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Abstract. Conjecturing and theorem proving are activities at the cen-
ter of mathematical practice and are difficult to separate. In this paper,
we propose a framework for completing incomplete conjectures and in-
complete proofs. The framework can turn a conjecture with missing as-
sumptions and with an under-specified goal into a proper theorem. Also,
the proposed framework can help in completing a proof sketch into a
human-readable and machine-checkable proof. Our approach is focused
on synthetic geometry, and uses coherent logic and constraint solving.
The proposed approach is uniform for all three kinds of tasks, flexible
and, to our knowledge, unique such approach.

Keywords: synthetic geometry, automated deduction, proofs, constraint
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1 Introduction

Automated theorem provers take as input the formal statement of a conjecture
in a theory described by axioms and lemmas, and try to generate a proof or a
counter-example for this conjecture. In the field of geometry, several efficient au-
tomated theorem proving approaches have been developed, including algebraic
ones such as Wu’s method, Grébner bases method, and semi-synthetic methods
such as the area method. In these approaches, typically, the conjecture and the
axioms being considered are fixed. However, in mathematical practice, in the
context of education and also in mathematical research, the conjecturing and
proving activities are not separated but interleaved. The practitioner may try
to prove a statement which is valid only assuming some implicit or unknown
assumptions, while the list of lemmas and theorem which can be used may not
be complete. In education, for some kind of exercises, a precise formulation of
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Fig. 1: Illustrations for five problems related to Varignon’s theorem, respectively:
Problem 1; Problem 2; Problem 3.

the statement to be proved is also left to the student, with questions such as:
“What is the nature of the quadrilateral ABCD?”. Hence, the conjecture can
contain unknown assumptions called abducts, and the goal may be not com-
pletely specified. One may also ask for a proof using a particular theorem or
an intermediate fact, i.e., a proof partially specified using constraints specifying
some proof steps.

In this paper, we consider the problems of (simultaneously) completing (a)
the assumptions of the conjecture; (b) the goal of the conjecture; (c) a proof
sketch for the conjecture. The completion process should lead to a proof that
is both machine-checkable and human-readable. Because we aim at producing
intelligible and readable proofs, with a similar level of granularity as paper-
and-pencil proofs, our approach is logic-based, uses a fragment of first-order
logic called coherent logic, and is focused on synthetic geometry (in contrast
to algebraic methods). Our approach for dealing with partial conjectures and
partial proofs is implemented as an extension of the automated theorem prover
Larus developed previously [14] . The approach is uniform for all three kinds of
completion tasks, flexible and, to our knowledge, unique such approach.

We list five high-school level synthetic geometry problems related to Varignon’s
theorem (Fig. 1), that we will try to solve using our approach.

Problem 1 (Fully specified statement) Consider a quadrilateral ABCD, let
E, F, G and H be the midpoints of AB, BC, CD, DA respectively. Prove
that the quadrilateral EFGH is a parallelogram (assuming that there are
no two sides that are aligned).

Problem 2 (First inverse problem) Consider a quadrilateral ABCD, let E,
F, and G be the midpoints of AB, BC and CD respectively. Let H be a
point. Under which assumption is the quadrilateral EFGH a parallelogram?

Problem 3 (Second inverse problem) Consider a quadrilateral ABCD, let
E, F, G and H be the midpoints of AB, BC, C'D, DA respectively. Under
which assumption is the quadrilateral EFGH a rectangle?



Problem 4 (Partially specified goal) Consider a quadrilateral ABCD, let
E, F, G and H be the midpoints of AB, BC, CD, DA respectively. What
is the nature of the quadrilateral EFGH?

Problem 5 (Partially specified proof) Cousider a quadrilateral ABCD, let
E, F, G and H be the midpoints of AB, BC, CD, D A respectively. We have
that EG = FH. Prove that EFGH is a rectangle using the axiom “If the
diagonals of a parallelogram are congruent, then it’s a rectangle”.

The above examples are inspired by exercises given in a teacher training session.
A more detailed discussion about how these examples can be used in a didactic
context, issues related to the formalization can be found in [11, 19]

2 Background

This section provides some necessary background information on a fragment of
first-order logic called coherent logic that our approach uses. There are several
automated provers for coherent logic, including Larus, which is based on “theo-
rem proving as constraint solver” paradigm.

2.1 Coherent Logic

A formula of first-order logic is said to be coherent if it has the following form:
AQ((E) VANIRAN Anfl(f) = E'g(Bo(f, g) V...V Bmfl(.’f, g))

where universal closure is assumed, and where Z denotes a sequence of variables
X0, X1y, xp—1; A; (for 0 < i < n — 1) denotes an atomic formula (involving
zero or more variables from ); ¢ denotes a sequence of variables yo, y1, - - ., Yi—1;
B; (for 0 < j < m — 1) denotes a conjunction of atomic formulae (involving
zero or more of the variables from & and §) [14]. If there are no formulae A,,
then the left-hand side of the implication is assumed to be T. If there are no
formulae Bj, then the right-hand side of the implication is assumed to be L.
There are no function symbols with arity greater than zero. Coherent formulae
do not involve the negation connective. A coherent theory is a set of sentences,
axiomatized by coherent formulae, and closed under derivability. A number of
theories and theorems can be formulated directly and simply in coherent logic
(CL). In addition, any first-order theory can be translated into CL, possibly
with additional predicate symbols [12,21]. Synthetic geometry can be expressed
easily using CL. For example, the central part of axioms system of Euclid (as
formalized by Beeson et. al. [3]), or Hilbert (as formalized by Braun et. al [6]),
or Tarski [26] can be expressed in first-order logic without function symbols, and
the axioms are mostly in CL form.

Translation of FOL formulae into CL involves elimination of the negation
connectives: negations can be kept in place and new predicates symbols for
corresponding sub-formula have to be introduced, or negations can be pushed
down to atomic formulae [21]. In the latter case, for every predicate symbol R



(that appears in negated form), a new symbol R is introduced that stands for — R,
and the following axioms are introduced: VZ(R(Z) AR(Z) = L), VZ(R(Z)V R(%)).

In contrast to resolution-based theorem proving, in forward reasoning for
CL, the conjecture being proved is kept unchanged and proved without using
refutation, Skolemization and clausal form. Thanks to this, CL is suitable for
producing human-readable synthetic proofs and also machine verifiable proofs
[4,12]. The problem of provability in CL is semi-decidable. CL admits a simple
proof system, a sequent-based variant is as follows [27]:

( A

-, -,

T, a.’L‘,Ao(C_i), e 7An,1(6),Bo(5, b) V...V Bmfl(c_i, b) FP
I'az, Ao(a),...,Ap—1(@) - P

MP

I'By(@+P ... I,Bn 1(&)FP
@I ED lit
I,By(&)V...VBp_1(@) F P QEDcs (case split)

— ——— —— QEDas (assumption)
I',B;(a,b) - 3§ (Bo(a,y) V...V Bp_1(d,y))

T1FP QEDefq (ex falso quodlibet)

. J

In the rules given above, it is assumed: ax is a formula Ag(Z) A ... A Ap—1(Z) =
37(Bo(Z,9) V...V Bpm_1(Z,7));* @, b, & denote sequences of constants (possibly
of length zero); in the rule MP (extended modus ponens), b are fresh constants; ¥
and ¢ denote sequences of variables (possibly of length zero); A;(Z) (respectively
B;(Z, %)) have no free variables other than from # (respectively & and ¥); A;(a)
are ground atomic formulae; B; (@, b) and B;(é) are conjunctions of ground atomic
formulae; @ denotes the list of conjuncts in @ if @ is conjunction, and otherwise
@ itself. In the proving process, the rules are read from bottom to top, i.e., by a

rule application one gets the contents (new sub-goals) above the line.

For a set of coherent axioms AX and the statement Ag(Z)A...ANAp_1(Z) =
3Y(Bo(Z,§) V...V Bm_1(Z,7)) to be proved, within the above proof system one
has to derive the following sequent (where @ denotes a sequence of new symbols
of constants): AX, Ay(a@), ..., An—1(@) F IG(Bo(d@,y) V...V Bp_1(a,y)).

Notice that, in the above proof system, case split may occur only at the
end of a (sub)proof. However, it is not a substantial restriction: any proof with
unrestricted use of case split can be transformed to such form.

% Notice the hidden link between the formulae B;(d@,b) from the rule MP and the
formula az: the formulae B;(d, b) from the rule are instances of the formulae B;(Z, §)
from az.



2.2 Theorem Proving as Constraint Solving and the Larus System

“Theorem proving as constraint solving” is a paradigm for automated theorem
proving recently proposed [14]. In contrast to common automated theorem prov-
ing approaches, in which the search space is a set of some formulae and what
is sought is again a (goal) formula, this new approach is based on searching for
a proof (of a given length) as a whole. Namely, a proof of a formula in a fixed
logical setting can be encoded as a sequence of natural numbers obeying some
constraints. A suitable solver can find such a sequence and from that sequence
a sought proof can be reconstructed. This approach is implemented in C++,
within an open-source prover Larus,” specialized in proofs in coherent logic and
using SAT, SMT, and CSP solvers for solving sets of constraints. Larus can
generate readable, human understandable proofs in natural language and also
machine-verifiable proofs for the interactive provers Coq, Isabelle, and Mizar.
Each CL proof consists of several proof steps, while each of them has one
of the following kinds (with obvious meaning): AssuMPTION, MP, FIRSTCASE,
SECONDCASE, QEDBYCASES, QEDBYASSUMPTION, QEDBYEFQ. The infor-
mation relevant for MP steps include: AxiomApplied, From (the ordinal numbers
of proof steps justifying premises of the axiom applied), Instantiation (of the
variables in the axiom), Contents (the atoms in formula in the proof step), etc.
Nesting denotes the nesting of the proof step (the nesting of the first step is 1).
The proof can be represented by a sequence of numbers, meeting some con-
straints (that correspond to definitions of inference steps given in Section 2.1).
For instance, if the proof step s is of the kind QEDBYEFQ), then the following
conditions must hold (given almost in verbatim as in our C++ code):%

1. StepKind (s) = QEDBYEFQ);
2. s> 0;

3. Contents (s —1)(0) = L;

4. Goal (s);

5.

Nesting (s) =Nesting (s — 1).

The above conditions can be understood in the following way: if there is a proof
of the given conjecture, the proof step s in that proof is of the kind QEDBYEFQ
iff the natural number StepKind (s) equals the unique code for QEDBYEFQ,
s > 0 (since there must be a previous step), the contents of the previous proof
step is L, the contents of the step is the goal itself, and the nesting of the steps
s — 1 and s is the same.
Each proof step has one of the listed kinds and meet corresponding conditions.
There are also some additional, global constraints, like that the last proof step
has Nesting equal 1.

Larus works in the following way. If there is a set of axioms, a conjecture,
and a proof length, a corresponding proof can be represented as a sequence of

® https://github.com/janicicpredrag/Larus
5 The corresponding C++ implementation is an improved version of the implementa-
tion presented earlier [14].



natural numbers, still unknown, so they will be represented by variables V. The
constraints that have to be met for each proof step and for the proof as a whole
can be expressed in terms of these variables V. If a solver can find a model
for the constraint, from it the proof in logical terms can be reconstructed. All
constraints involved are linear constraints over natural numbers. Since linear
arithmetic is decidable, decision procedures for it can decide, for each input
constrains, whether or not it has a model. For this purpose, Larus can use SAT,
SMT, and CSP solvers. For input, Larus uses axioms and conjectures stored in
a file in TPTP /fof format.

3 Abducts and Completing Assumptions

There are three major types of logical inference: induction, deduction, and ab-
duction. The concept of abduction has been introduced by Peirce [20]. In de-
duction, everything inferred is necessarily true, while it is not the case with the
remaining two types of inference. Induction tries to infer general rules based on
individual instances. The aim of abduction is to produce additional hypotheses
to explain observed facts. Abduction has a wide spectrum of implicit or explicit
applications — in everyday life, in education, and in scientific reasoning, including
in building mathematical theories, or in software verification. One definition of
abduct is given below.

Definition 1. Given a theory T and a formula G (the goal to be proved), such
that T & G, an explanations or abduct is a formula A meeting conditions:
T,AEG and T,A |~ L.

It is clear that some abducts are not interesting, so there are often some addi-
tional restrictions given. There is no general agreement about such restrictions,
but two types are most usual: syntactical restrictions (abducts should be of a
specific syntactical form) and minimality restrictions (for any other abduct A’,
if T,A = A’ then A = A'). It is reasonable to ask that A is not G, as it is trivial.
Some authors also add stronger a restriction that A = G (i.e., at least one axiom
of T has to be used to prove G).

Approaches for Computing Abducts. Various algorithms to produce different kind
of abducts have been developed [1]. In abductive logic programming, techniques
for abductive reasoning are developed in the context of logic programming. Rules
are considered to be Horn clauses [8]. According to Russo et al. [25], some sys-
tems assume that predicate symbols appearing in abducts do not appear in the
conclusion of any rule and that negation does not appear in the conclusion of
any rule. This restriction is not realistic in the context of geometry. In our ex-
ample, we want to accept geometric predicate symbols both in abducts, and
in the assumptions and conclusion of theorems. Some approaches are based on
Robinson’s resolution algorithm, extended such that when no more clauses can
be produced, the atomic clauses are considered as a potential abduct and con-
sistency if checked [17]. There are also approaches developed for the context of
SMT solving, dealing with decidable theories like linear arithmetic [10, 23]



In the context of geometry, some algebraic algorithms can generate addi-
tional assumptions for the statement to be true. For example, Wu’s method [28]
can produce non-degeneracy conditions. Algebraic methods can also be used to
generate more general abducts [22]. These methods are more efficient than ours,
but more specific so cannot be used for arbitrary geometric theories. Also, they
cannot generate readable proofs. Moreover, expressing algebraic non-degeneracy
conditions in simple geometrical terms is not easy and not always possible [7].

Abduction in Synthetic Euclidean Geometry. In this paper, the theory T from
Definition 1 is a synthetic Euclidean geometry. In this context, automated find-
ing of proofs allowing abducts may have several applications. For instance, an
automated system may help a student or a researcher who tries to prove (or
formalize) a theorem with a missing assumption. Barbosa et al. have proposed
such goal in the context of interactive proof assistants where conjectures are sent
to an SMT solver [2].

Non-degeneracy conditions are often overlooked and missing in informal ge-
ometry statements. Abductive reasoning is also a task which can be asked ex-
plicitly to students. The answer expected by the teacher for Problem 2 is that
H should be the midpoint of AD.

Finding Abducts using Larus. In this paper, we restrict consideration of abduc-
tion only to coherent logic and only to abducts that are conjunctions of ground
atomic formulae. Larus was not implemented with abduction in mind, yet imple-
mentation of support for abduction turned out to be very simple, almost trivial,
and took less than 100 lines of C++4 code. In order to find abducts using Larus,
we treat them as a special case of proof steps, in the main proof branch, just
after assumptions. We have to add constraints on what such an abduct can be:

. the abduct is treated as an assumption;

. the nesting of the abduct equals 1;

. the abduct is an atomic formula (no branching);

. the predicate symbol is one of the predicate symbols in the signature;
. the arguments are among existing symbols of constants;

. the abduct is not the goal itself;

. the abduct is not L.

~N O Utk W N

The given conditions may be written in the following way, assuming that the
abduct is placed in i-th step of the proof:

1. StepKind (i) =ASSUMPTION

2. Nesting (i) =1

3. Cases (i) = false

4. ContentsPredicate (i,0) < sizeof(Signature)

5. for each argument j (up to maximal arity): ContentsArgument (4,0,5) <
sizeof(Constants)

6. Goal (i) = false

7. ContentsPredicate (i,0) # L



One can also choose a number of abducts, each leading to the constraints given
above. With such additional constraints for each abduct (for additional proof
steps in specific positions in a proof sought), with a given set of axioms and
a conjecture, and with a concrete proof length, we run Larus as usual. The
solving/proving process is the same as without abducts: the constraint solver
finds a way to specify a full proof, including the abducts, i.e., under-specified
assumptions.

In the above list of conditions, the last two do not follow the basic definition
of abduct. Like in some other variants of the definition, the abduct may not be
equal to the goal atom because such abducts are trivial. Also, the abduct may not
be equal to L, since it is inconsistent. It is important to discard other inconsistent
abducts early, so we add one more restriction: the proof of T, A = G should not
end with QEDBYEFQ. Some constructed abducts may still be inconsistent with
other assumptions, and we use an external, more efficient automatic theorem
prover, Vampire [16], to discard such abducts.

Ezample 1. For the first inverse problem (Problem 2 from Section 1), Larus
produces two consistent, symmetric abducts (the proof obtained with the first
abduct is presented in Appendix 7.2):

— “H is the midpoint of AD”
— “H is the midpoint of DA”

Ezample 2. For the second inverse problem (Problem 3 from Section 1), Larus
produces more than 150 consistent abducts, most of which give degenerate cases,
hence are less interesting. Apart from such abducts, we obtained the following
abducts and their symmetric variants (the proof with the first abduct is pre-
sented in Appendix 7.3):

— “the diagonals HF and EG are congruent”
— “/FGH is a right angle”
— “/FEH( is a right angle”
— “/HEF is a right angle”
— “/EFG is a right angle”

4 Deducts and Completing Goals

Non-trivial first-order logic theories have infinite number of theorems. Approaches
based on refutation cannot be used with under-specified goals and, hence, cannot
be used for completing them. In principle, a controlled forward-reasoning (for
instance, based on some kind of breadth-first search) can enumerate all theorems
of a theory. However, such a systematic approach can be hardly useful for some
practical applications, like looking for possible conjectures of a specific form.
Our framework allows (but does not require) specifying partially the form of the
goal: for instance, one may specify the dominant predicate symbol in the goal
atom, or some of its arguments.



Finding Deducts in Synthetic Euclidean Geometry. In the field of geometry,
deduct candidates can also be guessed based on an illustration, giving a concrete
model. However, these deduct candidates still have to be verified i.e., proved.
Potential deducts could also be listed as large disjunctions of atomic formulae,
but this method does not scale when the list of potential deducts is too long.

Finding Deducts using Larus. In Larus, if the goal is given i.e., fully specified,
corresponding constraints are added to the full constraint representing a proof
sought. Let us assume that the final step of the proof is (some fixed) n and, for
simplicity, let us assume that the goal is just a single atom. The corresponding
constraint then includes:

1. Nesting (n) =1

2. Cases (n) = false

3. ContentsPredicate (n,0) = the goal predicate symbol

4. for each argument j (except for existentially quantified variables):
ContentsArgument (n,0, j) = the argument from the given goal instantiated.

If the goal is under-specified, for instance, if the predicate symbol is not given (it
is given as _ in the TPTP file), the third condition is just ignored. The same holds
for the arguments.” During the solving process, if there is a model, these slots
are filled-in by some concrete values, giving a concrete goal. Overall, support for
finding under-specified deducts is very simple. The current implementation finds
one possible deduct, but it can be extended to list all possible deducts, similarly
as for abducts (as explained in Section 3).

Ezample 3. For Problem 4 from Section 1, Larus produces the deduct “EF ||
GH”. The proof obtained with such deduct is presented in Appendix 7.4.

5 Hints and Completing Proofs

Informal proofs, for instance from textbooks, are often partial and incomplete.
They may even provide only a part of a full proof, or some instructions like for
filling gaps by analogy. Reconstructing proofs using such hints is very important
task, as discussed by Gowers and Hales [13]: “One dream was to develop an au-
tomated assistant that would function at the level of a helpful graduate student.
The senior mathematician would suggest the main lines of the proof, and the
automated grad student would fill in the details.”

Completing Proofs in Synthetic Euclidean Geometry. In the context of geometry,
completing proofs could be interesting either as a way to render the formalization
process simpler (automation would bring in all the details that are overlooked
in pen and paper proofs), or as a tool working behind the scene for providing
guidance for what could be the next step in the proof. This objective has been
studied by Richard et al. [24]. In geometry, hints can also be based on some
observations from an associated illustration.

7 Actually, underspecified arguments can be also handled using existential quantifica-
tion.



Completing Proofs using Larus. Larus can be instructed to look for a proof of a
given conjecture (also possibly only partially specified) meeting some conditions
(that we call “hints”) [14]. Therefore, Larus can try, for instance, to reconstruct
a proof given only in outline (like proofs in textbooks). Larus use hints in a
much more general way than just splitting the problem into sub-problems: for
instance, some hint may be used in just one proof branch and cannot be proved
itself. Hints do not have to be ordered (one can ask for a proof using X and Y
in no particular order), they can be vague, imposed only by partial constraints
(“find a proof that uses this particular predicate symbol”, or “find a proof using
some specific axiom”, without the way it is instantiated, etc.).

Completing proofs in Larus is supported similarly as for abducts and under-
specified goals — by modifying the corresponding constraints. The main difference
is that abducts and incomplete goals are under-specified, so some constraints
have to be omitted, while partial proof introduce additional constraints, on top
of the common constraints that must be met by all proof steps. For expressing
hints, we slightly extended the language TPTP /fof to allow a simple but still
quite expressible semantics. Some kinds of hints (not all) are illustrated below.

fof (hintnameO, hint, r(_,_), _ , _).

fof (hintnamel, hint, r(_,_), 5, _).

fof (hintname2, hint, _, 5, ax2(_,_)).

The first hint specifies that some proof step will have an atom of the form
7(...,...). The second hint specifies that the 5th proof step will have atom of
the form 7(...,...). The third hint specifies that in the 5th proof step the axiom

ax2 is applied.

Ezxample 4. For Problem 5 from Section 1, Larus was able to find a proof around
20% faster with a suitable hint presented in Appendix 7.5.

6 Conclusion and Future Work

In this paper we have shown how a prover using the “theorem proving as con-
straint solving” paradigm can be extended such that it can complete partially
specified conjectures and partially specified proofs. This extension is simple, and
the implementation update is very small. The completion algorithm is uniform,
since all three completion tasks (completing assumptions, completing goals, com-
pleting proofs) are handled in the same spirit — in terms of adding or deleting
some constraints. To our knowledge, this approach is new, and we are not aware
of other systems that can address all three sorts of completion tasks. The pre-
sented approach is flexible as different variations of completion tasks can be
supported. The strength of this approach is also that it can generate both proofs
that are human-readable and machine-checkable. The proposed framework has
two main limitations. First, in current stage, it can deal only with coherent
logic, hence the theories cannot involve function symbols, which excludes geom-
etry proof that use (non-trivial) arithmetic. Second, the framework cannot deal
with conjectures whose proofs are long (say, longer than 50 proof steps).
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To our knowledge, there is only one other approach in which some kind of
proof is encoded, and reconstructed from a model for the corresponding set
of constraints — the approach in which rigid connection tableaux are encoded
as SAT and SMT instances [9,5,18]. However, in this line of research, neither
machine verifiable or readable proofs, nor any of completion tasks are considered.

The presented work can be extended in several directions. One of our goals
is to use our framework to help transfer geometry knowledge from informal
sources to proof assistants and between proof assistants, while keeping its high-
level structure. In informal sources, statements of theorems may be incomplete,
while proofs may be given just in outline. Still, using our approach such contents
can be, at least in some cases, completed and turned into a verifiable form. For
transferring knowledge from a proof assistant, one would need to go into its
specifics, but only to grab (some) proof steps and make hints out of them. We
are still to explore these ideas on a larger scale, like one geometry textbook. In
the same spirit as the work proposed by Jiang et al. [15], our approach could
be combined with large language models to perform automatic formalization by
extracting data from natural language proofs. More specific to abduction, we are
planning to make an in-depth comparison (both qualitative and quantitative) of
our tool to other tools for generating abducts.

Acknowledgement. The work related to this paper has been partially supported
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References

1. Aliseda Atocha. Abductive Reasoning, volume 330 of Synthese Library. Kluwer,
2006.

2. Haniel Barbosa, Chantal Keller, Andrew Reynolds, Arjun Viswanathan, Cesare
Tinelli, and Clark Barrett. An Interactive SMT Tactic in Coq using Abductive
Reasoning. In EPiC Series in Computing, volume 94. EasyChair, 2023.

3. Michael Beeson, Julien Narboux, and Freek Wiedijk. Proof-checking Euclid. Annals
of Mathematics and Artificial Intelligence, 85(2-4). Springer, 2019.

4. Marc Bezem and Thierry Coquand. Automating Coherent Logic. 12th Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and Reasoning
— LPAR 2005, volume 3835 of LNCS. Springer, 2005.

5. Jeremy Bongio, Cyrus Katrak, Hai Lin, Christopher Lynch, and Ralph Eric Mc-
Gregor. Encoding First Order Proofs in SMT. Electronic Notes in Theoretical
Computer Science, 198(2), 2008.

6. Gabriel Braun and Julien Narboux. From Tarski to Hilbert. Post-proceedings of
Automated Deduction in Geometry 2012, volume 7993 of LNCS, Springer, 2012.

7. XueFeng Chen and DingKang Wang. The Projection of Quasi Variety and Its Ap-
plication on Geometric Theorem Proving and Formula Deduction. Post-proceedings
of Automated Deduction in Geometry 2002, volume 2930 of LNCS, Springer, 2004.

8. Marc Denecker and Antonis C. Kakas. Abduction in Logic Programming. Com-
putational Logic: Logic Programming and Beyond, Essays in Honour of Robert A.
Kowalski, Part I, volume 2407 of LNCS. Springer, 2002.

11



10.

11.

12.
13.
14.

15.

16.

17.
18.

19.

20.
. Andrew Polonsky. Proofs, Types and Lambda Calculus. PhD thesis, University of

22.

23.

24.

25.

26.

27.

28.

Todd Deshane, Wenjin Hu, Patty Jablonski, Hai Lin, Christopher Lynch, and
Ralph Eric McGregor. Encoding First Order Proofs in SAT. CADE-21, volume
4603 of LNCS. Springer, 2007.

Isil Dillig and Thomas Dillig. Explain: A Tool for Performing Abductive Inference.
CAV-13 - Computer Aided Verification, volume 8044 of LNCS, Springer, 2013
Viviane Durand-Guerrier, Paolo Boero, Nadia Douek, Susanna S. Epp, and Denis
Tanguay. Examining the Role of Logic in Teaching Proof. Proof and Proving in
Mathematics Education, number 15 in New ICMI Study Series. Springer, 2012.
Roy Dyckhoff and Sara Negri. Geometrization of first-order logic. The Bulletin of
Symbolic Logic, 21, 2015.

Thomas Hales. An argument for controlled natural languages in mathematics.
https://jiggerwit.files.wordpress.com/2019/06/header.pdf 2019.

Predrag Janic¢i¢ and Julien Narboux. Theorem Proving as Constraint Solving with
Coherent Logic. Journal of Automated Reasoning, 66(4), 2022.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja
Jamnik, Timothée Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, Sketch,
and Prove: Guiding Formal Theorem Provers with Informal Proofs, February 2023.
arXiv:2210.12283 [cs].

Laura Kovécs and Andrei Voronkov. First-Order Theorem Proving and Vampire.
Computer Aided Verification - 25th International Conference, CAV 2013, volume
8044 of LNCS. Springer, 2013.

P. Marquis. Extending abduction from propositional to first-order logic. Funda-
mentals of Artificial Intelligence Research, volume 535 of LNCS. Springer, 1991.
Ralph Eric McGregor. Automated Theorem Proving Using SAT. PhD Thesis,
Clarkson University, 2011.

Julien Narboux and Viviane Durand-Guerrier. Combining pencil/paper proofs
and formal proofs, a challenge for Artificial Intelligence and mathematics educa-
tion. In Mathematics Education in the Age of Artificial Intelligence. volume 17 of
Mathematics Education in the Digital Era, Springer, 2022.

Charles Peirce. Collected papers of Charles Sanders Peirce. Belknap Press, 1932.

Bergen, 2011.

T. Recio and M. P. Vélez. Automatic Discovery of Theorems in Elementary Ge-
ometry. Journal of Automated Reasoning, 23(1), 1999.

Andrew Reynolds, Haniel Barbosa, Daniel Larraz, and Cesare Tinelli. Scalable
Algorithms for Abduction via Enumerative Syntax-Guided Synthesis. Automated
Reasoning - IJCAR 2020, volume 12166 of LNCS. Springer, 2020.

Philippe R. Richard, Josep Maria Fortuny, Michel Gagnon, Nicolas Leduc, Eloi
Puertas, and Michele Tessier-Baillargeon. Didactic and theoretical-based perspec-
tives in the experimental development of an intelligent tutorial system for the
learning of geometry. ZDM, 43(3), 2011.

Alessandra Russo and Bashar Nuseibeh. On The Use Of Logical Abduction In
Software Engineering. In Handbook of Software Engineering and Knowledge En-
gineering. World Scientific, 2001.

Wolfram Schwabhéuser, Wanda Szmielew, and Alfred Tarski. Metamathematische
Methoden in der Geometrie. Springer, Berlin, 1983.

Sana Stojanovié¢, Julien Narboux, Marc Bezem, and Predrag Janic¢i¢. A Vernacular
for Coherent Logic. Intelligent Computer Mathematics, volume 8543 of LNCS.
Springer, 2014.

Wen-Tstin Wu. On the Decision Problem and the Mechanization of Theorem-
Proving in Elementary Geometry. Scientia Sinica 21(2), 1978.

12



7 Appendix

In this appendix, we provide a complete list of lemmas and axioms (in coherent
logic form) used in our examples, and the results obtained using Larus. The
results were obtained on a PC computer with Intel(R) Core(TM) i7-8565U CPU
@ 1.80GHz processor running under Linux (the time spent should give just a
general picture of the efficiency of the system).

7.1 Problem 1: Varignon’s Theorem

The TPTP file used for Problem 1 is the following:

r 3

fof (triangle_mid_par_strict, axiom, (! [A, B, C, P, Q] : ( ((” col
(A,B,C)) & midpoint(B,P,C) & midpoint(4,Q,C)) => par(A,B,Q,P))
).

fof (lemma_par_trans, axiom, (! [A, B, C, D, E, F] : ((par(4,B,C,D)
& par(C,D,E,F) & (“col(A,B,E))) => par(A,B,E,F)))).

fof (defparallelogram2,axiom, (! [A,B,C,D] : ((par(A,B,C,D) & par(A
,D,B,C)) => ((pG(A,B,C,D)))))).

fof (lemma_parallelNC,axiom, (! [A,B,C,D] : ((par(A,B,C,D)) => ((~
(col(A,B,C)) & ~ (col(A,C,D)) & ~ (col(B,C,D)) & ~ (col(A,B,D)
DN .

fof (lemma_parallelflip,axiom, (! [A,B,C,D] : ((par(A,B,C,D)) => ((
par(B,A,C,D) & par(A,B,D,C) & par(B,A,D,C)))))).

fof (lemma_parallelsymmetric,axiom, (! [A,B,C,D] : ((par(A,B,C,D))
=> ((par(C,D,A,B)))))).

fof (midpoint_sym, axiom, (! [A, B, I] : (midpoint(A,I,B) =>
midpoint(B,I,A)))).

fof (lemma_tP_trans, axiom, (! [A, B, C, D, E, F] : ((tP(4A,B,C,D)
& tP(C,D,E,F)) => tP(A,B,E,F)))).

fof (th_varignon,conjecture, (! [A,B,C,D,E,F,G,H] : (( (" (col(B,D,A)
)) & ("(col(B,D,C))) & (" (col(A,C,B))) & (“(col(A,C,D))) & (~
(col(E,F,G))) & midpoint(A,E,B) & midpoint(B,F,C) & midpoint(C
,G,D) & midpoint(A,H,D)) => pG(E,F,G,H) ))).

\. J

If Larus is invoked as: ./larus -1100 -m8 (-1100 means the time limit is
100s, -m8 means that we look for a proof with 8 or fewer steps), it produces the
following human-readable proof in 2.00 seconds:

Consider arbitrary a, b, ¢, d, e, f, g, h such that:
— —col(b,d, a),
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~b#d,

—a#c,

— midpoint(a, e, b)

— midpoint(b, f,c)
(c,9,d)
(

)

— madpoint(c, g,d),
— midpoint(a, h,d).

It should be proved that pG(e, f, g, h).

1. par(a, c, h, g) (by MP, from —col(a,c,d), midpoint(c, g, d), midpoint(a, h,d) using ax-
iom triangle_mid_par_strict; instantiation: A — a, B — ¢, C — d, P — g, Q h)

2. pl]ff’(b, d, f, g) (by MP, from —col(b, d, c), midpoint(c, g, d), midpoint(b, f, c) using axiom
triangle_mid_par_strict; instantiation: A — b, B — d, C — ¢, P — g, Q — f)

3. par(a, @€, @, f) (by MP, from —col(a, ¢, b), midpoint(b, f, c), midpoint(a, e, b) using axiom
triangle_mid_par_strict; instantiation: A — a, B +— ¢, C — b, P — f, Q — e)

4, par(b, d, @, h) (by MP, from —col(b, d, a), midpoint(a, h,d), midpoint(a, e, b) using ax-
iom triangle_mid_par_strict; instantiation: A — b, B — d, C — a, P — h, Q — e)

5. par(e, f, g, h) (by MP, from par(a,c,e, f), par(a,c, h,g), —col(e, f,g) using axiom
lemma_par_trans; instantiation: A +— e, B+— f,C+— a, D+~ ¢, E+ g, F — h)

6. par(f, g, h, 6) (by MP, from par(b,d, f,g), par(b,d,e,h), par(e, f, g, h) using axiom
lemma._par_trans; instantiation: A — f, B— g, C — d, D +— b, E — h, F > e)

7. pG(e, f, g, h) (by MP, from par(e, f, g, h), par(f, g, h, €) using axiom defparallelogram?2;
instantiation: A — e, B — f, C — g, D — h)

8. Proved by assumption! (by QEDas)

7.2 Problem 2: First Inverse Problem

The list of axioms used for the first inverse problem (Problem 2) is the same as in
Section 7.1. Only the conjecture is different — the assumption midpoint (A,H,D)
is ommitted:

fof (th_varignon,conjecture, (! [A,B,C,D,E,F,G,H] : (( ("(col(B,D,A)
)) & (" (col(B,D,C))) & (“(col(A,C,B))) & (" (col(A,C,D))) & (©
(col(E,F,G))) & (B !'=D) & (A != C) & midpoint(A,E,B) &
midpoint (B,F,C) & midpoint(C,G,D)) => pG(E,F,G,H) ))).

If Larus is invoked as: ./larus -1100 -m8 -bl1 (-1100 means the time limit
is 100s, -m8 means that we look for a proof with 8 or fewer steps, -b1 means that
we look for one atomic formula as an abduct), it finds a first consistent abduct
(after two inconsistent ones) and produces the following human-readable proof
in 3.26 seconds (the abduct found is highlighted):
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Consider arbitrary a, b, ¢, d, e, f, g, h such that:

— —col(b,d, a),
— —col(b, d, ¢),
— —col(a,c,b),
— —col(a,c,d),
- ﬁ(ZOZ(eufv.g)v
— b#d,

—a#c

— midpoint(a, e, b),
— midpoinit(b, f,c),
— midpoint(c, g,d).

It should be proved that pG(e, f, g, h).
Abducts found:

— midpoint(d, h, a)

1. par(a, c, e, f) (by MP, from —col(a, ¢, b), midpoint(b, f, c), midpoint(a, e, b) using axiom
triangle_mid_par_strict; instantiation: A — a, B+~ ¢, C — b, P — f, Q —> e)

2. par(b, d, f, g) (by MP, from —col(b, d, c), midpoint(c, g, d), midpoint(b, f, c) using axiom
triangle_mid_par_strict; instantiation: A — b, B — d, C — ¢, P — g, Q — f)

3. par(b, d, @ h) (by MP, from —col(b, d, a), midpoint(d, h, a), midpoint(a, e, b) using ax-
iom triangle_mid_par_strict; instantiation: A — b, B — d, C — a, P — h, Q — e)

4, par(a, @, h, g) (by MP, from —col(a, c,d), midpoint(c, g, d), midpoint(d, h, a) using ax-
iom triangle_mid_par_strict; instantiation: A — a, B — ¢, C — d, P — g, Q — h)

5. par(e, f, g, h) (by MP, from par(a,c,e, f), par(a,c, h,g), —col(e, f,g) using axiom
lemma_par_trans; instantiation: A +— e, B+— f,C+— a, D+~ ¢, E+ g, F — h)

6. par(e, h,g, f) (by MP, from par(b,d,e,h), par(b,d, f,g), par(e, f, g, h) using axiom
lemma._par_trans; instantiation: A — e, B+ h, C +— b, D — d, E + g, F > f)

7. pG(e, f, g, h) (by MP, from par(e, f, g, h), par(e, h, g, f) using axiom defparallelogram2;
instantiation: A — e, B — f, C — g, D — h)

8. Proved by assumption! (by QEDas)

7.3 Problem 3: Second Inverse Problem

The list of axioms used for the second inverse problem (Problem 3) is the same
as in section 7.1, extended with the following axioms.

fof (defmidpoint,axiom, (! [A,B,C] : ((midpoint(A,B,C)) => ((betS(A
,B,C) & cong(A,B,B,C)))))).

fof (defmidpoint2,axiom, (! [A,B,C] : ((betS(A,B,C) & cong(A,B,B,C)
) => ((midpoint(A,B,C)))))).
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fof (midpoint_NC, axiom, (! [A, B, I] : ((midpoint(A,I,B) & (A != B
)) => ((A!=1I)& (B !=1I)))).

fof (defrectangle,axiom, (! [A,B,C,D] : ((rectangle(A,B,C,D)) => ((
pG(A,B,C,D) & per(A,B,C) & per(B,C,D) & per(C,D,A) & per(D,A,B
NN .

fof (defrectangle2a,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & per(A,B,C
)) => rectangle(A,B,C,D)))).

fof (defrectangle2b,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & per(B,C,D
)) => rectangle(A,B,C,D)))).

fof (defrectangle2c,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & per(C,D,A
)) => rectangle(A,B,C,D)))).

fof (defrectangle2d,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & per(D,A,B
)) => rectangle(A,B,C,D)))).

fof (defrectangle2e,axiom, (! [A,B,C,D] : ((per(A,B,C) & per(B,C,D)
& per(C,D,A) & per(D,A,B)) => rectangle(4,B,C,D)))).

%fof (defrectangle3a,axiom, (! [A,B,C,D] : (7 [X] : ((rectangle(A,B
,C,D)) => cong(A,C,B,D) & midpoint(A,X,C) & midpoint(B,X,D))))
).

fof (defrectangle3b,axiom, (! [A,B,C,D,X] : ((cong(A,C,B,D) &
midpoint(A,X,C) & midpoint(B,X,D)) => rectangle(A,B,C,D)))).

fof (defrectangleda,axiom, (! [A,B,C,D] : ((rectangle(A,B,C,D)) =>
(pG(A,B,C,D) & cong(A,C,B,D))))).

fof (defrectangledb,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & cong(A,C,
B,D)) => rectangle(A,B,C,D)))).

fof (lemma_8_2,axiom, (! [A,B,C] : ((per(A,B,C)) => ((per(C,B,A))))
).

fof (varignon_th,axiom, (! [A,B,C,D,E,F,G,H] : (( (“(col(B,D,A))) &
(" (col(B,D,C))) & (" (col(A,C,B))) & (“(col(A,C,D))) & (7 (col(
G,F,E))) & (B !=D) & (A != C) & midpoint(A,E,B) & midpoint (B,
F,C) & midpoint(C,G,D) & midpoint(A,H,D)) => pG(E,F,G,H) ))).

The conjecture is also different — the goal is to find under which assumption
the quadrilateral EFGH is a rectangle.

fof (th_varignon_rect,conjecture, (! [A,B,C,D,E,F,G,H] : (( ("(col(B
,D,A))) & (“(col(B,D,C))) & (“(col(A,C,B))) & (“(col(A,C,D)))
& ( (col(G,F,E))) & (B !'=D) & (A != C) & midpoint(A,E,B) &
midpoint (B,F,C) & midpoint(C,G,D) & midpoint(A,H,D)) =>
rectangle(E,F,G,H) ))).

If Larus is invoked as: ./larus -1100 -m8 -Db1, it produces the following
human-readable proof in 14.19 seconds (the abduct found is highlighted):
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Consider arbitrary a, b, ¢, d, e, f, g, h such that:

- _‘COl(fa 76)7
—b£d,

—a#c,

— midpoint(a, e, b),
— midpoint(b, f, c),
— midpoint(c, g, d),
— midpoint(a, h,d)

It should be proved that rectangle(e, f, g, h).
Abducts found:

o Cong(e7ga h) f)
midpoint(b, e, a) (by MP, from midpoint(a, e, b), midpoint(a, e, b) using axiom defmid-
point2; instantiation: A — b, B — e, C +— a)
pG(e, f,g, h) (by MP, from =-col(b,d,a), —col(b,d,c), —col(a,c,b), —col(a,c,d),
—col(f,g,e), b # d, a # ¢, midpoint(b,e,a), midpoint(b, f,c), midpoint(c,g,d),
midpoint(a, h,d) using axiom varignon_th; instantiation: A — a, B — b, C — ¢, D —
d,IHe,JHf,KHg,LHh)
rectangle(e, f, g, h) (by MP, from pG(e, f, g, h), cong(e, g, h, f) using axiom defrect-
angledb; instantiation: A — e, B — f, C — g, D > h)
rectangle(e, f, g, h) (by MP, from rectangle(e, f,g,h), rectangle(e, f,g,h),
rectangle(e, f, g, h), rectangle(e, f, g, h) using axiom defrectangle2e; instantiation: A —
e, B f,C s g, D h)
Proved by assumption! (by QEDas)

7.4 Problem 4: Partially Specified Goal

The list of axioms used for Problem 4 is the same as presented in Section 7.1.
Only the conjecture is different: the goal does not have the predicate symbol

specified:

r

fof (th_varignon,conjecture, (! [A,B,C,D,E,F,G,H] : (( ("(col(B,D,A)
)) & (“(col(B,D,C))) & ("(col(A,C,B))) & ("(col(A,C,D))) & (~
(col(E,F,G))) & (B !'=D) & (A != C) & midpoint(A,E,B) &
midpoint (B,F,C) & midpoint(C,G,D) & midpoint(A,H,D)) => _(E,F,
G,H) ))).
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If Larus is invoked as ./larus -1100 -m8, it produces the following human-
readable proof (for the goal par(e, f, g, h), highlighted in the proof) in 2.15 sec-
onds:

( B

Consider arbitrary a, b, ¢, d, e, f, g, h such that:

I
J
Y
QS
=

— midpoint(a, e, b),
— midpoint(b, f,c),
— midpoint(c, g, d),
— midpoint(a, h,d).

It should be proved that _(e, f, g, h).

1. pCl’I“(CL7 c, €, f) (by MP, from —col(a, ¢, b), midpoint(b, f, c), midpoint(a, e, b) using axiom
triangle_mid_par_strict; instantiation: A — a, B+— ¢, C — b, P — f, Q — e)

2. pCl’I“(Cl7 c, h, g) (by MP, from —col(a,c,d), midpoint(c, g, d), midpoint(a, h,d) using ax-
iom triangle_mid_par_strict; instantiation: A — a, B — ¢, C — d, P — g, Q h)

3. par(e,f,g7 h) (by MP, from par(a,c,e, f), par(a,c, h,g), -col(e, f,g) using axiom
lemma._par_trans; instantiation: A—e, B+— f, C+— a, D+ ¢, E+— g, F > h)

4. Proved by assumption! (by QEDas)

7.5 Problem 5: Partially Specified Proof

The list of axioms used for Problem 5 is the same as presented in Section 7.3
(with the axiom defrectangle3a deleted). The conjecture is the same plus the
abduct as an assumption, but we add the following hint:

[ fof (hint1,hint,_,_,defrectangle4b(4,5,6,7)). ]

If Larus is invoked as ./larus -1100 -m8, it produces the same proof as in
Section 7.3 in 4 seconds, but if the hint is omitted, it takes 5 seconds.
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