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Conjecturing and theorem proving are activities at the center of mathematical practice and are difficult to separate. In this paper, we propose a framework for completing incomplete conjectures and incomplete proofs. The framework can turn a conjecture with missing assumptions and with an under-specified goal into a proper theorem. Also, the proposed framework can help in completing a proof sketch into a human-readable and machine-checkable proof. Our approach is focused on synthetic geometry, and uses coherent logic and constraint solving. The proposed approach is uniform for all three kinds of tasks, flexible and, to our knowledge, unique such approach.

Introduction

Automated theorem provers take as input the formal statement of a conjecture in a theory described by axioms and lemmas, and try to generate a proof or a counter-example for this conjecture. In the field of geometry, several efficient automated theorem proving approaches have been developed, including algebraic ones such as Wu's method, Gröbner bases method, and semi-synthetic methods such as the area method. In these approaches, typically, the conjecture and the axioms being considered are fixed. However, in mathematical practice, in the context of education and also in mathematical research, the conjecturing and proving activities are not separated but interleaved. The practitioner may try to prove a statement which is valid only assuming some implicit or unknown assumptions, while the list of lemmas and theorem which can be used may not be complete. In education, for some kind of exercises, a precise formulation of the statement to be proved is also left to the student, with questions such as: "What is the nature of the quadrilateral ABCD?". Hence, the conjecture can contain unknown assumptions called abducts, and the goal may be not completely specified. One may also ask for a proof using a particular theorem or an intermediate fact, i.e., a proof partially specified using constraints specifying some proof steps.

In this paper, we consider the problems of (simultaneously) completing (a) the assumptions of the conjecture; (b) the goal of the conjecture; (c) a proof sketch for the conjecture. The completion process should lead to a proof that is both machine-checkable and human-readable. Because we aim at producing intelligible and readable proofs, with a similar level of granularity as paperand-pencil proofs, our approach is logic-based, uses a fragment of first-order logic called coherent logic, and is focused on synthetic geometry (in contrast to algebraic methods). Our approach for dealing with partial conjectures and partial proofs is implemented as an extension of the automated theorem prover Larus developed previously [START_REF] Janičić | Theorem Proving as Constraint Solving with Coherent Logic[END_REF] . The approach is uniform for all three kinds of completion tasks, flexible and, to our knowledge, unique such approach.

We list five high-school level synthetic geometry problems related to Varignon's theorem (Fig. 1), that we will try to solve using our approach.

Problem 1 (Fully specified statement) Consider a quadrilateral ABCD, let E, F , G and H be the midpoints of AB, BC, CD, DA respectively. Prove that the quadrilateral EF GH is a parallelogram (assuming that there are no two sides that are aligned). Problem 2 (First inverse problem) Consider a quadrilateral ABCD, let E, F , and G be the midpoints of AB, BC and CD respectively. Let H be a point. Under which assumption is the quadrilateral EF GH a parallelogram? Problem 3 (Second inverse problem) Consider a quadrilateral ABCD, let E, F , G and H be the midpoints of AB, BC, CD, DA respectively. Under which assumption is the quadrilateral EF GH a rectangle?

Problem 4 (Partially specified goal) Consider a quadrilateral ABCD, let E, F , G and H be the midpoints of AB, BC, CD, DA respectively. What is the nature of the quadrilateral EF GH? Problem 5 (Partially specified proof ) Consider a quadrilateral ABCD, let E, F , G and H be the midpoints of AB, BC, CD, DA respectively. We have that EG = F H. Prove that EF GH is a rectangle using the axiom "If the diagonals of a parallelogram are congruent, then it's a rectangle".

The above examples are inspired by exercises given in a teacher training session.

A more detailed discussion about how these examples can be used in a didactic context, issues related to the formalization can be found in [START_REF] Durand-Guerrier | Examining the Role of Logic in Teaching Proof[END_REF][START_REF] Narboux | Combining pencil/paper proofs and formal proofs, a challenge for Artificial Intelligence and mathematics education[END_REF] 2 Background

This section provides some necessary background information on a fragment of first-order logic called coherent logic that our approach uses. There are several automated provers for coherent logic, including Larus, which is based on "theorem proving as constraint solver" paradigm.

Coherent Logic

A formula of first-order logic is said to be coherent if it has the following form:

A 0 (⃗ x) ∧ . . . ∧ A n-1 (⃗ x) ⇒ ∃⃗ y(B 0 (⃗ x, ⃗ y) ∨ . . . ∨ B m-1 (⃗ x, ⃗ y))
where universal closure is assumed, and where ⃗ x denotes a sequence of variables x 0 , x 1 , . . . , x k-1 ; A i (for 0 ≤ i ≤ n -1) denotes an atomic formula (involving zero or more variables from ⃗ x); ⃗ y denotes a sequence of variables y 0 , y 1 , . . . , y l-1 ; B j (for 0 ≤ j ≤ m -1) denotes a conjunction of atomic formulae (involving zero or more of the variables from ⃗ x and ⃗ y) [START_REF] Janičić | Theorem Proving as Constraint Solving with Coherent Logic[END_REF]. If there are no formulae A i , then the left-hand side of the implication is assumed to be ⊤. If there are no formulae B j , then the right-hand side of the implication is assumed to be ⊥.

There are no function symbols with arity greater than zero. Coherent formulae do not involve the negation connective. A coherent theory is a set of sentences, axiomatized by coherent formulae, and closed under derivability. A number of theories and theorems can be formulated directly and simply in coherent logic (CL). In addition, any first-order theory can be translated into CL, possibly with additional predicate symbols [START_REF] Dyckhoff | Geometrization of first-order logic[END_REF][START_REF] Polonsky | Proofs, Types and Lambda Calculus[END_REF]. Synthetic geometry can be expressed easily using CL. For example, the central part of axioms system of Euclid (as formalized by Beeson et. al. [START_REF] Beeson | Proof-checking Euclid[END_REF]), or Hilbert (as formalized by Braun et. al [START_REF] Braun | From Tarski to Hilbert[END_REF]), or Tarski [START_REF] Schwabhäuser | Metamathematische Methoden in der Geometrie[END_REF] can be expressed in first-order logic without function symbols, and the axioms are mostly in CL form.

Translation of FOL formulae into CL involves elimination of the negation connectives: negations can be kept in place and new predicates symbols for corresponding sub-formula have to be introduced, or negations can be pushed down to atomic formulae [START_REF] Polonsky | Proofs, Types and Lambda Calculus[END_REF]. In the latter case, for every predicate symbol R (that appears in negated form), a new symbol R is introduced that stands for ¬R, and the following axioms are introduced: ∀⃗ x(R(⃗ x)∧R(⃗ x) ⇒ ⊥), ∀⃗ x(R(⃗ x)∨R(⃗ x)).

In contrast to resolution-based theorem proving, in forward reasoning for CL, the conjecture being proved is kept unchanged and proved without using refutation, Skolemization and clausal form. Thanks to this, CL is suitable for producing human-readable synthetic proofs and also machine verifiable proofs [START_REF] Bezem | Automating Coherent Logic. 12th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning -LPAR 2005[END_REF][START_REF] Dyckhoff | Geometrization of first-order logic[END_REF]. The problem of provability in CL is semi-decidable. CL admits a simple proof system, a sequent-based variant is as follows [START_REF] Stojanović | A Vernacular for Coherent Logic[END_REF]:

Γ, ax, A 0 (⃗ a), . . . , A n-1 (⃗ a), B 0 (⃗ a, ⃗ b) ∨ . . . ∨ B m-1 (⃗ a, ⃗ b) ⊢ P Γ, ax, A 0 (⃗ a), . . . , A n-1 (⃗ a) ⊢ P MP Γ, B 0 (⃗ c) ⊢ P . . . Γ, B m-1 (⃗ c) ⊢ P Γ, B 0 (⃗ c) ∨ . . . ∨ B m-1 (⃗ c) ⊢ P QEDcs (case split) Γ, B i (⃗ a, ⃗ b) ⊢ ∃⃗ y(B 0 (⃗ a, ⃗ y) ∨ . . . ∨ B m-1 (⃗ a, ⃗ y))
QEDas (assumption)

Γ, ⊥ ⊢ P QEDefq (ex falso quodlibet)

In the rules given above, it is assumed: ax is a formula A 0 (⃗ x) ∧ . . . ∧ A n-1 (⃗ x) ⇒ ∃⃗ y(B 0 (⃗ x, ⃗ y) ∨ . . . ∨ B m-1 (⃗ x, ⃗ y));4 ⃗ a, ⃗ b, ⃗ c denote sequences of constants (possibly of length zero); in the rule MP (extended modus ponens), ⃗ b are fresh constants; ⃗ x and ⃗ y denote sequences of variables (possibly of length zero); A i (⃗ x) (respectively B i (⃗ x, ⃗ y)) have no free variables other than from ⃗ x (respectively ⃗ x and ⃗ y); A i (⃗ a) are ground atomic formulae; B i (⃗ a, ⃗ b) and B i (⃗ c) are conjunctions of ground atomic formulae; Φ denotes the list of conjuncts in Φ if Φ is conjunction, and otherwise Φ itself. In the proving process, the rules are read from bottom to top, i.e., by a rule application one gets the contents (new sub-goals) above the line. For a set of coherent axioms AX and the statement A 0 (⃗ x) ∧ . . . ∧ A n-1 (⃗ x) ⇒ ∃⃗ y(B 0 (⃗ x, ⃗ y) ∨ . . . ∨ B m-1 (⃗ x, ⃗ y)) to be proved, within the above proof system one has to derive the following sequent (where ⃗ a denotes a sequence of new symbols of constants):

AX , A 0 (⃗ a), . . . , A n-1 (⃗ a) ⊢ ∃⃗ y(B 0 (⃗ a, ⃗ y) ∨ . . . ∨ B m-1 (⃗ a, ⃗ y)).
Notice that, in the above proof system, case split may occur only at the end of a (sub)proof. However, it is not a substantial restriction: any proof with unrestricted use of case split can be transformed to such form.

Theorem Proving as Constraint Solving and the Larus System

"Theorem proving as constraint solving" is a paradigm for automated theorem proving recently proposed [START_REF] Janičić | Theorem Proving as Constraint Solving with Coherent Logic[END_REF]. In contrast to common automated theorem proving approaches, in which the search space is a set of some formulae and what is sought is again a (goal) formula, this new approach is based on searching for a proof (of a given length) as a whole. Namely, a proof of a formula in a fixed logical setting can be encoded as a sequence of natural numbers obeying some constraints. A suitable solver can find such a sequence and from that sequence a sought proof can be reconstructed. This approach is implemented in C++, within an open-source prover Larus,5 specialized in proofs in coherent logic and using SAT, SMT, and CSP solvers for solving sets of constraints. Larus can generate readable, human understandable proofs in natural language and also machine-verifiable proofs for the interactive provers Coq, Isabelle, and Mizar.

Each CL proof consists of several proof steps, while each of them has one of the following kinds (with obvious meaning): Assumption, MP, FirstCase, SecondCase, QEDbyCases, QEDbyAssumption, QEDbyEFQ. The information relevant for MP steps include: AxiomApplied, From (the ordinal numbers of proof steps justifying premises of the axiom applied), Instantiation (of the variables in the axiom), Contents (the atoms in formula in the proof step), etc. Nesting denotes the nesting of the proof step (the nesting of the first step is 1).

The proof can be represented by a sequence of numbers, meeting some constraints (that correspond to definitions of inference steps given in Section 2.1). For instance, if the proof step s is of the kind QEDbyEFQ, then the following conditions must hold (given almost in verbatim as in our C++ code): 61. StepKind (s) = QEDbyEFQ; 2. s > 0; 3. Contents (s -1)(0) = ⊥; 4. Goal (s); 5. Nesting (s) =Nesting (s -1).

The above conditions can be understood in the following way: if there is a proof of the given conjecture, the proof step s in that proof is of the kind QEDbyEFQ iff the natural number StepKind (s) equals the unique code for QEDbyEFQ, s > 0 (since there must be a previous step), the contents of the previous proof step is ⊥, the contents of the step is the goal itself, and the nesting of the steps s -1 and s is the same. Each proof step has one of the listed kinds and meet corresponding conditions. There are also some additional, global constraints, like that the last proof step has Nesting equal 1.

Larus works in the following way. If there is a set of axioms, a conjecture, and a proof length, a corresponding proof can be represented as a sequence of natural numbers, still unknown, so they will be represented by variables V . The constraints that have to be met for each proof step and for the proof as a whole can be expressed in terms of these variables V . If a solver can find a model for the constraint, from it the proof in logical terms can be reconstructed. All constraints involved are linear constraints over natural numbers. Since linear arithmetic is decidable, decision procedures for it can decide, for each input constrains, whether or not it has a model. For this purpose, Larus can use SAT, SMT, and CSP solvers. For input, Larus uses axioms and conjectures stored in a file in TPTP/fof format.

Abducts and Completing Assumptions

There are three major types of logical inference: induction, deduction, and abduction. The concept of abduction has been introduced by Peirce [START_REF] Peirce | Collected papers of Charles Sanders Peirce[END_REF]. In deduction, everything inferred is necessarily true, while it is not the case with the remaining two types of inference. Induction tries to infer general rules based on individual instances. The aim of abduction is to produce additional hypotheses to explain observed facts. Abduction has a wide spectrum of implicit or explicit applications -in everyday life, in education, and in scientific reasoning, including in building mathematical theories, or in software verification. One definition of abduct is given below. Definition 1. Given a theory T and a formula G (the goal to be proved), such that T ̸ |= G, an explanations or abduct is a formula A meeting conditions:

T, A |= G and T, A ̸ |= ⊥.
It is clear that some abducts are not interesting, so there are often some additional restrictions given. There is no general agreement about such restrictions, but two types are most usual: syntactical restrictions (abducts should be of a specific syntactical form) and minimality restrictions (for any other abduct A ′ , if T, A |= A ′ then A ≡ A ′ ). It is reasonable to ask that A is not G, as it is trivial. Some authors also add stronger a restriction that A ̸ |= G (i.e., at least one axiom of T has to be used to prove G).

Approaches for Computing Abducts. Various algorithms to produce different kind of abducts have been developed [START_REF] Atocha | Abductive Reasoning[END_REF]. In abductive logic programming, techniques for abductive reasoning are developed in the context of logic programming. Rules are considered to be Horn clauses [START_REF] Denecker | Abduction in Logic Programming. Computational Logic: Logic Programming and Beyond[END_REF]. According to Russo et al. [START_REF] Russo | On The Use Of Logical Abduction In Software Engineering[END_REF], some systems assume that predicate symbols appearing in abducts do not appear in the conclusion of any rule and that negation does not appear in the conclusion of any rule. This restriction is not realistic in the context of geometry. In our example, we want to accept geometric predicate symbols both in abducts, and in the assumptions and conclusion of theorems. Some approaches are based on Robinson's resolution algorithm, extended such that when no more clauses can be produced, the atomic clauses are considered as a potential abduct and consistency if checked [START_REF] Marquis | Extending abduction from propositional to first-order logic[END_REF]. There are also approaches developed for the context of SMT solving, dealing with decidable theories like linear arithmetic [START_REF] Dillig | Explain: A Tool for Performing Abductive Inference[END_REF][START_REF] Reynolds | Scalable Algorithms for Abduction via Enumerative Syntax-Guided Synthesis[END_REF] In the context of geometry, some algebraic algorithms can generate additional assumptions for the statement to be true. For example, Wu's method [START_REF] Wu | On the Decision Problem and the Mechanization of Theorem-Proving in Elementary Geometry[END_REF] can produce non-degeneracy conditions. Algebraic methods can also be used to generate more general abducts [START_REF] Recio | Automatic Discovery of Theorems in Elementary Geometry[END_REF]. These methods are more efficient than ours, but more specific so cannot be used for arbitrary geometric theories. Also, they cannot generate readable proofs. Moreover, expressing algebraic non-degeneracy conditions in simple geometrical terms is not easy and not always possible [START_REF] Chen | The Projection of Quasi Variety and Its Application on Geometric Theorem Proving and Formula Deduction[END_REF].

Abduction in Synthetic Euclidean Geometry. In this paper, the theory T from Definition 1 is a synthetic Euclidean geometry. In this context, automated finding of proofs allowing abducts may have several applications. For instance, an automated system may help a student or a researcher who tries to prove (or formalize) a theorem with a missing assumption. Barbosa et al. have proposed such goal in the context of interactive proof assistants where conjectures are sent to an SMT solver [START_REF] Barbosa | An Interactive SMT Tactic in Coq using Abductive Reasoning[END_REF].

Non-degeneracy conditions are often overlooked and missing in informal geometry statements. Abductive reasoning is also a task which can be asked explicitly to students. The answer expected by the teacher for Problem 2 is that H should be the midpoint of AD.

Finding Abducts using Larus. In this paper, we restrict consideration of abduction only to coherent logic and only to abducts that are conjunctions of ground atomic formulae. Larus was not implemented with abduction in mind, yet implementation of support for abduction turned out to be very simple, almost trivial, and took less than 100 lines of C++ code. In order to find abducts using Larus, we treat them as a special case of proof steps, in the main proof branch, just after assumptions. We have to add constraints on what such an abduct can be:

1. the abduct is treated as an assumption; 2. the nesting of the abduct equals 1; 3. the abduct is an atomic formula (no branching); 4. the predicate symbol is one of the predicate symbols in the signature; 5. the arguments are among existing symbols of constants; 6. the abduct is not the goal itself; 7. the abduct is not ⊥.

The given conditions may be written in the following way, assuming that the abduct is placed in i-th step of the proof:

1. StepKind (i) =Assumption 2. Nesting (i) = 1 3. Cases (i) = false 4. ContentsPredicate (i, 0) < sizeof (Signature) 5.
for each argument j (up to maximal arity): ContentsArgument (i, 0, j) < sizeof (Constants) 6. Goal (i) = false 7. ContentsPredicate (i, 0) ̸ = ⊥ One can also choose a number of abducts, each leading to the constraints given above. With such additional constraints for each abduct (for additional proof steps in specific positions in a proof sought), with a given set of axioms and a conjecture, and with a concrete proof length, we run Larus as usual. The solving/proving process is the same as without abducts: the constraint solver finds a way to specify a full proof, including the abducts, i.e., under-specified assumptions.

In the above list of conditions, the last two do not follow the basic definition of abduct. Like in some other variants of the definition, the abduct may not be equal to the goal atom because such abducts are trivial. Also, the abduct may not be equal to ⊥, since it is inconsistent. It is important to discard other inconsistent abducts early, so we add one more restriction: the proof of T, A |= G should not end with QEDbyEFQ. Some constructed abducts may still be inconsistent with other assumptions, and we use an external, more efficient automatic theorem prover, Vampire [START_REF] Kovács | First-Order Theorem Proving and Vampire[END_REF], to discard such abducts.

Example 1. For the first inverse problem (Problem 2 from Section 1), Larus produces two consistent, symmetric abducts (the proof obtained with the first abduct is presented in Appendix 7.2):

-"H is the midpoint of AD" -"H is the midpoint of DA" Example 2. For the second inverse problem (Problem 3 from Section 1), Larus produces more than 150 consistent abducts, most of which give degenerate cases, hence are less interesting. Apart from such abducts, we obtained the following abducts and their symmetric variants (the proof with the first abduct is presented in Appendix 7.3):

-"the diagonals HF and EG are congruent" -" ̸ F GH is a right angle" -" ̸ EHG is a right angle" -" ̸ HEF is a right angle" -" ̸ EF G is a right angle"

Deducts and Completing Goals

Non-trivial first-order logic theories have infinite number of theorems. Approaches based on refutation cannot be used with under-specified goals and, hence, cannot be used for completing them. In principle, a controlled forward-reasoning (for instance, based on some kind of breadth-first search) can enumerate all theorems of a theory. However, such a systematic approach can be hardly useful for some practical applications, like looking for possible conjectures of a specific form. Our framework allows (but does not require) specifying partially the form of the goal: for instance, one may specify the dominant predicate symbol in the goal atom, or some of its arguments.

Finding Deducts in Synthetic Euclidean Geometry. In the field of geometry, deduct candidates can also be guessed based on an illustration, giving a concrete model. However, these deduct candidates still have to be verified i.e., proved. Potential deducts could also be listed as large disjunctions of atomic formulae, but this method does not scale when the list of potential deducts is too long.

Finding Deducts using Larus. In Larus, if the goal is given i.e., fully specified, corresponding constraints are added to the full constraint representing a proof sought. Let us assume that the final step of the proof is (some fixed) n and, for simplicity, let us assume that the goal is just a single atom. The corresponding constraint then includes:

1. Nesting (n) = 1 2. Cases (n) = false 3. ContentsPredicate (n, 0) = the goal predicate symbol 4. for each argument j (except for existentially quantified variables):

ContentsArgument (n, 0, j) = the argument from the given goal instantiated.

If the goal is under-specified, for instance, if the predicate symbol is not given (it is given as _ in the TPTP file), the third condition is just ignored. The same holds for the arguments. 7 During the solving process, if there is a model, these slots are filled-in by some concrete values, giving a concrete goal. Overall, support for finding under-specified deducts is very simple. The current implementation finds one possible deduct, but it can be extended to list all possible deducts, similarly as for abducts (as explained in Section 3).

Example 3. For Problem 4 from Section 1, Larus produces the deduct "EF ∥ GH". The proof obtained with such deduct is presented in Appendix 7.4.

Hints and Completing Proofs

Informal proofs, for instance from textbooks, are often partial and incomplete. They may even provide only a part of a full proof, or some instructions like for filling gaps by analogy. Reconstructing proofs using such hints is very important task, as discussed by Gowers and Hales [START_REF] Hales | An argument for controlled natural languages in mathematics[END_REF]: "One dream was to develop an automated assistant that would function at the level of a helpful graduate student. The senior mathematician would suggest the main lines of the proof, and the automated grad student would fill in the details."

Completing Proofs in Synthetic Euclidean Geometry. In the context of geometry, completing proofs could be interesting either as a way to render the formalization process simpler (automation would bring in all the details that are overlooked in pen and paper proofs), or as a tool working behind the scene for providing guidance for what could be the next step in the proof. This objective has been studied by Richard et al. [START_REF] Richard | Didactic and theoretical-based perspectives in the experimental development of an intelligent tutorial system for the learning of geometry[END_REF]. In geometry, hints can also be based on some observations from an associated illustration.

Completing Proofs using Larus. Larus can be instructed to look for a proof of a given conjecture (also possibly only partially specified) meeting some conditions (that we call "hints") [START_REF] Janičić | Theorem Proving as Constraint Solving with Coherent Logic[END_REF]. Therefore, Larus can try, for instance, to reconstruct a proof given only in outline (like proofs in textbooks). Larus use hints in a much more general way than just splitting the problem into sub-problems: for instance, some hint may be used in just one proof branch and cannot be proved itself. Hints do not have to be ordered (one can ask for a proof using X and Y in no particular order), they can be vague, imposed only by partial constraints ("find a proof that uses this particular predicate symbol", or "find a proof using some specific axiom", without the way it is instantiated, etc.).

Completing proofs in Larus is supported similarly as for abducts and underspecified goals -by modifying the corresponding constraints. The main difference is that abducts and incomplete goals are under-specified, so some constraints have to be omitted, while partial proof introduce additional constraints, on top of the common constraints that must be met by all proof steps. For expressing hints, we slightly extended the language TPTP/fof to allow a simple but still quite expressible semantics. Some kinds of hints (not all) are illustrated below.

fof(hintname0, hint, r(_,_), _ , _). fof(hintname1, hint, r(_,_), 5 , _). fof(hintname2, hint, _, 5, ax2(_,_)).

The first hint specifies that some proof step will have an atom of the form r(. . . , . . .). The second hint specifies that the 5th proof step will have atom of the form r(. . . , . . .). The third hint specifies that in the 5th proof step the axiom ax2 is applied.

Example 4. For Problem 5 from Section 1, Larus was able to find a proof around 20% faster with a suitable hint presented in Appendix 7.5.

Conclusion and Future Work

In this paper we have shown how a prover using the "theorem proving as constraint solving" paradigm can be extended such that it can complete partially specified conjectures and partially specified proofs. This extension is simple, and the implementation update is very small. The completion algorithm is uniform, since all three completion tasks (completing assumptions, completing goals, completing proofs) are handled in the same spirit -in terms of adding or deleting some constraints. To our knowledge, this approach is new, and we are not aware of other systems that can address all three sorts of completion tasks. The presented approach is flexible as different variations of completion tasks can be supported. The strength of this approach is also that it can generate both proofs that are human-readable and machine-checkable. The proposed framework has two main limitations. First, in current stage, it can deal only with coherent logic, hence the theories cannot involve function symbols, which excludes geometry proof that use (non-trivial) arithmetic. Second, the framework cannot deal with conjectures whose proofs are long (say, longer than 50 proof steps).

To our knowledge, there is only one other approach in which some kind of proof is encoded, and reconstructed from a model for the corresponding set of constraints -the approach in which rigid connection tableaux are encoded as SAT and SMT instances [START_REF] Deshane | Encoding First Order Proofs in SAT[END_REF][START_REF] Bongio | Encoding First Order Proofs in SMT[END_REF][START_REF] Ralph | Automated Theorem Proving Using SAT[END_REF]. However, in this line of research, neither machine verifiable or readable proofs, nor any of completion tasks are considered.

The presented work can be extended in several directions. One of our goals is to use our framework to help transfer geometry knowledge from informal sources to proof assistants and between proof assistants, while keeping its highlevel structure. In informal sources, statements of theorems may be incomplete, while proofs may be given just in outline. Still, using our approach such contents can be, at least in some cases, completed and turned into a verifiable form. For transferring knowledge from a proof assistant, one would need to go into its specifics, but only to grab (some) proof steps and make hints out of them. We are still to explore these ideas on a larger scale, like one geometry textbook. In the same spirit as the work proposed by Jiang et al. [START_REF] Jiang | Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs[END_REF], our approach could be combined with large language models to perform automatic formalization by extracting data from natural language proofs. More specific to abduction, we are planning to make an in-depth comparison (both qualitative and quantitative) of our tool to other tools for generating abducts.

Appendix

In this appendix, we provide a complete list of lemmas and axioms (in coherent logic form) used in our examples, and the results obtained using Larus. The results were obtained on a PC computer with Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz processor running under Linux (the time spent should give just a general picture of the efficiency of the system).

Problem 1: Varignon's Theorem

The TPTP file used for Problem 1 is the following: If Larus is invoked as: ./larus -l100 -m8 (-l100 means the time limit is 100s, -m8 means that we look for a proof with 8 or fewer steps), it produces the following human-readable proof in 2. It should be proved that pG(e, f, g, h). 5. par(e, f, g, h) (by MP, from par(a, c, e, f ), par(a, c, h, g), ¬col(e, f, g) using axiom lemma par trans; instantiation:

A → e, B → f , C → a, D → c, E → g, F → h)
6. par(f, g, h, e) (by MP, from par(b, d, f, g), par(b, d, e, h), par(e, f, g, h) using axiom lemma par trans; instantiation:

A → f , B → g, C → d, D → b, E → h, F → e)
7. pG(e, f, g, h) (by MP, from par(e, f, g, h), par(f, g, h, e) using axiom defparallelogram2;

instantiation: A → e, B → f , C → g, D → h)
8. Proved by assumption! (by QEDas)

Problem 2: First Inverse Problem

The list of axioms used for the first inverse problem (Problem 2) is the same as in Section 7.1. Only the conjecture is different -the assumption midpoint(A,H,D) is ommitted: ,conjecture,(! [A,B,C,D,E,F,G,H] : (( (~(col(B,D,A)

fof(th_varignon
)) & (~(col(B,D,C))) & (~(col(A,C,B))) & (~(col(A,C,D))) & (( col(E,F,G))) & (B != D) & (A != C) & midpoint(A,E,B) & midpoint(B,F,C) & midpoint(C,G,D)) => pG(E,F,G,H) ))).
If Larus is invoked as: ./larus -l100 -m8 -b1 (-l100 means the time limit is 100s, -m8 means that we look for a proof with 8 or fewer steps, -b1 means that we look for one atomic formula as an abduct), it finds a first consistent abduct (after two inconsistent ones) and produces the following human-readable proof in 3.26 seconds (the abduct found is highlighted):

Consider arbitrary a, b, c, d, e, f , g, h such that:

-¬col(b, d, a), -¬col(b, d, c), -¬col(a, c, b), -¬col(a, c, d), -¬col(e, f, g), -b ̸ = d, -a ̸ = c, -midpoint(a, e, b), -midpoint(b, f, c), -midpoint(c, g, d).
It should be proved that pG(e, f, g, h).

Abducts found:

midpoint(d, h, a) 

Problem 3: Second Inverse Problem

The list of axioms used for the second inverse problem (Problem 3) is the same as in section 7.1, extended with the following axioms. It should be proved that rectangle(e, f, g, h).

Abducts found:

cong(e, g, h, f ) If Larus is invoked as ./larus -l100 -m8, it produces the following humanreadable proof (for the goal par(e, f, g, h), highlighted in the proof) in 2.15 seconds:

Consider arbitrary a, b, c, d, e, f , g, h such that:

- It should be proved that (e, f, g, h). The list of axioms used for Problem 5 is the same as presented in Section 7.3 (with the axiom defrectangle3a deleted). The conjecture is the same plus the abduct as an assumption, but we add the following hint:

fof(hint1,hint,_,_,defrectangle4b(4,5,6,7)).

If Larus is invoked as ./larus -l100 -m8, it produces the same proof as in Section 7.3 in 4 seconds, but if the hint is omitted, it takes 5 seconds.

Fig. 1 :

 1 Fig. 1: Illustrations for five problems related to Varignon's theorem, respectively: Problem 1; Problem 2; Problem 3.

  fof(triangle_mid_par_strict, axiom, (! [A, B, C, P, Q] : ( ((~col (A,B,C)) & midpoint(B,P,C) & midpoint(A,Q,C)) => par(A,B,Q,P)) )). fof(lemma_par_trans, axiom, (! [A, B, C, D, E, F] : ((par(A,B,C,D) & par(C,D,E,F) & (~col(A,B,E))) => par(A,B,E,F)))). fof(defparallelogram2,axiom, (! [A,B,C,D] : ((par(A,B,C,D) & par(A ,D,B,C)) => ((pG(A,B,C,D)))))). fof(lemma_parallelNC,axiom, (! [A,B,C,D] : ((par(A,B,C,D)) => ((( col(A,B,C)) & ~(col(A,C,D)) & ~(col(B,C,D)) & ~(col(A,B,D) )))))). fof(lemma_parallelflip,axiom, (! [A,B,C,D] : ((par(A,B,C,D)) => (( par(B,A,C,D) & par(A,B,D,C) & par(B,A,D,C)))))). fof(lemma_parallelsymmetric,axiom, (! [A,B,C,D] : ((par(A,B,C,D)) => ((par(C,D,A,B)))))). fof(midpoint_sym, axiom, (! [A, B, I] : (midpoint(A,I,B) => midpoint(B,I,A)))). fof(lemma_tP_trans, axiom, (! [A, B, C, D, E, F] : ((tP(A,B,C,D) & tP(C,D,E,F)) => tP(A,B,E,F)))). fof(th_varignon,conjecture,(! [A,B,C,D,E,F,G,H] : (( (~(col(B,D,A) )) & (~(col(B,D,C))) & (~(col(A,C,B))) & (~(col(A,C,D))) & (( col(E,F,G))) & midpoint(A,E,B) & midpoint(B,F,C) & midpoint(C ,G,D) & midpoint(A,H,D)) => pG(E,F,G,H) ))).

  00 seconds: Consider arbitrary a, b, c, d, e, f , g, h such that: -¬col(b, d, a), -¬col(b, d, c), -¬col(a, c, b), -¬col(a, c, d), -¬col(e, f, g), b ̸ = d, a ̸ = c, midpoint(a, e, b), midpoint(b, f, c), midpoint(c, g, d), midpoint(a, h, d).

1 .

 1 par(a, c, h, g) (by MP, from ¬col(a, c, d), midpoint(c, g, d), midpoint(a, h, d) using axiom triangle mid par strict; instantiation:A → a, B → c, C → d, P → g, Q → h)2. par(b, d, f, g) (by MP, from ¬col(b, d, c), midpoint(c, g, d), midpoint(b, f, c) using axiom triangle mid par strict; instantiation: A → b, B → d, C → c, P → g, Q → f ) 3. par(a, c, e, f ) (by MP, from ¬col(a, c, b), midpoint(b, f, c), midpoint(a, e, b) using axiom triangle mid par strict; instantiation: A → a, B → c, C → b, P → f , Q → e) 4. par(b, d, e, h) (by MP, from ¬col(b, d, a), midpoint(a, h, d), midpoint(a, e, b) using axiom triangle mid par strict; instantiation: A → b, B → d, C → a, P → h, Q → e)

1 .

 1 par(a, c, e, f ) (by MP, from ¬col(a, c, b), midpoint(b, f, c), midpoint(a, e, b) using axiom triangle mid par strict; instantiation:A → a, B → c, C → b, P → f , Q → e)2. par(b, d, f, g) (by MP, from ¬col(b, d, c), midpoint(c, g, d), midpoint(b, f, c) using axiom triangle mid par strict; instantiation:A → b, B → d, C → c, P → g, Q → f ) 3. par(b, d, e, h) (by MP, from ¬col(b, d, a), midpoint(d, h, a), midpoint(a, e, b) using axiom triangle mid par strict; instantiation: A → b, B → d, C → a, P → h, Q → e) 4. par(a, c, h, g) (by MP, from ¬col(a, c, d), midpoint(c, g, d), midpoint(d, h, a) using axiom triangle mid par strict; instantiation: A → a, B → c, C → d, P → g, Q → h)5. par(e, f, g, h) (by MP, from par(a, c, e, f ), par(a, c, h, g), ¬col(e, f, g) using axiom lemma par trans; instantiation: A → e, B → f , C → a, D → c, E → g, F → h)[START_REF] Braun | From Tarski to Hilbert[END_REF]. par(e, h, g, f ) (by MP, from par(b, d, e, h), par(b, d, f, g), par(e, f, g, h) using axiom lemma par trans; instantiation:A → e, B → h, C → b, D → d, E → g, F → f ) 7.pG(e, f, g, h) (by MP, from par(e, f, g, h), par(e, h, g, f ) using axiom defparallelogram2; instantiation: A → e, B → f , C → g, D → h) 8. Proved by assumption! (by QEDas)

  fof(defmidpoint,axiom, (! [A,B,C] : ((midpoint(A,B,C)) => ((betS(A ,B,C) & cong(A,B,B,C)))))). fof(defmidpoint2,axiom, (! [A,B,C] : ((betS(A,B,C) & cong(A,B,B,C) ) => ((midpoint(A,B,C)))))). Consider arbitrary a, b, c, d, e, f , g, h such that: -¬col(b, d, a), -¬col(b, d, c), -¬col(a, c, b), -¬col(a, c, d), -¬col(f, g, e), b ̸ = d, a ̸ = c, midpoint(a, e, b), midpoint(b, f, c), midpoint(c, g, d), midpoint(a, h, d).

1 .

 1 midpoint(b, e, a) (by MP, from midpoint(a, e, b), midpoint(a, e, b) using axiom defmid-point2; instantiation: A → b, B → e, C → a) 2. pG(e, f, g, h) (by MP, from ¬col(b, d, a), ¬col(b, d, c), ¬col(a, c, b), ¬col(a, c, d), ¬col(f, g, e), b ̸ = d, a ̸ = c, midpoint(b, e, a), midpoint(b, f, c), midpoint(c, g, d), midpoint(a, h, d) using axiom varignon th; instantiation:A → a, B → b, C → c, D → d, I → e, J → f , K → g, L → h)3. rectangle(e, f, g, h) (by MP, from pG(e, f, g, h), cong(e, g, h, f ) using axiom defrect-angle4b; instantiation: A → e, B → f , C → g, D → h)[START_REF] Bezem | Automating Coherent Logic. 12th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning -LPAR 2005[END_REF]. rectangle(e, f, g, h) (by MP, from rectangle(e, f, g, h), rectangle(e, f, g, h), rectangle(e, f, g, h), rectangle(e, f, g, h) using axiom defrectangle2e; instantiation:A → e, B → f , C → g, D → h)5. Proved by assumption! (byQEDas) 7.4 Problem 4: Partially Specified Goal The list of axioms used for Problem 4 is the same as presented in Section 7.1. Only the conjecture is different: the goal does not have the predicate symbol specified: fof(th_varignon,conjecture,(! [A,B,C,D,E,F,G,H] : (( (~(col(B,D,A) )) & (~(col(B,D,C))) & (~(col(A,C,B))) & (~(col(A,C,D))) & (( col(E,F,G))) & (B != D) & (A != C) & midpoint(A,E,B) & midpoint(B,F,C) & midpoint(C,G,D) & midpoint(A,H,D)) => _(E,F, G,H) ))).

  ¬col(b, d, a), -¬col(b, d, c), -¬col(a, c, b), -¬col(a, c, d), -¬col(e, f, g), b ̸ = d, a ̸ = c, midpoint(a, e, b), midpoint(b, f, c), midpoint(c, g, d), midpoint(a, h, d).

1 . 4 .

 14 par(a, c, e, f ) (by MP, from ¬col(a, c, b), midpoint(b, f, c), midpoint(a, e, b) using axiom triangle mid par strict; instantiation: A → a, B → c, C → b, P → f , Q → e) 2. par(a, c, h, g) (by MP, from ¬col(a, c, d), midpoint(c, g, d), midpoint(a, h, d) using axiom triangle mid par strict; instantiation: A → a, B → c, C → d, P → g, Q → h) 3. par(e, f, g, h) (by MP, from par(a, c, e, f ), par(a, c, h, g), ¬col(e, f, g) using axiom lemma par trans; instantiation: A → e, B → f , C → a, D → c, E → g, F → h) Proved by assumption! (by QEDas) 7.5 Problem 5: Partially Specified Proof

Notice the hidden link between the formulae Bi(⃗ a, ⃗ b) from the rule MP and the formula ax: the formulae Bi(⃗ a, ⃗ b) from the rule are instances of the formulae Bi(⃗ x, ⃗ y) from ax.

https://github.com/janicicpredrag/Larus

The corresponding C++ implementation is an improved version of the implementation presented earlier[START_REF] Janičić | Theorem Proving as Constraint Solving with Coherent Logic[END_REF].

Actually, underspecified arguments can be also handled using existential quantification.
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