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Teaser: We present a comprehensive review of molecular modeling applications in cardiovascular medicine. Computer 

modeling constitutes a promising new tool to improve knowledge from molecular to personalized medicine. 
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Molecular modeling in pharmacology is a promising emerging tool for exploring drug interactions with cellular 

components. Recent advances in molecular simulations, big data analysis, and artificial intelligence (AI) have opened 

new opportunities for rationalizing drug interactions with their pharmacological targets. Despite the obvious utility and 

increasing impact of computational approaches, their development is not progressing at the same speed in different 

fields of pharmacology. Here, we review current in silico techniques used in cardiovascular diseases (CVDs), 

cardiological drug discovery, and assessment of cardiotoxicity. In silico techniques are paving the way to a new era in 

cardiovascular medicine, but their use somewhat lags behind that in other fields. 

Introduction 

In 2013, the Nobel Prize for Chemistry was awarded jointly to Martin Karplus, Michael Levitt, and Arieh Warshel 

‘for the development of multiscale models for complex chemical systems’.1 Computer models mirroring real life are 

now crucial tools in modern chemistry, often predicting the outcome of traditional experiments. Computer-aided 

drug design (CADD) comprises a range of theoretical and computational approaches that form part of modern drug 

discovery. Among these methods, molecular modeling has made key contributions to the development of drugs. For 

instance, expansions in computational analysis, using new computer methodologies such as quantum chemistry, 

molecular docking, and molecular dynamics (MD), have opened new opportunities for rationalizing drug 

interactions with their pharmacological targets. For emerging diseases, these advances in computer modeling are 

particularly well suited.2 They make it possible to save time during drug development and require more moderate 

budgets. In this regard, the current Coronavirus 2019 (COVID-19) pandemic is an illustrative example, requiring 

the rapid development of new antivirals.3 For this purpose, computer modeling was used as an important tool to 
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accelerate drug design projects and validation of drug candidates.4 As a consequence, molecular modeling is 

garnering increasing importance because of its potential application to all drug classes.  

In recent years, molecular simulations have shown a promising synergy with emerging machine learning (ML) 

and AI techniques, which are expected to bring a revolutionary change to diagnostics, management and analysis of 

medical data, drug discovery, and optimization of clinical trials.5–7 Traditional molecular simulations integrate well 

into AI pipelines, serving as solid references and providing data for model training and validation.8–12 

CVDs remain the main cause of death worldwide, followed by cancer,13,14 but data from computer modeling 

appear, at first glance, rather limited in the field of CVDs compared with oncology. In this review, we compare the 

development of computer modeling in three major drug classes (antineoplastic agents, cardiovascular agents, and 

antiviral agents) to understand the advances in computer simulations in the field. We provide a focused review of 

computer modeling in the field of cardiovascular drugs and cardiotoxicity induced by these drugs.  

 Molecular modeling can provide major mechanistic insights into drug–target15 or drug–membrane16,17 

interactions, paving the way for the design of novel cardiovascular drug candidates. Instead of blindly searching 

through drug candidates, a mechanistic understanding of the interactions between drugs and their therapeutic 

targets enables the rational design of drug candidates that minimizes side effects and improves drug efficacy. Thus, 

computer simulations at the molecular scale enable a better understanding of the behavior of cardiovascular drugs 

or of the mechanisms of cardiotoxicity.18–20 As molecular modeling continues to grow in the CVD field, it is 

important to demonstrate its principles, benefits, and limitations. Here, we highlight the prospects for computer 

simulation based on recent success stories. 

Literature trends 

To find relevant publications, we searched publication databases using combinations of Medical Subject Heading 

(MeSH) keywords, the controlled vocabulary thesaurus used for indexing articles for PubMed. Combinations of 

keywords, such as ‘computer simulation’ with ‘cardiovascular agents’ or ‘antineoplastic agents’ or ‘antiviral agents’ 

yielded 1129, 5502, and 2706 results respectively from 1987 until April 15, 2021. The impact on pharmacology 

resulting from the development of multiscale models for complex chemical systems is shown in Figure 1. Indeed, 

the percentage of publications increased drastically from 2012 onward for each of the three fields, although the 

slopes of these increases differ. The proportion of publications related to simulations in the field of antineoplastic 

and antiviral agents increased continuously, whereas that related to simulation in the field of cardiovascular 

agents (Figure 1) remained stable and of a lower magnitude. Furthermore, peaks appearing in Figure 1 relate to an 

emerging disease and, thus, an urgent need to find a drug. For example, peaks related to computer simulation and 

antiviral agents around 1994 reflect the active development of drugs to against HIV. The crystal structure of the 

protease of HIV-1 was determined in 198921 and served as a new pharmacological target for the development of 

inhibitors of this specific protease with the help of computer-aided design.22,23 Recently, the emergence of COVID-

19 has also led to a marked increase in publications related to computer simulation in the antiviral literature 

(Figure 1). Thus, computer modeling has become increasingly important during the drug development process and 

the search for candidate drugs against COVID-19 and other emerging diseases.  

Thus, molecular modeling is now a powerful tool for drug discovery. There are three main reasons for the 

differences in drug discovery observed between the cardiovascular field, and the antiviral and antineoplastic fields. 

The first concerns the reduction in pharmaceutics investments in CVD research over the past few decades, reflected 

by Eroom’s Law, whereby a drastic decline in innovation combined with rising costs has been observed over the 

past few decades in drug development. Therapeutics for CVD appear to be more sensitive to this trend than in 

other fields. Over the past 5 years, drugs to treat CVD diseases comprised only 6% of all new drug launches.24 

However, in silico simulations, including molecular modeling, should be useful tools to reduce the cost of drug 

discovery for predicting, for instance, the cardiotoxicity of potential drugs early in their development and for high-

throughput screening of new molecules. Second, drug discovery is usually linked to the discovery of new target or 

biochemical pathways. In terms of the number of 3D protein structures that have been elucidated so far, and 

recorded in the Protein Data Bank (PDB), there are fewer for CVD (448) compared with oncology (2768) and 

virology (2498).25 Finally, it might be that there are unique limitations to using computer simulations to study 

cardiovascular agents compared with other fields. Therefore, here we review molecular modeling techniques and 

address their complementarity and limitations in the cardiovascular field.  

In silico methods available for pharmacologists 

Drug–target interaction modeling 

The search for a new drug candidate requires the identification of a pharmacological target at the molecular level, 

usually a protein.26 This can be identified by a pharmacology network approach, by direct experiments or by AI-

powered searches. This molecular target then serves as a template for rational drug design. The drug discovery 

pipeline is adjusted depending on the availability of the 3D structure of the target (Figure 2). Since the 1990s, the 

concept of polypharmacology has been gaining increasing attention in drug discovery, and focuses on multitarget 

drugs to achieve the desired therapeutic effect.27,28 Indeed, polypharmacology has potential applications in 

repurposing existing approved drugs, or designing de novo multitarget drugs. In silico methods have demonstrated 

great potential for the application of polypharmacology. 



The 3D structure of the target protein is determined ideally either directly, using crystallography, nuclear 

magnetic resonance (NMR), or cryo-electronic microscopy (cryo-EM); or indirectly, by homology modeling, using a 

protein with a similar primary sequence. However, the tertiary structure of the pharmacological target is 

sometimes unknown, because only the endogenous ligands have been described,26 or because the target is a 

transmembrane protein, which is difficult to extract from its lipid environment and characterize accurately with 

sufficient resolution. When the tertiary structure of the pharmacological target is known, structure-based methods 

can be used to further investigate the interaction between the target and drug candidates. If the tertiary structure 

is unknown, ligand-based methods can be used to identify drugs with homologies with endogenous ligands. In both 

cases, virtual screening can be used to identify leads, but with different approaches29. 

When structure-based methods are used, screening is performed by two major techniques: (i) by direct docking 

molecules from a database to the structure of the target and by evaluating this binding, with software such as 

AutoDock30, AutoDock Vina31, or GOLD32; and (ii) by drug–target interaction AI or regression models pretrained on 

available target–ligand pairs with known binding affinities or biological activities. Such models implicitly account 

for both quantitative structure–activity relationships (QSARs) between the tested ligand and known ligands from 

the training data set and intermolecular interactions between the ligands and the protein-binding pocket. 

Pharmacophore models are often used to predict physicochemical characteristics of the ligands and the protein-

binding sites and to evaluate their interactions quickly at a coarse-grained level. 

When ligand-based methods are used, screening is performed by matching the endogenous pharmacophores of 

tested compounds with those of previously known ligands, drugs, or drug candidates specific for given target 

protein, or by using various other QSAR models, which estimate the biological activities of tested compounds based 

on their structure similarities with known ligands. AI models often excel in the ligand-based approach because they 

are able to capture complex, multiparametric, or otherwise hidden structure–function relations, which are 

overlooked by humans.33,34 Design of a de novo ligand constitutes an alternative to virtual screening29 by building a 

ligand that binds to the target with a docking or pharmacophore approach.  

Once a lead has been identified, it is necessary to optimize its pharmacokinetic (PK) and pharmacodynamic (PD) 

profiles. Screening methods, such as docking and QSAR, can be used to improve the binding of the lead to the 

target and its activity. These methods use the crystallized structure of the protein under different conditions of 

temperature, such as low temperature for cryo-EM, or room temperature for X-rays and NMR. Therefore, all the 

structure-based methods mentioned so far do not fully consider the natural flexibility of the ligand, especially of the 

target protein. Small movements around equilibrium positions can be taken into account with so-called flexible 

ligands and flexible protein docking software. However, large conformational changes in proteins, such as folding, 

or domain motions that occur over longer time and space scales are not considered. Such conformational changes 

should be taken into account because they might reflect a closed, open, or intermediate state35 of the proteins of 

interest. Only MD makes it possible to simulate these conformational changes with a timescale ranging from 

nanoseconds to a few milliseconds.36 MD is a computer simulation technique that makes it possible to predict how a 

system will evolve over time and, consequently, to predict the movement of the molecules in the system. Free 

software is available, such as GROMACS,37 NAMD,38 AMBER,39 or CHARMM.40 MD can also be used to investigate 

the time-dependent dynamical and structural properties of the systems at the atomic level. The effects of the 

environment can also be considered. For instance, solvent, pH, temperature, and pressure can be modified in 

accordance with experimental conditions. For example, lipid–protein interactions can affect protein conformation 

and activity,41 and MD makes it possible to simulate systems including complex mixtures of lipids, sugars, and 

cholesterol molecules with transmembrane proteins. MD simulations usually determine energy values and are the 

primary means for determining ligand-binding free energies. For instance, free energies can be computed through 

free energy perturbation (FEP) methods, which are based on statistical mechanics and calculate free energy 

differences in protein–ligand affinities in a more rigorous way.42 However, they can be time consuming. The site 

identification by ligand competitive saturation (SILCS) technique is a way of bridging the gap between accurate, 

yet expensive FEP methods and fast, but less accurate docking methods.43 MD requires substantial computational 

resources, because it uses elementary time steps at the femtosecond timescale to describe motions of the lightest 

atoms and molecules (generally those of the solvent; i.e., ions and water molecules). The duration of the MD 

simulation, which is the accumulation of these elementary steps, must last long enough to account for the dynamics 

of the proteins (micro to milliseconds). Aside from this major advantage, MD cannot be used to perform virtual 

screening with dozens of ligands, unlike docking, pharmacophore, and QSAR methods. An interesting coupling 

between MD and docking methods, the ensemble docking method, was recently developed44 to account for the 

protein dynamics and efficiency of the docking procedure. Ensemble docking involves simulating the dynamics of a 

target over several hundred nanoseconds. Then, dockings are performed on numerous conformations extracted from 

the MD trajectory. This makes it possible to study the interaction of a ligand in all conformations of the target. 

However, MD has some limitations. The force fields that are usually implemented in MD contain bonded and 

nonbonded interactions. The latter are only described by electrostatic and Van der Waals terms (i.e., interactions 

with no electron exchange or polarization). Thus, the creation of covalent bonds is forbidden in classical MD. 

Polarization effects can be taken into account with the use of polarizable force fields.45 In enzymes, when ligands 

chemically ‘react’ with the active site of the target, only quantum chemistry-based methods are suitable for 

studying reactivity at the molecular level. Software, such as Gaussian,46 NWChem,47 ORCA,48 and TeraChem,49 

make it possible to determine binding energies, structural features such as bond lengths and angles, and 



characteristic vibration energies. Quantum mechanics (QM) methods also make it possible to determine energy 

barriers along reaction pathways, and through reaction kinetics. Most docking programs are rooted in classical 

molecular mechanics. However, the use of a more accurate description of the chemical interactions can now be used 

in QM-based docking software.50,51 For instance, Cavasotto and Aucar developed a new QM scoring function for 

AutoDock Vina for high-throughput docking.52 MD can be used particularly to study interactions with the plasma 

membrane53 and investigate any resulting cardiotoxicity.20 A non-exhaustive list of computer tools and software for 

computer simulation is available at www.click2drug.org/. Specialized vocabulary for nonexperts in computer 

simulation is summarized in Box 1.54–58 

Applications and outcomes of computer simulations in the cardiovascular field 

Despite the limited number of publications reporting the use of computer simulations in the cardiovascular field, 

we describe here the main aims of such approaches in this research field.  

Discovery of new ligands 

Computer simulation, through virtual screening of drug candidates, is a powerful tool to accelerate the discovery of 

new ligands of a known therapeutic target. In this way, 3D QSAR, and comparative molecular field analysis 

(CoMFA) combined with molecular docking studies and MD have been used to predict probable binding modes of 

cardiovascular drug candidates59–187 (Table 1).  

For example, Silva et al.188 used 3D QSAR studies and MD simulations to elucidate electrostatic and steric 

requirements related to the action of angiotensin 1 (AT1) antagonists. These data, providing insights into the 

structural and chemical requirements, were useful for optimizing the pharmacological and biological activity of a 

new generation of AT1 antagonists. 

Potential drug candidates extracted from natural products, such as plants, fungi, or animals, have also been 

investigated using such in silico tools. Several of these ‘natural’ drugs are a mix of molecular species, although the 

most active compound of this cocktail is usually unknown. The extraction of each compound can be done 

experimentally and characterized by mass spectroscopy. However, it is hard to identify the most active one, because 

the efficiency test assays are time consuming. In such cases, docking methods can predict how each compound 

revealed binds with the pharmacological target. For instance, Li et al.76 estimated angiotensin-converting enzyme 

(ACE) inhibitory potential of different peptides extracted from adlays. Further molecular simulation screening and 

a series of optimization led to a potent peptide, GAAGGAF, which was synthetized and assessed in vivo in 

hypertensive rats, confirming the potent antihypertensive effect of this peptide. This illustrates how computer 

simulations make it possible to choose among several peptides from a natural product to select those with optimal 

pharmacological activity against a specific target. They also make it possible to optimize the peptide sequence of a 

drug candidate. Moreover, molecular modeling methods enable the discovery of multitarget drugs. Medina-Ruiz et 

al. identified by virtual screening a potent inhibitor of endothelial NO synthase (eNOS) and cystathionine γ lyase,86 

both of which could be targeted to treat hypertension in a polypharmacological approach. 

Validation of a modeling target 

MD can be used to validate one receptor model among several computer models generated, such as the AT1 

receptor. Indeed, a study compared three models generated for the AT1 receptor, in terms of stability, quality, and 

ligand binding using MD.189 These results showed that the commonly used bovine rhodopsin-based AT1 model has 

limitations, with AT1 homology modeling with multiple templates, including bovine rhodopsin, squid rhodopsin, 

human β2 receptor, and turkey β1-adrenergic receptor, showing higher predictive power. This study highlights how 

MD makes it possible to validate the computer model of the therapeutic target before using it for other computer 

calculations. 

Target prediction 

Computer analysis has also been used to screen potential targets. Chen et al.166 applied network pharmacology 

analysis for investigating targets related to genistein, a drug candidate that treats pulmonary hypertension. For 

this purpose, two types of target were identified: targets of genistein and genes related to pulmonary hypertension. 

The intersection of targets in the network indicated potential antipulmonary hypertension targets of genistein. 

Different analyses were combined to identify targets and biological pathways involved, namely: (i) phenotype 

correlation of pulmonary hypertension; (ii) protein–protein networks; and (iii) gene ontology. In addition, molecular 

docking was used to predict the interaction of genistein with the identified target, peroxisome proliferator-activated 

receptor γ. This illustrates how computational approaches can identify a single target of a possible ligand in a 

specific disease. However, such an approach remains poorly described in the literature relating to CVDs. 

Drug-binding mechanisms with therapeutic target 

The molecular details of drug/target interactions are not readily determined by experiments. Consequently, 

numerous studies have been conducted in cardiovascular research using computer simulations to elucidate the 

mechanisms involved in the interaction between cardiovascular drugs and their targets.  

For example, using mainly MD, Nguyen et al. provided new insights into interactions between the human Nav1.5 

(hNav1.5) channel and antiarrhythmic drugs.141 This channel is responsible for the rapid upstroke of cardiac action 

potential and is thought to be a target for antiarrhythmic therapy. The authors identified several potential binding 

sites at the pore lumen of this target. They also defined the maximum number of antiarrhythmic and anaesthetic 



drugs that the pore lumen can accommodate simultaneously. In addition, they were able to identify the pathways 

for accessing the binding sites. Two distinct pathways were revealed: (i) hydrophilic access through the 

intracellular gate; and (ii) hydrophobic access through a fenestration between homologous domains DIII and DIV of 

the hNav1.5 channel. Understanding this phenomenon would not have been possible with conventional in vitro 

experiments. These molecular details can be used for further design of novel therapeutics. The authors also 

performed docking analysis of the static molecular model of the hNav1.5 channel, but were unable to reveal how 

the drug accesses the binding sites. This clearly shows that the choice of the computational method is crucial. 

Another striking example is the case of vitamin K antagonists (VKAs). Vitamin K epoxide reductase (VKOR) 

regenerates vitamin K hydroquinone by reducing the vitamin K epoxide. Vitamin K is a cofactor of a post-

transcriptional gamma-carboxylation that activates vitamin-K dependent proteins, such as factors of the 

coagulation cascade II, VII, IX, and X. Thus, VKAs, such as warfarin, are well-known inhibitors of the regeneration 

cycle of vitamin K, leading to hypocoagulable blood. Warfarin is used to prevent venous and arterial thrombotic 

events.190 However, one of the major drawbacks of VKAs is their narrow therapeutic range and that polymorphism 

of VKOR can influence the VKA response. Thus, it is vital to identify the details of VKA interactions with VKOR. 

However, the binding site of VKAs on VKOR has not been clearly defined. Experimentally it has been shown that 

mutations in VKOR decrease affinity for warfarin binding without decreasing vitamin K affinity. A computational 

study191 clarified the process of warfarin binding on a three-transmembrane VKOR model by MD. When warfarin 

binds to VKOR, the overall three-transmembrane structure is preserved, albeit with a modest, reversible 

conformational change of the architecture of VKOR, involving several residues. One key residue, Y139, was found 

to have a major role in this binding. This residue is located in the hydrophobic binding pocket and interacts 

through a complex T-shaped π-π stacking interaction. Mutations of the residues inside the pocket were also studied 

in this numerical approach. Mutation of L128 or Y139 was found to significantly affect warfarin binding without 

affecting vitamin K binding. Results obtained by MD were confirmed by cell-based activity assay, strengthening the 

relevance of MD simulations. 

Computer simulations could also guide the choice among several enzyme mutants used in a therapeutic setting. 

For example, several mutants obtained from site-directed mutagenesis of nattokinase, a serine protease that 

showed cardiovascular properties, in particular for improving circulation and reducing the risk of thrombosis,192 

were assessed by MD.193 These simulations showed that conformation of the nattokinase active site changed with 

mutation, resulting in a closer relationship between Asp32 and His64, which induced a stronger attraction of the 

proton of Ser221 for the nitrogen atom in the side chain of His64 and promoted the reaction catalyzed by the enzyme. 

Taken together, these three examples show that computational methods, particularly MD, are of useful in 

elucidating drug-binding mechanisms. 

Exploration of additional mechanisms of action 

The human Kv1.5 (hKv1.5) channel, involved in the electrophysiological mechanism of the heart, has been studied 

in relation to the development of antiarrhythmic drugs. Docking simulations identified binding sites on the hKv1.5 

channel of verapamil, an antagonist of L-type Ca2+ channels. Verapamil was found to bind in the pore region of the 

hKv1.5 channel, contributing, in part, to prolonging the effective refractory period of human atrium and, therefore, 

preventing re-entrant-based atrial arrhythmias.135 This example shows that computer simulations can also be 

predictive and can contribute to elucidating polypharmacological effects. Using network pharmacology, Li et al. 

identified a potent lead that could be optimized as a multitarget drug to treat CVDs.194 Moreover, computer 

simulation can support the potent inhibition of enzymes involved in the metabolism of drugs, such as cytochrome 

P450 (CYP), which might be responsible for an additional mechanism of action. Ikemura et al. confirmed that 

manidipine, an antihypertensive drug from the family of dihydropyridines, was a potent reversible inhibitor of 

CYP2J2, involved in the conversion of arachidonic acid to epoxyeicosatrienoic acids (EETs) with a major role in 

CVDs and tumor angiogenesis.163 CYP2J2 is highly expressed in a variety of cancer cells. Thus, a reduction in 

production of EETs by inhibition of CYP2J2 could have antitumorigenesis effects. The discovery of these inhibitory 

effects of CYP2J2 suggests additional anticancer effects of manidipine and azelnidipine, although these require 

further investigation. 

Permeation of drug through the plasma membrane 

Most common drugs are small molecules acting on intracellular proteins. They usually need to cross the cell 

membrane in the absence of specific transporters. Although membrane permeation constitutes a key factor 

influencing PK outcomes, it has not been widely studied. MD simulations have become a well-established method 

for studying permeation since the early work of Marrink and Berendsen.195 They offer atomistic details of drug 

permeation through the plasma membrane, although only transcellular passive diffusion is considered and 

paracellular diffusion is usually disregarded. However, there have been few investigations of the permeation of 

CVD drugs through the plasma membrane . The plasma membrane is usually modeled as a simple planar bilayer 

comprising a single phospholipid, mainly 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Yue et al.168 

studied the membrane permeation of propranolol with MD on a POPC model membrane to optimize its PK profile. 

In conventional models, which consider that only neutral molecules can permeate membranes, the intrinsic 

permeability of propranolol has to be overestimated to explain its measured permeation. In a given solvent, this 

molecule is a mixture of the charged and neutral forms of molecules and the partition coefficient results from the 

pH of the molecular environment. The authors showed that charged molecules can also cross the barrier as a result 



of a deprotonation process. Dynamic protonation of a weak base, such as propranolol, revealed that protonation 

state and conformation equilibria are dynamically coupled, influencing the membrane permeation of the drug. 

Propranolol migrates into the lipid bilayer in the charged form and deprotonates at the hydrophobic boundary. 

Thus, a combined pH-coupled partitioning and permeation model is essential for ionizable drugs to take account of 

this phenomenon. Such knowledge can only be obtained from computational analysis. This result completely 

changed our understanding of how dynamic changes in protonation state might have a crucial role in the 

permeation of ionizable molecules that dynamically neutralize at the lipid-tail interface, reducing the permeation 

free-energy. 

Another interesting example concerns epigallocatechin-3-gallate (EGCG),167 a polyphenol that shows protective 

effects against CVDs by multiple mechanisms of action, including inhibition of the cardiac Nav1.5 channels in a 

dose-dependent manner. In this study, MD was used to investigate the interaction of EGCG with the bilayer of 

POPC lipids. EGCG initially positioned at the center of the lipid bilayer was found to equilibrate at the membrane 

headgroup region. No spontaneous crossing through the plasma membrane was observed, even though three very 

long runs of MD simulations were conducted. These simulations indicated that EGCG probably reaches its binding 

site on the Nav1.5 channel through the cell membrane. 

Models using a lipid bilayer of a single type of lipid are not realistic, mainly because the exact composition of the 

lipid membrane is often unknown and no lipidomics analyses are available. However, the lipid composition of cell 

membranes is more complex, including different types of lipid, all with specific physicochemical particularities, 

which influences drug partitioning and permeation. In addition, lipid composition varies according to the type of 

cell,196 emphasizing the importance of enhancing our knowledge of the lipid composition of each cell type to better 

investigate the effects of drugs according to the target cells involved. Work is under way to overcome this issue. For 

instance, MD simulations with complex lipid membranes have been performed to be more predictive not only of 

drug permeation across the plasma membrane, but also of the direct impact of the lipid environment on the 

dynamics of embedded protein.18 

Modulation of the lipid environment of the therapeutic target 

The lipid composition of the plasma membrane could impact the properties of drugs (conformation, electrostatics, 

and dynamics).197,198 Conversely, drugs can also impact the properties of the plasma membrane, either directly, by 

modification of the lipid composition,199,200 or indirectly, by modification of the fluidity of the membrane.201 

Recently, computer simulations highlighted that the lipid environment could impact the dynamics of receptors as a 

function of lipid bilayer composition. Haghighi et al.18 performed MD simulations and ensemble docking analysis of 

a new realistic model of the P2Y12 receptor. This target is of interest because of its crucial role in platelet 

activation and arterial thrombosis therapy. In this study, P2Y12 was embedded in different models of membranes 

containing either phosphatidylcholines, sphingomyelins, or a combination of sphingomyelins with cholesterol. This 

work showed that the lipid environment constrains the dynamics and internal flexibility of P2Y12 and, hence, 

influences the binding of P2Y12 with its antagonists. A lipid environment comprising ordered (i.e., enriched in 

cholesterol and sphingomyelins) improved the binding propensity of P2Y12 with its antagonists such as ticagrelor. 

This computational analysis combining MD and ensemble docking is one of the first in the cardiovascular field to 

highlight the role of receptor dynamics modulated by the surrounding lipid microenvironment and their 

involvement in the binding of antiplatelet agents. 

Another example from Kiriakidi et al.202 showed that the membrane incorporation of candesartan, an antagonist 

of the AT1 receptor, used mainly for the treatment of high blood pressure and congestive heart failure, impacts 

recognition by its G-protein-coupled receptor AT1 receptor. By using MD, the authors showed that the neutral form 

of candesartan modifies the microenvironment of the receptor through lipid diffusion inside the membrane. In 

addition, the deprotonated form of candesartan failed to diffuse through the membrane and directly interact with 

the extracellular loop of the AT1 receptor. These simulations highlight the importance of physicochemical 

properties of the membrane, particularly pH in this case. 

Understanding pharmacokinetics 

The PK of drug–drug interactions (DDIs) can be studied by using computer simulation. For example, combinations 

of drugs usually involving DDIs can be simulated by MD in a system involving CYP in the metabolism to predict 

the DDI. Yousefpour et al.19 investigated the interaction between the PEGylated form of amlodipine (PEGAML) 

and paroxetine (PAR), both of which are metabolized by CYP2B4. Interference between these drugs was reported 

because of their aggregation as well as their competition in occupying the active site of CYP2B4. MD simulations 

predicted that the presence of these drugs with the specific ratio of 1PEGAML:5PAR induced more effective 

diffusivity and stability with respect to CYP2B4. This result can guide clinicians prescribing these drugs 

simultaneously to patients with hypertension and depression. Thus, computer simulation led to the prediction of 

the optimum ratio of drugs involving the same metabolizing enzyme, which is directly relevant for clinicians to 

assist in the simultaneous prescribing of drugs that induce PK DDIs. 

Specific features of cardiovascular drug PK can be studied to better understand the molecular mechanisms 

involved in drug absorption, distribution, metabolization, or elimination. For example, absorption of bisoprolol 

(BSP), a β-adrenergic receptor-blocking agent, across the skin, was studied using MD to design a transdermal drug 

delivery system.173 This approach showed that BSP ion-pair complexes remained stable in the stratum corneum 

rich in ceramide 2 but dissociated in the viable epidermis rich in water. These findings contribute to a better 



understanding of the molecular mechanisms involved in the absorption of BSP, leading consideration of the 

development of new dosage forms, such as transdermal drug delivery systems. In addition, computer simulations 

pave the way for the design of new optimized dosage forms, as described below. 

Optimization of dose form 

To optimize the dose form of a drug in terms of bioavailability, solubility, or targeting, improvements could be made 

through, for instance, vectorization and functionalization of the drugs. Jadhav et al.179 assessed a polymer, VA-64, 

as a carrier for olmesartan, an antihypertensive drug with poor solubility and poor bioavailability. Indeed, modern 

thermoforming techniques for amorphization, such as hot-melt extrusion (HME), which involves the formation of a 

stable homogenous dispersion of drugs with pharmacologically inert, polymeric ingredients at elevated 

temperature, are used to enhance the solubility of drugs. These authors conducted MD simulations to better 

understand the molecular interactions between olmesartan and VA-64, and to maximize the dissolution of the 

olmesartan/VA-64 complex. In vitro dissolution experiments and in vivo PK studies were in agreement with 

computer simulations, signifying their potential application in rationally developing the optimal dosage form of 

cardiovascular drugs. 

Zhang et al.180 studied 1-(4-isopropylphenyl)-β-carboline-3-carboxylic acid (ICCA), a promising cardiovascular 

agent able to inhibit glycoprotein IIb/IIIa (GpIIb/IIIa), a P-selectin involved in arterial and venous thrombosis. 

ICCA was coupled with Trp-Phe-Phe to form a selective GpIIb/IIIa and P-selectin nanoparticle to release ICCA on 

the surface of platelets, which are involved in thrombosis formation. This process limits the potential toxicity of 

drugs by releasing the drug in direct proximity to the target cells. In this case, computer simulations not only 

predicted the three steps of the formation of the nanoparticles, but also estimated how many molecules were 

involved in the nanoparticle. 

Toxicity prediction 

In clinical development, the prediction of the cardiotoxicity of new drugs is necessary to render drug development 

safer and efficient. Disturbance of the human ether-à-go-go-related gene (hERG), a voltage-gated potassium 

channel, induces disorders in the rapid delayed rectifier K+ current (IKr) in the heart, which leads to arrhythmias 

caused by prolonging the time between the Q-wave and the T-wave of the electrical cycle of the heart, named long 

QT syndrome.203 Several drugs are responsible for blocking hERG potassium channels. Consequently, regulatory 

agencies, such as the US Food and Drug Administration (FDA) and European Medicines Agency (EMA), require 

that the proarrhythmic risk of drugs prolonging the QT interval be systematically assessed by different models, 

including in silico models.204 In silico models have been developed as a reliable and faster solution205 compared with 

in vitro assays to assess hERG-mediated cardiotoxic drugs. A new computational model of potential hERG-binding 

affinity of drugs was presented by Anwar-Mohamed et al.20 and provided a new alternative to predict cardiotoxicity. 

Indeed, despite preclinical evaluation, a hepatitis C virus polymerase inhibitor, BMS-986094, exhibited fatal 

cardiotoxicity in a clinical trial, which was consequently abruptly halted.206 In retrospect, implementation of the 

computational model developed by Anwar-Mohamed et al. confirmed the hERG- binding affinity of BMS-986094. 

Another multiscale model framework has been described to predict proarrhythmic drug interactions with the hERG 

channel to explain arrhythmia mechanisms.169 Computer modeling can help to predict hERG-mediated cardiotoxic 

drugs in a unified framework for in silico drug discovery, development, and safety assessment 207. Moreover, 

prediction of adverse drug reactions is essential in drug development. Different machine learning algorithms for 

cardiovascular adverse drug reaction prediction have been used, including features such as biological data 

(transporters, enzymes, and target involved), chemical data (substructure fingerprints) and phenotypic data (other 

adverse drug reaction data and therapeutic indications).208 To appreciate the accuracy of these predictive models, 

their ability to predict already reported adverse drug events of known cardiovascular drugs was assessed. Results 

of the generated model were in accordance with a freely accessible database of adverse effects. Additionally, some 

adverse effects, not reported by this database, were predicted by generated models and were in accordance with 

literature evidence. FEP calculations were done by Mousaei et al. using the SILCS technique to test a set of 55 

blockers on the hERG1 channel. pIC50 predictions from the SILCS approach for this set of blockers were found to 

be in a good agreement relative to experimental data. These calculations showed that FEP computation using the 

SILCS technique can be used for the rapid screening of small molecules for their cardiotoxic potential as well as for 

exploring alternative binding pockets in the hERG1 channel with applications to the rational design of 

activators.209 These models showed effective prediction of adverse cardiovascular effects, which could be used 

during drug development. Another machine learning algorithm example is a learning engine using virtual 

screening and docking, which was developed to predict drug-induced cardiac contractility.210 These models showed 

effective prediction of adverse cardiovascular effects, which could also be used during the drug development. 

Cardiovascular drug resistance with efflux proteins 

P-glycoprotein (Pgp), also known as ATP-binding cassette, subfamily B, member 1 (ABCB1), or multidrug 

resistance-1 (MDR1), is a multidrug efflux pump with an important role in cardiovascular medicine.211 

Overexpression of Pgp occurs in hypoxic conditions,212–214 a situation frequently encountered in patients with 

CVDs. Thus, upregulation of Pgp can decrease the effectiveness of treatment for such patients by reducing 

cardiovascular drug concentrations at the intracellular level of target cells, such as cardiomyocytes. Understanding 

the mechanism of drug recruitment by Pgp has a pivotal role in limiting drug resistance properties during drug 



development. Jagodinsky et al.215 explored interactions between Pgp and eight cardiovascular drugs (amiodarone, 

bepridil, diltiazem, dipyridamole, nicardipine, nifedipine, propranolol, and quinidine) using MD. A binding belt 

with multiple residues, which provides favorable electrostatic interaction, was found to bind all eight drugs. 

Hydrogen bonding, hydrophobic packing, and formation of an aromatic cage give electrostatic stability for binding. 

When the drugs were stabilized within the binding belt, water molecules condensed around them, resulting in a 

water influx essential for their catalytic transition and expulsion. This MD study shed light on the molecular 

mechanisms of Pgp, which are difficult to explore with experimental procedures. It also paves the way toward a 

new approach to the design of drugs regulating the efflux of Pgp at the molecular level. 

Limitations and challenges of molecular modeling 

In silico simulations could be used to efficiently identify and design drug candidates, to study their interactions 

with their targets141 and/or plasma membrane,53 or to investigate their cardiotoxicity.20 However, several limits 

hamper their applications. 

First, to perform docking or MD simulations involving a targeted protein, its 3D structure must be resolved and 

characterized by crystallography, NMR, or cryo-EM.216 As discussed above, few 3D protein structures from the CVD 

field have been published. Although this lack of newly discovered protein structures can be compensated by 

homology modeling, such models are questionable. Research is currently focusing on predicting 3D models of 

proteins with only knowledge of their primary structure.217 Recent advances in AI-based de novo protein structure 

prediction, which involve algorithms such as AlphaFold2,218 are usually considered to be the ultimate solutions of 

the protein folding problem from a practical aspect. Thus, in the coming years, the number of targets that are 

considered ‘not druggable’ because of the absence of the 3D structure are likely to decrease dramatically. 

Docking, QSAR, and MD are useful tools for screening drugs and identifying a lead with optimal affinity for the 

binding site of the protein target.188 However, proteins are rigid and can undergo large conformational changes over 

time that might manifest in ‘closed’ or ‘open’ states.35 Only MD can in principle simulate these large conformational 

changes. However, these calculations have been restricted to nanosecond–microsecond timescales,36 whereas most 

conformational changes occur over much longer times. Although numerous enhanced sampling techniques219,220 are 

now available in MD, designed to overcome these limits, none of them have been universally adopted to date. 

The size of the systems that could be investigated by all-atom MD is also restricted to the nanometer scale. 

Thus, there is a significant magnitude gap between the largest all-atom simulations and the ‘real’ systems to be 

studied. Coarse-grained MD can help to gain up to three orders of magnitude in time and space, at the cost of a 

lower spatial resolution of the system and inability to simulate changes in secondary structure.221 Currently, MD 

engines utilize the whole spectrum of available supercomputer facilities, including modern GPUs, high performance 

computational clusters, and decentralized computational infrastructures. 

In the same way, it is notoriously hard and laborious to perform screening of ligands with MD. However, 

ensemble docking appear to be an approach to bridge this gap.44 Although this technique is limited by the 

timescales of MD simulations, it is capable of screening large numbers of ligands or drug candidates, introducing 

details of large-scale protein flexibility into the usual docking pipeline. Other techniques, which are often 

considered game changers, are AI and machine learning, which can be used on all stages of the drug discovery 

pipeline, including target identification, hit identification, ADMET prediction, lead optimization, drug repurposing, 

and prediction of clinical trials results.6,7 

Computational modeling at the molecular level and pharmacometrics have always been performed separately. 

The new challenge will be to combine molecular and computational modeling at the cellular, tissue, organ, whole-

body, or even population levels.222 Indeed, larger scale modeling has been employed in the setting of therapeutic 

and safety drug discovery. CVD studies have been performed using both human cardiac cells and heart computer 

models to investigate the functional effect of therapeutic drugs223. Moreover, pharmacometric modeling methods 

are already frequently used. These include population PK or population PK/PD, which were developed to predict 

how individuals from different populations might respond to the same drug. Population modeling helps to identify 

covariates that might be associated with sources of PK variability in the target patient population. In safety 

pharmacology, electrophysiology models are used to screen for potentially harmful compounds. The public-private 

Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative proposed an in silico human cardiomyocyte model 

that integrates multi-ion channel pharmacology data obtained in vitro for proarrhythmia risk assessment.224,225 

Such models are part of a multiscale approach. 

Additionally, computational modeling at the molecular level and above has also always been performed 

separately. The integration of molecular simulation data into larger scale models will make it possible to achieve 

more realistic models of physiology. Such models will reveal novel pathophysiological knowledge and eventually 

predict the optimal treatment option for an individual patient. 

Thus, molecular modeling could also pave the way to personalized medicine. Recently, several studies have 

investigated the impact of mutations in proteins considered therapeutic targets in predicting drug activity.134,226 

For example, resistance to AT1 blockers was described according to a variety of polymorphisms of AT1 receptors. 

These models demonstrate the potential of molecular modeling in achieving personalized prediction of drug 

resistance. Although this field remains underdeveloped at the molecular scale, it could be a first step toward 

creating a personalized medicine approach. Indeed, patient-specific computer models have been developed to 

represent the cardiovascular system and are starting to be incorporated into clinical practice.227 



Finally, the better the description of the system studied, the better the computer simulations will be. The 3D 

structures of proteins are usually published with high resolution, which is sufficient as a starting point for the 

computations. We have already mentioned that the availability of membrane compositions according to type of cells 

is limited.200 In this regard, ‘omics’ will be vital for future computational developments. For instance, precise 

lipidomics will be necessary to model the exact lipid composition of plasma membranes. Proteomics will help to 

investigate protein–protein complexes and their potential roles with respect to drugs. The concept of metabolomics, 

whereby individuals would have their own metabolic profiles that could be reflected in their biological fluids, such 

as blood, would be helpful in the field of cardiovascular research. 

Concluding remarks 

Thus, the work done by Martin Karplus, Michael Levitt and Arieh Warshel ‘for the development of multiscale 

models for complex chemical systems’ has clearly impacted pharmacology, but needs to be more anchored in the 

cardiovascular field. However, there is no doubt that new breakthroughs in computer simulations are paving the 

way to a possible bridge from molecular understanding to personalized medicine in the field of CVD. 
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Box 1. Glossary of terms 
Homology modeling: technique to build the 3D structure of a target for which the 3D structure of a homolog protein, with a close primary sequence, is known. 

Ligand design: de novo approach to build a ligand with physicochemical characteristics fitting those of the target. 

Molecular docking: numerical simulation technique to predict the optimal conformation and structure of a ligand to bind to a receptor; the binding affinity can be 

evaluated by a scoring function.54 

Molecular dynamics (MD): numerical simulation technique based on Newton’s laws to predict the evolution of a system over time for a large number of molecules 

coupled together to access their dynamics.36 

Network pharmacology: technique to predict drug actions and interactions with multiple targets by cataloguing molecular interactions of the drug in living cells.55 

Pharmacophore: a molecule containing specific physicochemical characteristics (electron donor, electron acceptor, aromatic ring, etc.). 

Quantitative structure–activity relationship (QSAR) models: models that use correlations between structure of molecules and biological responses to predict 

biological responses of a new structure.56,57 

Quantum chemistry: numerical simulation technique based on Born–Oppenheimer approximation to resolve a Schrödinger equation that allows access to reactivity 

between molecules and their transition state, Gibbs free energy of reaction (useful to elucidate a reaction mechanism).58 

Virtual screening: uses a computer simulation method to identify ligands from a database  that bind to the target.54 

Figure 1. Publications related to computer simulation among all publications in the field of cardiovascular agents, antineoplastic agents, and antiviral agents. Results 

are expressed as a percentage of publications found using the Medical Subject Heading (MeSH) database of MedLine for ‘computer simulation’ with ‘cardiovascular 

agents’, or ‘antineoplastic agents’, or ‘antiviral agents’, on all publications concerning each drug classes as cardiovascular agents, or antineoplastic agents or antiviral 

agents, respectively. 

Figure 2. Decision-making tree in computer simulations. Illustrations show adenosine diphosphate and its receptor P2Y12, as the ligand and pharmacological target, 

respectively. Abbreviation: QSAR, quantitative structure–activity relationship. 

 



 

Table 1. Overview of publications reporting on computer simulations used in the cardiovascular field, found using the MeSH database of MedLine with the keywords 

‘computer simulation’ and ‘cardiovascular agents’ 

Ligands Targets PBD ID (technique used) Technique/methods Main conclusions and impact Refs 

Discovery of new ligands 

Black-eyed pea trypsin/chymotrypsin 

inhibitor (BTCI) peptides 

ACE 1O8A (by X-ray) Docking BTCI and its related peptides occlude catalytic site of ACE 59 

Peptides from naked oat globulin 

hydrolysates 

ACE 1O8A (by X-ray) Docking Peptide binds with active site S1 of ACE via short hydrogen bonds with high 

affinity 

60 

Peptides from pearl oyster ACE 1O86 (by X-ray) Docking One peptide binds competitively and another noncompetitively to ACE 61 

Peptides from Ganoderma lucidum ACE  2YDM (by X-ray) MD Three peptides inhibit ACE: One is a mixed-type inhibitor, which binds to 

ACE at positions including active and nonactive sites; second is a 

competitive inhibitor; and the third is a noncompetitive inhibitor 

62 

Peptides from glutelin of vinegar-

soaked black soybean 

ACE 1O86, 4CA5, and 4BZR (by 

X-ray) 

Pharmacophore/docking Two of five peptides had higher ACE inhibitory potency than lisinopril, 

phosphinic tripeptide FI, and K-26. Docking identified peptides that bind to 

different crystal structures of ACE 

63 

Peptides from Saccharomyces 

cerevisiae 

ACE 1O8A (by X-ray) Docking Peptides have ACE-inhibitory activity by binding through hydrogen bonds, 

hydrophobic, hydrophilic, and electrostatic interactions 

64 

Peptides from Ulva intestinalis ACE  1O8A (by X-ray) Docking Hydrogen bonds and interaction with Zn2+ of ACE contribute to ACE-

inhibitory activities of two peptides 

65 

Proline derivates  ACE  1O8A (by X-ray) Docking Ligand was identified with higher affinity for ACE compared with fosinopril 66 

Thiocarbamates from Moringa 

oleifera 

ACE 1O8A (by X-ray) Docking Some inhibitors extracted from Maringa oleifera showed better binding 

energy compared with enalapril and captopril 

67  

Peptides from Kefir milk ACE  1O86 (by X-ray) Docking Most peptides with most favorable ACE interaction had hydrophobic amino 

acids or positively charged amino acids 

68 

O-heterocyclic analogs from 

intertidal seaweed Sargassum 

wightii 

ACE  1O8A (by X-ray) QSAR/Docking Ligands were comparable with enalapril in terms of antihypertensive 

potential, because of functional role of molecular polarizability 

69 

Peptides from Gracilariopsis 

lemaneiformis 

ACE  1O8A (by X-ray) Docking Peptides inhibit ACE via hydrogen bonds with active pocket 70 

Peptides from Oncorhynchus mykiss ACE  1O86 (by X-ray) QSAR/Docking QSAR predicted potential activity, solubility, and ADMET properties of 

several tripeptides. Strong inhibition of ACE by tripeptides appears to result 

from hydrogen bond interactions 

71 

Peptides from Chlorella vulgaris ACE  1O8A (by X-ray) Docking Two peptides formed six hydrogen bonds with active site pockets of ACE 72 

Peptides from winged bean seeds ACE  1UZF (by X-ray) Docking Docking score for several peptides correlated well with respective IC50 
73 



Di/tripeptides from milk ACE  4APH (by X-ray) 3D-QSAR/docking Most potent inhibitory peptides contained hydrophobic amino acids that enter 

deep into hydrophobic pocket of ACE active site and interact with its residue 

74 

Triazolones and bis-triazolone 

derivatives 

ACE  1O8A (by X-ray) Docking Compounds compete with substrate by inhibiting substrate entry to catalytic 

pocket or directly binding to catalytic site, explaining their antihypertensive 

effects 

75 

Peptides derived from adlay (Coix 

larchryma-jobi L. var. ma-yuen 

Stapf) glutelin 

ACE  1O86 (by X-ray) Pharmacophore/docking Most potent peptide obtained by pharmacophore and docking simulation 

screening and series of divisions and optimizations 

76 

Peptides from lentils ACE  4APH and 4APJ (by X-ray) Docking/MD ACE inhibition due to formation of hydrogen bonds between C-terminal 

residues of lentil peptides and residues of ACE catalytic site 

77 

Terpenes from essential oil from 

aerial parts of Seseli pallasii Besser 

ACE 1O86 (by X-ray) Docking Spathulenol exhibited optimal binding affinity with ACE 78 

Peptides from broken rice ACE/Renin 4APH and 2V0Z (by X-ray) Docking One peptide showed greatest potential to inhibit ACE and renin; energy of 

interaction similar to bradykinin and aliskiren for ACE and renin, respectively 

79 

Saccharides from Clerodendrum 

colebrookianum 

ACE/Rho-

associated 

coiled-coil protein 

kinase 

(ROCK)/phospho

diesterase type 5 

(PDE5) 

1O86, 3D9V, 4L6Q, and 

1UDT (by X-ray) 

Docking/MD Acteoside, martinoside, and osmanthuside β6 interact with three targets with 

good affinity; protein–ligand complexes between acteoside/osmanthuside β6 

and ROCK, and acteoside and PDE5 were stable, enabling design of new 

antihypertensive drugs 

80 

Diterpenes from Dictyota 

menstrualis 

Thrombin 1PPB (by X-ray) QSAR/docking Diterpenes bind to catalytic site of thrombin, enabling design of new 

antithrombotic drugs 

81 

Oxazalone/imidazolone derivatives AT1/hERG 

potassium 

channel  

4YAY (by X-ray)/ homology 

modeling, and 5VA1 by 

cryo-EM 

Homology 

modeling/docking/MD 

Compounds with high affinity for AT1 and low affinity for hERG identified to 

design new effective, safe antihypertensive drugs 

82 

Xanthon derivatives β1-

Adrenoreceptor 

4BVN (by X-ray) Docking Common binding orientation of xanthan derivatives in catalytic binding pocket 

of β1 adrenoreceptor identified. Amino alkyl moiety has important role in 

binding at catalytic site. These compounds represent new antihypertensive 

drugs with greater activity than propranolol and atenolol 

83 

Imperatorin analogs Cardiac L-type 

calcium channel 

3G43 (by X-ray) Docking Decrease in vasodilation caused by replacement of ether function with amine 

because numbers and lengths of bonds differ 

84 

Nifedipine analogs  CaV 1.2 channel 4MS2 (by X-ray) and 

homology modeling 

Homology 

modeling/docking 

Two compounds showed higher affinity for channel compared with nifedipine 85 

Isoxsuprine eNOS/Cystathion

ine γ-lyase (CSE) 

3NOS and 3COG (by X-ray) Pharmacophore/docking/M

D 

eNOS binding sites located both on substrate access channel and within 

catalytic site. For CSE, binding site is close to substrate access channel and 

catalytic site. Isoxsuprine involves various mechanisms and is a potent 

candidate for polypharmacology 

86 

1,3,4-Oxadiazole derivatives Factor Xa 1NFY (by X-ray) Docking/quantum chemistry Antithrombotic activity predicted by computer simulation was superior to that 87 



of unfractionated heparin 

Molecules from SPEC database Factor IXa 4Z0K (by X-ray) Pharmacophore/3D-QSAR 

/docking 

Six molecules out of 75 671 were screened as potential FIXa inhibitors 88 

Various molecules from Alstonia 

scholaris 

Factor Xa/tissue 

plasminogen 

activator 

2BOK, 1A5H and 1RTF (by 

X-ray) 

Docking Some ligands bind t-PA and Factor Xa more optimally compared with 

streptokinase 

89 

Molecules from MolMall database Liver X receptor 1UHL, 1UPW (by X-ray) Docking/MD Two agonist candidates were identified with interactions with key residues. 

Both complexes occupied similar spatial position of region of LXR and could 

be potent treatment for LXR-related CVDs or cancers 

90 

New N-(phenylmethyl)-benzoxazol-

2-thiones 

Macrophage 

migration 

inhibitory factor 

(MIF) 

1CA7, 1GCZ, 1LJT (by X-

ray) 

QSAR/docking Preferred binding mode for within MIF tautomerase active site predicted for 

identified potential inhibitor 

91 

Salvianolic acids from traditional 

Chinese medicine  

P2Y1/P2Y12 

receptors 

4XNW, 4PXZ, 4NTJ (by X-

ray) 

Ensemble docking/MD Salvianolic acid A and C antagonized P2Y1 and P2Y12 receptors, whereas 

salvianolic acid B antagonized P2Y12 only, with high affinity, explaining their 

potential antithrombotic mechanism 

92 

Ginsenoside isomers P2Y12 receptor  4NTJ (by X-ray) Docking Differential protein–ligand interaction appears responsible for stereoselective 

efficacy of ginsenoside isomers, a potent substrate of P2Y12 receptor 

93 

Compounds from drug-like natural 

product library 

Peroxisome 

proliferator-

activated 

receptor-γ 

(PPARγ)  

4EMA (by X-ray) Docking Four natural product compounds identified with high or moderate agonistic 

potency against human PPARγ 

94 

66 Novel furyl/thienyl β-carboline 

derivatives 

Phosphodiestera

se 5 (PDE5) 

1XOZ (by X-ray) QSAR/Docking Optimized 5-ethylfuryl or 5-ethylthienyl moieties constituted most potent and 

selective PDE5 inhibitors; compounds occupied Q2 pocket of PDE5 and 

could be potent vasorelaxant drugs 

95 

269 Antihypertensive 

phytochemicals 

Phosphodiestera

se 5A (PDE5A) 

1TBF (by X-ray) Docking Lead scaffolds identified with nitrogen-containing tetrahydro-

pyridonaphthyridine and dihydro-pyridoquinazoline tricyclic as novel PDE5A 

inhibitors 

96 

12 Novel 2-cyclopropyl-3-ethynyl-4-

(4-fluorophenyl) quinolines 

Protease-

activated 

receptor 1/PI3 

Kinase 

3VW7, 3T8N (by X-ray) Quantum chemistry/docking Four compounds out of 12 presented good physicochemical and 

pharmacological properties as anticancer drugs with thrombolytic effects 

97 

N-Substituted prolinamido indazoles Rho-associated 

coiled-coil protein 

kinase 1 

(ROCK1) 

3NDM (by X-ray) Docking Compounds containing β-proline moiety had improved activity against 

ROCK1, relative to analogs with α-moiety. Benzyl substituent on these 

compounds induced improved inhibitory activity compared with benzoyl 

substituent 

98 

Arylsparteine derivatives Sigma-1 receptor 5HK1 (by X-ray) Docking Relevant sparteine derivatives targeted sigma-1 receptor at its binding site 

and modulate calcium signaling in cardiac muscle 

99 



Inhibitors of soluble epoxide 

hydrolase found in National Cancer 

Institute and Maybridge databases 

Soluble epoxide 

hydrolase (sEH) 

4JNC (by X-ray) Pharmacophore/docking Two potent, safe, and novel sEH inhibitors discovered that could be 

candidates for hypertension treatment 

100 

Thrombin inhibitors from BindingDB Thrombin 2CF9 (by X-ray) Docking/MD Cyclopentyl moiety in JJ1 involved in interacting with thrombin. JJ1 identified 

as potential inhibitor of thrombin by binding its active site 

101 

Inhibitors of With-No-Lysine Kinase 

(WNK) 

WNK 5TF9 (by X-ray) QSAR/Docking Optimized potent and selective allosteric inhibitors with improved 

physicochemical properties as antihypertensive agents 

102 

Drug-binding mechanisms with therapeutic targets 

Benzoate derivative: brozopine 

(BZP)  

12/15-

lipoxygenase 

(12/15-LOX) 

4NRE by X-ray/homology 

modeling; 2P0M (by X-ray) 

Homology 

modeling/docking/MD 

BZP had higher affinity for 12/15-LOX-2 than for 12/15-LOX-1; its 

bromopheny group penetrates hydrophobic pocket of 12/15-LOX-2 and could 

be a cardioprotective agent 

103 

Peptide from enzymatic 

hydrolysates of Cyclina sinensis 

ACE  1O86 (by X-ray) Docking Interaction between peptide and ACE occurred mainly through hydrogen 

bonding, hydrophobic interactions, and coordination bonds between Zn2+ and 

the peptide; could be incorporated in antihypertensive food or dietary 

supplements 

104 

Peptide AM-1 from Radix Astragali ACE 4APH (by X-ray) Docking AM-1 binds ACE in main interactive site for angiotensin II, explaining 

antihypertensive action of traditional Chinese medicine 

105 

Peptide from Styela clava ACE 1O86 (by X-ray) Docking Peptide binds to active site of ACE and explains antihypertensive action of 

South Korea seafood 

106 

Peptides from bovine bone gelatin 

hydrolysate 

ACE 1O86 (by X-ray) Docking Similar to captopril, peptides decreasing stability of conserved zinc-binding 

motif in ACE could be incorporated as nutritional supplements with 

antihypertensive action 

107 

Peptides from quinoa bran albumin  ACE 1O8A (by X-ray) Docking Peptide appears to interact with ACE active site via hydrogen bonds with 

high binding power; thus, quinoa could be source of bioactive peptide against 

hypertension 

108 

Peptide from tilapia ACE 1O8A and 1UZF (by X-ray) Docking Peptide from tilapia binds to ACE active site with lower binding energy than 

captopril; could be food ingredient with antihypertensive effects 

109  

Peptides from Cassia obtusifolia ACE 1O8A (by X-ray) Docking Peptide interacts with ACE active site as a competitive inhibitor and acts as 

antihypertensive agent 

110 

Peptide from Saurida elongata ACE 1O8A (by X-ray) Docking Peptide interacts via static quenching mechanism involving alteration of ACE 

conformation to realize antihypertensive effects 

111 

Microginins (MG) peptide ACE  2X8Z (by X-ray) Docking MG peptide exhibited similar interactions with ACE as captopril 112 

Phenolic acid/dipeptide/borneol 

hybrids 

ACE  1O86 (by X-ray) Docking Binding position of most potent compound showed similar binding mode to 

that of lisinopril 

113 

Phe-Tyr dipeptide AT1 4ZUD (by X-ray) Quantum 

chemistry/MD/docking 

Dipeptide structure remained stable and had binding affinity with AT1, thus 

could be potent antihypertensive agent 

114 

D-myo-inositol 3,4,5,6- Antithrombin 2ANT, 1E03 (by X-ray) MD TMI modulated AT reactive center loop flexibility similarly to that observed 115 



tetrakisphosphate (TMI) (AT) with heparin 

Esculin 7,3′,4′,5′,6′-O-pentasulfate 

(EPS) 

AT 1E05 (by X-ray) Docking Binding sites of EPS were away from heparin-binding site, indicating that 

EPS is not acting as heparin mimic that changes AT conformation 

116 

 (-)-Epicatechin (EPI)/L-arginine Arginase (Ar) 2EAB (by X-ray) Docking EPI could bind Ar together with its natural substrate L-arginine, suggesting a 

noncompetitive interaction 

117 

Diethyl-4,4’-dihydroxy-8,3’-neolign-

7,7’-dien-9,9’-dionate (neolignan1) 

BKCa channel 3NAF (by X-ray) and 

homology modeling 

Homology 

modeling/docking 

Neolignan1 binds within binding site pocket of BKCa channel, which could 

explain its antihypertensive activity 

118 

Sodium thiosulfate (STS) Caspase-3 2H5I (by X-ray) Docking Effectiveness of STS as cardioprotective agent is attributed to reduction in 

apoptosis by binding to active site of caspase-3 

119 

Isoquinoline derivative H-89 Cav1.2 channel Homology modeling Homology 

modeling/docking 

H-89 docked at same region as (S)-(-)-Bay K 8644 although in different 

binding pockets with similar binding energy 

120 

Ranolazine Cytosolic-5’-

nucleotidase 

2JC9 (by X-ray) Docking Docking revealed possible binding site for ranolazine on cytosolic-5’-

nucleotidase 

121 

Benzamidine Factor XIIa 

(Hageman factor) 

6B74 (by X-ray) MD Prominent alterations of original conformational posture of FXIIa revealed by 

increased flexibility, decreased compactness, and increased exposure to 

solvent upon binding of benzamidine 

122 

Nitric oxide (NO) donor Free fatty acid 

receptor 1 

(FFA1) 

4PHU (by X-ray) Docking Terminal phenyl group of NO donor was exposed to outside of FFA1 binding 

pocket 

123 

Trowaglerix venom polypeptides Glycoprotein VI 

(GPVI) 

 Docking Hexapeptide binds GPVI at different site to collagen 124 

Saccharide: Araloside C Heat shock 

protein 90 

(Hsp90) 

1AMW Docking Araloside C stably docked into ATP/ADP-binding domain of Hsp90 via 

formation of hydrogen bonds 

125 

Dofetilide and a derivative: LUF7244 hERG 5VA1 (by cryo-EM) Docking/MD LUF7244 prevented dofetilide from binding to fenestration site, whereas there 

was almost no overlap when dofetilide bound to central cavity 

126 

Benzamide derivative: ICA-105574 hERG 5VA1 by cryo-EM Docking/MD ICA-105574 influenced stability of ion selective filter of hERG 127 

R-roscovitine hERG Homology modeling Homology 

modeling/Docking 

Residues involved in hERG inhibition by R-roscovitine identified. Their 

mutations induced changes in inhibition 

128 

Triphenyl derivative: cavalli-2 hERG 5VA1 (by cryo-EM), 1LNQ 

(by X-ray), and homology 

modeling  

Homology 

modeling/docking 

Cavalli-2 extends into hydrophobic pockets of new open-pore hERG structure 

with low-energy-score poses 

129 

Quaternary ammonium: clofilium hERG 5VA1 (by cryo-EM) and 

homology modeling 

MD Unexpected binding mode identified, in which quaternary nitrogen was 

placed in upper part of inner cavity, whereas chlorophenyl group was located 

in lower part 

130 

Triarylmethane-34, benzothizinone 

NS6180, senicapoc 

KCa3.1 channel 2R9R, 3FB5 (by X-ray) and 

homology modeling 

Homology 

modeling/docking 

All three compounds blocked ion conduction directly by fully or partially 

occupying site that would normally be occupied by K+ 

131 



Pentamidine-analog 6 (PA-6) KIR2.1 channel Homology modeling Homology 

modeling/docking 

Mutations were >30 Å apart from Pa-6 binding site on KIR2.1 132 

Chloroquine KIR3.1 channel 1N9P (by X-ray) Docking Chloroquine blocked passage of hydrated K+ through intracellular domain of 

KIR3.1. Mutant channel suggested that binding of drug to pore was off center, 

reducing its ability to block hydrated K+, explaining why chloroquine failed to 

revert paroxysmal atrial fibrillation in some patients 

133 

Verapamil Kv 1.3 channel 2A79 (by X-ray) and 

homology modeling 

Homology 

modeling/docking 

To reach its binding site to block channel, verapamil interferes in Kv 1.3 

channels, mainly with position 420, and is partially hindered by position 417 

and 418, whereas position 419 does not interfere. Mutant channels could 

indirectly influence ability of verapamil to reach its binding site 

134 

Verapamil Kv1.5 channel Homology modeling Homology 

modeling/Docking 

Verapamil binds in central cavity of channel pore and has contact with 

multiple amino acids that reside between base of ion selectivity filter; this 

blocking effect contributes to prolongation of atrial effective refractory period 

135 

5222 compounds from ZINC 

Database 

Kv1.5 channel Homology modeling Homology 

modeling/docking/MD 

Tested inhibitors inhibited Kv1.5 in similar pattern to known inhibitors, mainly 

through nonpolar interactions, and formed stable complexes. Channel in 

open conformation was stabilized quickly within DPPC membrane, whereas 

most secondary structure elements were lost in closed -conformation 

136 

5-(4-phenoxybutoxy)psoralen (PAP-

1)/vernakalant/flecainide 

Kv1.5 Homology modeling Homology modeling/MD All three molecules bind to cavity between Ile508 and Val512 residues from 

four subunits of channel, blocking Kv1.5 channel in same manner 

137  

αs1-casein-derived peptides  μ-type opioid 

receptor (OPRM) 

4RWA (by X-ray) and 

homology modeling 

Homology 

modeling/MD/docking 

One peptide had favorable structure and interaction energy to bind OPRM 138 

Cinobufagins, steroid derivative Na+,K+-ATPase 4RES (by X-ray) Docking Length of spacer arms between cinobufagin steroid core and nitroxide group 

determined position of reporting group (N-O) confined to binding site 

139  

Lidocaine/quinidine Nav 1.4 channel 5BZB (by X-ray) and 

homology modeling 

Homology 

modeling/docking/pharmaco

phore 

Common pharmacophore proposed including cationic moiety and aromatic 

moiety, usually linked by four bonds 

140 

Lidocaine Nav 1.5 channel 5XSY and homology 

modeling 

Homology 

modeling/docking/MD 

Pore lumen simultaneously accommodated up to two drug molecules. 

Hydrophilic access pathway through intracellular gate and hydrophobic 

access pathway through fenestration were identified 

141 

Saponin D39 Non-muscular 

myosin heavy 

chain IIA 

(NMMHC IIA)  

Homology modeling Homology 

modeling/docking 

Scaffold triterpene of D39 extended deep into hydrophobic pocket of 

NMMHC IIA and could be potential antithrombotic drug 

142 

Lectin from Dioclea reflexa hook 

seeds (DrfL) 

Oligomannosides

/N-glycans 

5TG3 (by X-ray) Docking/MD DrfL interaction with N-glycans in glycoconjugates on surface of endothelial 

cells appeared responsible for relaxant effect promoted by lectin 

143 

Raspberry ketone PPARα 3V18 (by X-ray) Docking Ketonic group of raspberry ketone essential for binding effectiveness to 

PPAR-α to prevent cardiotoxicity of isoproterenol 

144 

Fisetin PPARγ 2XKW (by X-ray) Docking/MD Fisetin works as full agonist of PPARγ 145 

Inhibitor A293, an aromatic pTASK-1 6CQ8 (by X-ray) and Homology A293 binds three key residues, I118, L239, and N240, in inner pore of 146 



carbonamide channels homology modeling modeling/docking pTASK-1 channels 

Soyasaponin I Renin 3VUC (by X-ray) Docking/MD Soyasaponin I binds two sites, one in active site of renin and another in 

region near active site. Inhibition effect results from competition on active site 

with substrate 

147 

Ca2+ Ryanodine 

receptor 

(calcium-

activated calcium 

channel) 

5TB4 (by cryo-EM) MD Revealed mechanism of Ca2+ reversible binding  148 

Carboxyl-terminal tail domains 

(CTT) of trimeric intracellular cation 

(TRIC) A and B 

Ryanodine 

receptor 2 

(RyR2) 

5GOA, 5GO9 (by cryo-EM) 

and homology modeling 

Homology 

modeling/docking/MD 

Discovery of sites of interaction between RyR2 and CTT-A/CTT-B 149 

Flavine adenine dinucleotide Short-chain acyl-

CoA 

dehydrogenase 

2VIG (by X-ray) MD Flavine adenine dinucleotide stabilizes short-chain acyl-CoA dehydrogenase 

dimer structure and binding pocket 

150 

Neolignan1 Soluble guanylyl 

cyclase 

(sGC)/voltage 

dependent L-type 

calcium channel 

(VDCC)  

1Y11, 3RDY (by X-ray) and 

homology modeling 

Homology 

modeling/docking 

Both sGC and vascular VDCC proteins could be targets of neolignan1 151 

Astaxanthin (ASX) Sphingomyelin 

phosphodiestera

se 1 (SMPD1) 

5FIB (by X-ray) Docking ASX produced tight fit in pocket of SMPD1 152 

Hypericin, anthraquinone derivative Thrombin 5AFY (by X-ray) Docking Hypericin could simultaneously bind on three distinct ligand-binding sites of 

thrombin; thus, hypericin could be novel thrombin inhibitor 

153  

Inhibitor of cardiac troponin I 

interacting kinase (TNNI3K), an 

aniline derivative 

TNNI3K 4YFF (by X-ray) Docking Interactions between inhibitor and TNNIK3K identified 154 

Peptidomimetic 1-Benzyl-5- methyl-

4-(n-octylamino)pyrimidin-2(1H)-one 

Toll-like receptor 

4 (TLR4) 

1FYV, 2J67 (by X-ray), and 

homology modeling 

Homology 

modeling/docking 

One binding site located close to site with crucial role in association of TLR4 

with adapter proteins and in TLR4 activation 

155 

Curcumin Transient 

receptor potential 

vanilloid 4 

(TRPV4) 

4DX1 (by X-ray) Docking Amino acid sequence LYS340-LEU349 of TRPV4 implicated in binding site 

with curcumin 

156 

Inhibitors of TREK-1 Channel, 

benzohydrazide derivatives 

TREK-1 channel 4XDL (by X-ray) and 

homology modeling  

Homology modeling/MD Intermediate state, between active and inactive state, identified with allosteric 

pocket for inhibitors 

157 

N-(4-cholorphenyl)-N-(2-(3,4-

dihydrosioquinolin-2 (1H)-yl)-2-

oxoethyl)methanesulfonamide 

TREK-1/TREK-

2/TRAAK 

4TWK, 4BW5, 4XDK, 

4XDJ, 4XDL, 4I9W, 4WFH, 

4WFG, 4WFF, 4WFE, 

Docking/MD When TKDC binds to groove comprising E1 and E2 helices, E2 helix moves 

toward selectivity filter and directly interacts with pore region on different 

subunit to block extracellular ion pathway 

158 



(TKDC) 4RUE, 4RUF (by X-ray) 

S,S′-dinitrosobucillamine N/A N/A Quantum chemistry Free energies for release of NO• entities computed by quantum chemistry. 

S,S′-dinitrosobucillamine could be potent NO donor 

159 

Dinitrobenzofuroxan aryl derivative N/A N/A Quantum chemistry High NO-donor activity of dinitrobenzofuroxan aryl derivative connected with 

its existence as mixture of 1-N-oxide and 3-N-oxide, where 3-N-oxide is more 

reactive toward SH• 

160 

Exploration of additional mechanism of action 

Captopril derivatives/dihydropyridine 

calcium channel blocker (DCCB) 

and losartan derivatives 

Cytochrome 

P450 2J2 

1OG5, 1PQ2, 2BDM, 1TQN 

(by X-ray) and homology 

modeling 

Homology 

modeling/docking 

Binding energies of DCCB significantly correlated with IC50 values for 

inhibition of CYP2J2. Among losartan derivatives, only telmisartan binds 

CYP2J2 with good affinity. For captopril derivatives, ester structure could 

have key role in inhibition of CYP2J2 

163 

In silico modeling of target 

Losartan derivatives: 

azilsartan/valsartan/olmesartan/cand

esartan 

AT1 4ZUD (by X-ray) Docking Binding between ligands and AT1 receptor compared to validate in silico 

immobilized AT1 receptor model 

164 

Nifedipine analogs Cav 1.2 channel 4MS2 (by X-ray) and 

homology modeling 

3D-QSAR/homology 

modeling 

3D-QSAR model validation either internally or externally showed reliability 

and predictability of CaV 1.2 channel model 

85 

N/A hERG N/A Pharmacophore/docking/M

D 

New picture for hERG1 channel activator field provided 165 

Target prediction 

Genistein, a polyphenol PPARγ N/A Network 

pharmacology/docking 

PPARγ predicted as target for genistein; binding between PPARγ and 

genistein was analyzed  

166 

Permeation through plasma membrane 

Epigallocatechin gallate (EGCG), a 

flavanol derivative 

1-palmitoyl-2-

oleoyl-sn-

glycero-3-

phosphocholine 

(POPC) bilayer 

N/A MD EGCG might not spontaneously permeate membrane but stays in headgroup 

region 

167 

Propranolol (PPL) POPC bilayer N/A MD PPL dynamically neutralizes at lipid-tail interface, which dramatically 

influences permeability 

168 

Dofetilide/Moxifloxacin POPC/dimyristoy

lphosphatidylchol

ine (DMPC) 

bilayer 

N/A MD Diffusion in membrane interior slower compared with bulk aqueous solution, 

because of a more viscous space 

169 

Modulation of lipid environment of therapeutic target 

Ticagrelor and its metabolite, ATP 

analogues 

POPC 

bilayer/SM 

4NTJ and 4PXZ (by X-ray) MD Lipid environment of membrane modulates binding propensity of P2Y12 

receptor of ticagrelor and its metabolite 

18 



bilayer or 

SM/cholesterol 

bilayer 

Drug binding with plasma membrane 

Amlodipine/atenolol/lisinopril DMPC bilayer N/A MD Combined drugs penetrated deeper into DMPC lipid bilayer; lipid chains 

remained ordered 

170 

Irbesartan (IRB)/IRB–HP-β-CD Dipalmitoylphosp

hatidylcholine 

(DPPC) bilayer 

N/A MD Topological and orientational integration of irbesartan into DPPC lipid bilayer 

revealed that it is placed ~1 nm from membrane center 

171 

5-(4-phenoxybutoxy)psoralen (PAP-

1)/vernakalant/flecainide 

 POPC bilayer N/A MD All molecules readily partitioned into membrane 137  

PK understanding 

Digoxin Cgr2 protein of 

Eggerthella lenta 

1QO8 (by X-ray) and 

homology modeling 

Homology 

modeling/docking/MD 

Digoxin binds Cgr2 at same binding site as fumarate (with a lower binding 

energy), which is proposed natural substrate 

172 

BSP Ceramide 

2/water 

N/A Docking BSP ion-pair complexes remained stable in stratum corneum, rich in 

ceramide 2, but dissociated in viable epidermis, rich in water 

173 

PEGylated amlodipine 

(PEGAML)/paroxetine (PAR) 

Cytochrome 

CYP2B4 

4JLT (by X-ray) MD Amlodipine in PEGylated form associated with paroxetine promoted higher 

CYP2B4 stability. Optimum ratio with PAR (1PEGAML:5PAR) effectively 

reduced DDIs and stabilized interactions with CYP2B4 

19 

Flavonoids/dronedarone Cytochrome 

P450 3A4  

5TE8 (by X-ray) QSAR/docking/pharmacoph

ore 

Flavonoids promoted stronger metabolism of dronedarone by binding to 

internal cavity of CYP P450 3A4 

174 

New coumarin derivatives Human serum 

albumin (HSA) 

1E7I (by X-ray) Docking New coumarin derivatives had single binding site with HAS but one 

compound suggested two binding sites, which would influence distribution 

and metabolism 

175 

     176 

     177 

     178 

Optimization of dose form 

Olmesartan medoxomil (OLM) N/A N/A MD Interaction between OLM and polymer used as carrier was predicted 179 

ICCA-WFF, a peptide GPIIb/IIIa/P-

selectin 

Unspecified Docking/MD Modifying ICCA with WFF enhanced binding with GPIIb/IIIa and P-selectin. 

Simulation of nanoparticle of ICCA-WFF formation performed, which allowed 

access to several  molecules per nanoparticle 

180 

Felodipine (FEL) Hydroxypropylme

thylcellulose 

(HPMC) 

N/A MD Miscibility between HPMC and FEL and diffusion coefficients determined 181 

Milrinone (MRN) nanoformulation HSA 1HK4, 2BXD and 2BXG (by Docking MRN bound to hydrophobic pocket on subdomain IIA of HSA, which could be 182 



X-ray) used as carrier 

Amlodipine besylate (AMB), a 

dihydropyridine 

N/A N/A Quantum chemistry/MD Structures of neat and binary AMB characterized and their physical stability 

evaluated 

183 

Toxicity assessment 

Oxazalone/imidazolone derivatives AT1/hERG  4YAY (by X-ray)/homology 

modeling, and 5VA1 (by 

cryo-EM) 

Homology 

modeling/docking/MD 

Compounds with high affinity for AT1 and low affinity for hERG identified to 

design new effective and safe antihypertensive drugs 

82 

N/A hERG N/A QSAR Blockage of hERG channel by small molecules predicted 184 

Dofetilide/moxifloxacin hERG Homology modeling Homology modeling/MD Neutral dofetilide and moxifloxacin forms could preferentially interact with 

open channel state 

169 

Diverse drugs hERG 5VA2 (by cryo-EM) Docking/MD Calculated values of binding energies well correlated with experimental ones, 

thus affinity of drug for hERG channel can be accurately predicted 

185 

Vesnarinone hERG Homology modeling Homology 

modeling/Docking/MD 

Possible binding mode and stability of this drug at hERG channel models, 

both in open and open-inactivated states, elucidated 

186 

Dofetilide/estradiol hERG 2A79 (by X-ray) and 

homology modeling  

Homology 

modeling/docking/MD 

Estradiol interacted with hERG mutations in pore loop containing G604 or in 

intracavity binding site, which constitutes a torsadogenic risk 

187 

 

 










