r}_{\ell}} \left(\frac{\partial w}{\partial T} \right)_{H,\boldsymbol{s}}$	
Coefficient de dilatation thermique sous pression de la	Coefficient de diffusion de la vapeur dans l'air	
phase gazeuse $p \to (1 - C)$	$D_{\rm ext} = 0.217 \times 10^{-4} \times \frac{p_{atm}}{T} \times \left(\frac{T}{T}\right)^{100}$	
$\boldsymbol{a}_{g}^{\prime} = -\boldsymbol{a}_{\ell}^{\prime} + (1 - \boldsymbol{I}_{0})\boldsymbol{a}_{s} + \boldsymbol{I}_{g}\boldsymbol{a}_{g} + \boldsymbol{I}_{0}\boldsymbol{S}_{\ell}\boldsymbol{a}_{\ell}$	$p_{g} (T_{0})$	
Dormázbilitá rolativa zu liquida	Dama éghilité mlating an limite	
$\int e^{-1} e^{-1$	Permeabilite relative au liquide $(1 - 2)^{0.5}$ $(1 - 2^2)$	
$k_{r\ell} = S_{\ell}^{0.5} \times \left[1 - \left(1 - S_{\ell}^{2}\right)^{-1}\right]$	$k_{rg} = (1 - S_{\ell})^{-1} \times (1 - S_{\ell}^{2})$	
Coefficient de diffusion de la vapeur dans le mélange		
(air + vapeur)	$\begin{array}{c} 1 \text{ ension superficielle} \\ (T) (128 0.185T) \end{array}$	
$D_{_{vg}} = f_{_g}.t.D_{_{va}}$	$\gamma(I) = (128 - 0.1851_{Kelvin})$	
	Pente de la courbe (teneur en eau – humidité	
Humidité relative	relative) à une température donnée	
$H_{-}(T,w) = H_{-}(T,w) \left(\frac{\gamma(T)}{\tau(T)} \times \frac{T_{0}}{\tau}\right)$	$\left \left(\frac{\partial w}{\partial w} \right) = \left(\frac{\partial w}{\partial v} \right) \times \frac{\gamma \left(T_0 \right)}{\gamma \left(T_0 \right)} \times \frac{T}{T} \times \left[H_0 \left(T_{-1} w \right) \right]^{1 - \frac{\gamma \left(T \right)}{\gamma \left(T_0 \right)} \times \frac{T_0}{T}}$	
$\Pi_{r}(I, w) = \Pi_{r}(I_{0}, w)((I_{0}))^{T}$	$\left(\partial H_{r}\right)_{T} \left(\partial H_{r}\right)_{T_{0}} \qquad \gamma\left(T\right) \qquad T_{0} \qquad T_{$	
Pente de la courbe (teneur en eau – Température) à une humidité relative donnée		
$\left(\frac{dw}{dx}\right) = -H_r(T_0, w) \times \ln\left[H_r(T_0, w)\right] \left(\frac{\tilde{a}'(T)}{\tilde{a}(T)} - \frac{1}{T}\right) \times \left(\frac{\partial w}{\partial x}\right)$		
$\left(dT \right)_{H_r} \qquad \qquad$		

Annexe 2 : Equations d'état du modèle