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Introduction

Hierarchical representations are powerful tools for several image processing tasks. They are divided into two categories [START_REF] Bosilj | Partition and inclusion hierarchies of images: A comprehensive survey[END_REF]: inclusion hierarchies and partitioning hierarchies. Inclusion hierarchies, such as the max-tree [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF] or the tree of shapes [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF], describe the relation of the connected components of an image. In another hand, partitioning hierarchies stack different image partitions whose regions are obtained with a given criterion. They include the α-tree and the ω-tree [START_REF] Soille | Constrained connectivity for hierarchical image partitioning and simplification[END_REF], the hierarchical watersheds [START_REF] Cousty | Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts[END_REF], and the binary partition trees [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF]. However, despite their division, there exist some links between the different categories [START_REF] Cousty | Constructive links between some morphological hierarchies on edge-weighted graphs[END_REF]. In this article, we focus on the α-tree, which is used for numerous tasks such as segmentation, simplification [START_REF] Perret | Removing non-significant regions in hierarchical clustering and segmentation[END_REF], or attribute profiles [START_REF] Bosilj | Attribute profiles from partitioning trees[END_REF].

To evaluate the quality of these hierarchies, a set of metrics such as the quality of regions and contours in the context of horizontal and optimal cut, is proposed and applied to hierarchical watersheds [START_REF] Perret | Evaluation of hierarchical watersheds[END_REF]. However, this evaluation does not take into account the case where a hierarchy is built on a noisy image. The impact of the noise on hierarchies applied to attribute profiles is investigated in [START_REF] Koç | A comparative noise robustness study of tree representations for attribute profile construction[END_REF],

where the superiority of inclusion trees and the ω-tree compared to the α-tree is demonstrated for such applications. Finally, the tree structure is investigate in [START_REF] You | A fast, memory-efficient alpha-tree algorithm using flooding and tree size estimation[END_REF] to estimate its size and reduce the amount of memory allocation in the context of an efficient α-tree construction algorithm. Nonetheless, the impact of the noise on its structure has not been really studied.

Our objective is to study the relation between the level of the noise corrupting an image and its impact on the structure of the tree. To this aim, we focus on the evolution of some attributes computed on the α-trees built on images corrupted by some noise with respect to its level. The first attribute is the depth of every node in the tree, particularly their statistical distribution. The second attribute originates from the scale-set theory [START_REF] Guigues | Scale-sets image analysis[END_REF] and yields the notion of persistent nodes according to a given energy criterion. Using these attributes, we highlight the relation between the structure of the tree and the noise level, and we propose a novel energy criterion, relying on the values of a region of the tree and the gradient at its contour, in order to assert the robustness of a region to the noise.

This article is structured as follows: in Section 2, we recall the definition of the α-tree and explain how to obtain the persistence of a node when constrained to a particular energy. Then, we study the impact of the noise on the structure of the tree in Section 3. We extend this study to the node persistence in Section 4. Finally, we conclude and give the perspectives of this work in Section 5.

Hierarchical representations

The α-tree representation

Let f : Ω → I be an image defined on a domain Ω and whose values belong to I. Two points p, q ∈ Ω are α-connected if there exists a path of m consecutive points (p → q) = (x 0 = p, ..., x m-1 = q) according to an adjacency relationship such that for every two consecutive points x i and x i+1 of this path, w(f (x i ), f (x i+1 )) ≤ α, with w a dissimilarity measure between two pixel values. An α-connected component is a connected component composed of α-connected points. Thus, a 0-connected component is a flat zone. An α-partition α-P is a partition composed of disjoint α-connected components whose union is Ω. An α-tree T α is the tree representation of the hierarchy H α = (0-P, ..., (m -1)-P) composed of m α-partitions. Each node of T α represents an α-connected component and its parent represents the fusion of this node with all its siblings. Finally, a cut ζ is a set of disjoint regions (R α ) i represented by the nodes of T α whose union is Ω. A particular case of cut is the horizontal cut at a given level t which results in an α-partition with α = t.

By applying these notions to graphs, and by the links between different hierarchical representations on edge-weighted graphs [START_REF] Cousty | Constructive links between some morphological hierarchies on edge-weighted graphs[END_REF], the α-tree is the min-tree [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF] of the minimum spanning tree of a graph, such as an adjacency graph of an image. This link leads to an efficient construction procedure based on the Kruskal algorithm [START_REF] Najman | Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF]. Furthermore, there exist more efficient algorithms such as one based on flooding [START_REF] You | A fast, memory-efficient alpha-tree algorithm using flooding and tree size estimation[END_REF] or a parallel version of the α-tree construction [START_REF] Havel | Efficient tree construction for multiscale image representation and processing[END_REF].

An example of α-tree is illustrated in Fig. 1. It is built on the image in Fig. 1a and displayed in Fig. 1b as a dendrogram. In this representation, each pixel is represented by a leaf of the tree and each inner node represents the fusion of different sets of pixels. Finally, a partition of the α-tree is given in Fig. 1c.

Persistent hierarchies

Each region R of a partitioning hierarchy appears in the tree for a given continuous set of scale values associated with the hierarchy. This set is called intervale of persistence and is defined by

Λ(R) = [λ + (R), λ -(R)[, where λ + (R) is the scale of appearance of R and λ -(R)
is its scale of disappearance. Thus, for each region R α represented by a node r α of an α-tree T α , λ + (R α ) is the value α associated with r α and λ -(R α ) is the value α of the parent of r α . The scale of disappearance of the root is a particular case where λ -(Ω) = +∞.

There exist several image processing approaches relying on energy minimization for different tasks such as segmentation or denoising. Guigues et al. [START_REF] Guigues | Scale-sets image analysis[END_REF] propose to apply energy minimization to hierarchical representations to obtain a cut ζ * , which is optimal according to a separable energy of the form:

E λ (ζ * ) = Ri∈ζ * D(R i ) + λ Ri∈ζ * C(R i ) (1) 
with D(R i ) a data-fidelity term to R i , C(R i ) a regularization term and λ a parameter of this energy. When λ is varying from low value to high value, this produces different cuts whose regions are evolving from fine to coarse. Therefore, this parameter may be seen as a scale parameter, and it is possible to obtain an interval of persistence using a functional dynamic programming problem [START_REF] Guigues | Scale-sets image analysis[END_REF] by subjecting an energy of the form E r = D(r) + λC(r) to a node r. This reveals some non-persistent nodes, with λ -(r) ≤ λ + (r), which are removed from the hierarchy, leading to a persistent hierarchy.

3 Noise impact on the tree structure

In the following, an image corrupted by an additive Gaussian noise is defined by f σ = f + n σ with n σ the values of the additive noise drawn from a normal 

Study on a noisy constant image

We propose here to evaluate the impact of the noise on a tree T by studying the depth P T (r) of each node r, defined by

P T (r) = 0 if r is the root of T P(r p ) + 1 else (2)
with r p the parent node of r in T . This attribute is illustrated in Fig. 2a In this part, the depth distributions are obtained from α-trees built on images containing only noise, without any texture information, in order to observe the evolution of the tree structure in the presence of noise with respect to its level. To this aim, the distributions h c,σ are built from α-trees constructed on constant images f c,σ , with c = 127, which have been corrupted with noise whose level σ is varying from 1 to 150. The resulting distributions h c,σ are displayed in Fig. 2b, where they are represented by plots whose color corresponds to the noise level σ of the image on which the α-tree is built and depicted by the color bar.

By examining these distributions, the evolution of the tree structure related to the noise level corrupting the image is studied. First, while the noise level increases, the depth distribution becomes a tailed distribution for nodes with a low depth. These nodes are α-connected components resulting from the fusion of another component and a small region, usually of size 1, which have an intensity significantly different from their surrounding pixel values. Then, the mode of the distributions increases while the noise level grows up to some high level (σ ≈ 100), beyond which this mode decreases slowly. This is due to the clipping of values to the limits of I during the noising process of the image, creating new flat zones.

Comparison with natural images

In this section, 150 natural images of size 720 × 540 from the database of Laurent Condat1 are used to take into account different characteristics likely to be impacted by the noise such as a high texture or a low brightness. Examples of images are displayed in Fig. 3a and3c, with their respective depth distributions h σ in Fig. 3b and3d. These distributions are obtained by the same process as previously described and using the same noise level ranges. These distributions have similar behaviors as the ones in Fig. 2b. Their mode increases up to some noise level, and then decreases slowly. Then, the variance of each distribution is increasing as the noise level becomes high. However, there also are several differences between the distributions of tree depth obtained from f c,σ and f σ , and between the natural images. First, the distribution modes, at low noise levels, are higher for h σ than for h c,σ . This is due to the content of the natural images which, conversely to the constant image, has some texture. Consequently, for very small σ values, the image content is still prevailing. Finally, the distributions h σ in Fig. 3d with high σ values have a higher variance than the distributions in Fig. 3b. This demonstrates the impact of the noise on α-trees built on images with low brightness. The analysis of the noise impact is then extended to the whole image database. For this purpose, an α-tree is built on each image and the empirical mean µ(h σ ) of the depth distribution h σ is computed. This is performed N = 10 times to obtain the average M(σ) = 1 N N -1 i=0 µ((h σ ) i ), with (h σ ) i the i th depth distribution. This process is carried out for several noise levels varying between 1 and 150, resulting in the plots in Fig. 4. Each dashed plot is related to a particular image, leading to a total of 150 dashed plots. Furthermore, the red plot results from the same experiment, but with f c,σ , to compare the noise impact on the structure of an α-tree built on a pure noisy image and α-trees built from images with content.

The average M(σ), at low noise levels σ, is much higher for f σ than f c,σ . This observation is true for a large of images in the database on every noise level. Thus, we deduce that, in spite of the noise corrupting the image, the image content has still an impact on the depth distribution of the nodes in the α-tree, as it has been observed previously. Furthermore, for every image, the values of M(σ) is decreasing starting from a given high noise level. This may come from the clipping of image values during the noising process, as previously noted for all kind of images.

Impact of the noise on nodes persistence

In this section, the α-trees constructed from noisy images are transformed into persistent hierarchies using a particular energy criterion. Two different energies are utilized for this purpose. First, the piecewise constant Mumford-Shah functional [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] is employed since it is widely used in image simplification applications 

E ms,rα (λ) = p∈Rα (f (p) -f (p)) 2 + λ |∂R α | ( 3 
)
where f is the average intensity of the values in the region R α and ∂R α is the set of elements in the contours of R α . Besides, we propose to modify the Mumford-Shah functional to use the sum of gradient values in the contour of R α instead of the length of its contour. This functional, denoted by E cs,rα , is defined by

E cs,rα (λ) = p∈Rα (f (p) -f (p)) 2 + λ p∈∂Rα g(p) (4) 
with g the set of contour values computed using the dissimilarity function w between two adjacent pixel values of the image from which the α-tree is built. This change of regularization term is proposed because a region with a small variance and a high gradient along its contour is most likely to be contrasted relatively to its adjacent regions, and therefore prone to be less affected by the noise in the image on which the α-tree is built.

To compare the usage of these functionals, but also to evaluate the impact of the noise on the persistence of the nodes, the percentages of non-persistent nodes using these energies E ms,rα and E cs,rα are computed on an α-tree built on the image in Fig. 3a and are displayed on Fig. 5. These plots have a similar behavior: when the noise level increases, the amount of non-persistent nodes is growing. Additionally, a greater amount of non-persistent nodes is observed when E cs,rα is used as an energy criterion than E ms,rα , and this difference is twice as large for E cs,rα at high noise levels.

The evolution of the plots of non-persistent nodes percentage is confirmed on all the images from the database with E ms,rα and E cs,rα in Fig. 6a and6b respectively. In this figure, the average percentage of non-persistent nodes is displayed as the blue plot. Furthermore, the red line represents the percentage of non-persistent nodes on the constant image f c,σ . On the two figures, the red plot has a different behavior: with E ms,rα , the amount of non-persistent nodes is close to 0%, whereas with E cs,rα , it is near 80%. This observation suggests that using E cs,rα as an energy criterion instead of E ms,rα in the presence of noise is more relevant. Furthermore, this is enforced due to the fact that when σ is increasing, the amount of non-persistent nodes on a tree built on f c,σ gets closer to the average percentage when E cs,rα is used.

Conclusion and perspectives

To conclude this article, we have shown that there exists a relationship between the noise level degrading the image and the distribution of the depth attribute computed from the α-tree built on the noisy image. Furthermore, on natural images, we observed that the content of the image has an effect on the depth distributions: for low noise levels, the impact of noise on the α-tree is negligible, and at a high noise level, the brightness impacts the variance of the distribution. Finally, we have noticed that the choice of the functional used to obtain persistent nodes affects the amount of non-persistent nodes in the hierarchy.

Our work is different from the previous approaches to evaluate the quality of the hierarchies since our objective is to investigate the relation between the noise level and the tree structure, but the results obtained here may be used to develop new methodologies to make such assessments on noisy images, taking into account the various levels

We plan to extend this work to other kinds of noise, but also to generalize our study to different partitioning hierarchies such as the ω-tree, the binary partition trees, or the hierarchical watersheds, but also to inclusion hierarchies. Finally, these results open new perspectives in terms of applications. For example, it may be convenient to use the resulting relation to measure them. Furthermore, noise level estimation is not the only perspective this paper opens: segmentations using optimal cut could be improved in the presence of noise or new denoising methods could be developed.
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 1 Fig. 1: Illustration of the α-tree representation.
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 2 Fig. 2: The depth attribute and its representation as histograms for f c,σ .

  , representing a tree whose labels in blue are the depth value of each node. The depth distribution of T is studied by observing its histogram h, whose values are defined by h(d) = |{r ∈ T | P T (r) = d}| for a particular d ∈ P T . The mode m(h) of the distribution h and its empirical mean µ(h) are used throughout this paper. They are respectively obtained by m(h) = argmax d∈P T h(d) and µ(h) = 1 |h| d∈P T h(d). The depth distributions obtained from the α-trees built on f σ and f c,σ are respectively denoted by h σ and h c,σ .
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 3 Fig. 3: Distributions h σ on different kind of images.
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 4 Fig. 4: Comparison between h σ from all the images from the base and h c,σ
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 5 Fig. 5: Non-persistent nodes percentage related to the noise level σ

  % of non persistent nodes Percentage on fσ Percentage on fc,σ Average percentage (b) With Ecs,r α .

Fig. 6 :

 6 Fig.6: Evolution of the amount of non-persistent nodes with respect to the noise level.
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