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Active Sensing for Data Quality Improvement in Model Learning

Olga Napolitano1, Marco Cognetti2,3, Lucia Pallottino1, Paolo Salaris1, Dimitrios Kanoulas4, Valerio Modugno4

Abstract— In the application of machine learning to robotics,
the quality of data assumes a pivotal role. Many methods
use exploration algorithms to select the more informative data
points for the model. Nevertheless, these approaches overlook
the detrimental influence of measurement errors that invariably
impact the data. This paper proposes a novel method to
improve the quality of datasets employed in model learning by
optimizing metrics based on the combination of exploration and
active sensing measures. We use metrics based on a Gaussian
Process covariance matrix as exploration metrics, with the
aim of letting the system to explore the state space regions
where the model uncertainty is higher. We combine it with
an active sensing metric based on a norm of the Continuous
Riccati Equation optimized to reduce the negative effect of
measurement noise on the data. To prove the validity and
versatility of our approach, we tested it in a simulation scenario
on a unicycle and a quadruped robot.

I. INTRODUCTION

In the field of machine learning (ML), many researchers
dedicate their efforts to the development of powerful models
to process large and complicated datasets to make better pre-
dictions. However, there has been limited effort to improve
the quality of the data, which greatly influences how well ML
systems perform [1], especially in real-world applications
where the noises and uncertainties that affect the data are
not negligible [2].

Data quality also plays a crucial role in ML applications
in robotics. The significance of this is especially pronounced
in model training. Due to strict online time constraints, fewer
data points can be used to provide a timely prediction.
Therefore, it is essential to identify a subset of data that
is meaningful for the learning process [3]. Consequently,
strategies aimed at the selection of data points that maxi-
mize information gain are becoming popular. This is done
with the expectation that the learned model will achieve
the best prediction performance. In [4], the information-
theoretic approach for optimal experimental design (OED)
is exploited to select the best training data set for explaining
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Fig. 1. Control system block diagram of the proposed methodology.

the behavior of an unknown system modeled through a Gaus-
sian Process. In the same line, [5] presents an exploration
algorithm that maximizes the information acquired at each
step quantified by the Fisher information matrix, resulting in
an adaptive exploration strategy that can seamlessly interface
with diverse parametric learning models. In [6], the authors
present a method for multi-agent exploration of spatially
distributed physical phenomena based on the maximization
of the predicted uncertainty provided by Gaussian Processes.
A different approach is taken in [7], where the proposed
exploration strategy chooses exploratory actions based on the
estimated uncertainty in the learned dynamics model. In [8],
an information-cost stochastic nonlinear optimal controller
is described, that facilitates the exploration of unknown
residual dynamics while safety is guaranteed. Instead, the
authors of [9] propose an exploration strategy, where a task-
dependent metric that measures the parameters’ uncertainty
is optimized.

The above-mentioned methodologies focus on the con-
struction of a training set that effectively minimizes the
epistemic error. Another factor that negatively affects the
data quality is the measurement error that, in the robotic
field, comes from noisy sensor readings. A possible so-
lution is the introduction of an estimator, that will make
the learning model process more robust by reducing the
negative effects of the measurement noise. However, this
is not the best solution, since the estimator passively tries
to mitigate this problem. Some approaches – named active
sensing/perception control strategy [10] – started to face this
problem actively, by finding the optimal control inputs for
the robot that minimize the effects of the noise. To the best of
our knowledge, while active sensing control is widely used
in many robotics scenarios, its application aimed at reducing



measurement error in the active construction of a dataset has
been barely explored in the literature.

In this paper, we present a novel methodology for en-
hancing data quality in the context of model learning, based
on the introduction of an active sensing component within
an exploration algorithm to reduce both the epistemic and
the measurement errors. We introduce novel metrics defined
as combinations of exploration and active sensing measures,
which are maximized inside a Model Predictive Control
(MPC) scheme (see Fig. 1). Regarding the exploration, we
considered two metrics: (i) the predicted covariance matrix,
named Q(t) in Fig. 1, of a Gaussian Process that is pre-
trained on a small dataset; (ii) the Exploration Gramian,
which quantifies the evolution of the system model uncer-
tainty along a planned trajectory. For the active perception,
the chosen metric is a norm of the solution of the Continous
Riccati Equation (CRE) – as in [11] – and provided by the
Extended Kalman Filter (EKF), chosen as the estimator in
this work. To validate the efficacy of our method, we conduct
a comparative analysis against a pure exploration algorithm
that neglects the impact of measurement noise on the sensor
readings. To show the effectiveness of our approach, we
tested it on a simulated unicycle and a quadrupedal robot.

The paper is structured as follows. In Section II, some
preliminaries about the optimization metrics are introduced.
Section III describes the optimal control problem focusing
on the combination of metrics regarding active sensing and
exploration. In Section IV, the case studies chosen to test
our approach are described, while the obtained results are
presented in Section V. The paper ends with conclusions
and future developments in Section VI.

II. PRELIMINARIES

Let us consider the following nonlinear system

q̇(t) = fn(q(t),u(t)) + fu(q(t),u(t)) +w (1)
z(t) = h(q(t)) + ν (2)

where q(t) ∈ Rn represents the state of the system, u(t) ∈
Rm is the control inputs, z(t) ∈ Rp represents the sensor
outputs (i.e., the measurements available through sensors at
time t), fn(·) is the known part of the model dynamics.
Moreover, fu(·) ∼ GP(µ(t),Q(t)) is the unknown part
of the system dynamics, that is modeled as a Gaussian
Process with µ(t) mean and Q(t) covariance. Finally, h(·)
represents the sensor model, and ν(t) ∼ N (0,R) and
w(t) ∼ N (0,Σ), are white, normally-distributed Gaussian
noises with zero means and covariance matrices R and Σ,
respectively.

The goal of this paper is to propose a methodology for
data quality improvement in model learning by introducing
an Active Sensing control strategy in the motions’ genera-
tion used for the data points collection. The tools used to
implement our method are briefly summarized below.

A. Gaussian Processes and exploration measures

Gaussian Processes (GPs) are widely used for system
dynamics identification. A generic GP j is a collection of

random variables, any finite number of which has a joint
Gaussian distribution [12]. Given the following training set

D :=

{
X := [x1, . . . ,xN ]

⊤
, yj :=

[
yj1, . . . , y

j
N

]⊤}
(3)

where xi is an input vector, while the output is given by
yji = gj(xi) + wi with gj : RD → R and Gaussian noise
wi ∼ N (0, σ2

w), the GP is specified by

mj(x) = E
[
gj(x)

]
kj(x,x′) = E

[(
gj(x)−mj(x)

) (
gj(x′)−mj(x′)

)⊤]
where mj(x) is the mean value and kj(x,x′) is the covari-
ance kernel. Then for a function gj(x) the GP can be written
as

gj(x) ∼ GP(mj(x), kj(x,x′)).

In this work, we model fu(·) as a stack of GPs where
the total mean µ(t) and covariance Q(t) are computed as
follows:

µ(t) = [m1(x), . . . ,mn(x)]

Q(t) = diag(k1(x,x′), . . . , kn(x,x′))

Since the GP models the unknown dynamics fu(·) ∼
GP(µ(t),Q(t)), the j-th diagonal element of Q(t) de-
scribes the uncertainty associated to the j-th component
of the unknown dynamics. In other words, the greater the
uncertainty of the j-th component, the less explored are
the regions of state space associated with it. Consequently,
the maximization of (a norm of) Q(t) will drive the robot
to explore these regions, hence reducing the corresponding
uncertainty.

Let us now compute the explicit form of eq. (1), which is

q(t) = Φ(t, t0)q0+∫ t

t0

Φ(t, τ)
(
f̄(q(t),u(t)) + f̃(q(t),u(t))

)
dτ.

(4)

where t > t0 and Φ(t, t0) is the system state transition
matrix solution of the following differential equation [13]

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I (5)

with A(t) = ∂fn(q(t),u(t))
∂q(t) .

The first and the second moments of eq. (4) are

µq(t) = Φ(t, t0)q0 +

∫ t

t0

Φ(t, τ)
(
f̄(q(t),u(t)) + µ(t)

)
dτ,

(6)

Qq(t) =

∫ t

t0

Φ(t, τ)Q(τ)Φ⊤(t, τ)dτ. (7)

From eq. (7), we then define the Exploration Gramian (EG)
as follow:

Gexp(t0, tf) =

∫ tf

t0

Φ(tf, τ)Q(τ)Φ⊤(tf, τ)dτ (8)

which represents the evolution of the model uncertainty
between t0 and tf > t0. Therefore, the maximization of



(some norm of) the EG will move the system to collect
data in the state space regions with the maximum model
uncertainty, allowing the system to explore novel state space
regions.

Moreover, eq. (8) can be formulated as a Sylvester differ-
ential equation:

Ẋ(t) = X(t)A⊤(t) +A(t)X(t) +Q(t). (9)

Indeed, by explicating eq. (9) it follows

X(t) = Φ(t, t0)X0Φ
⊤(t, t0) +

∫ t

t0

Φ(t, τ)Q(τ)Φ⊤(t, τ)dτ,

X(t0) = X0

and hence
X(t) = Gexp(−∞, t). (10)

Thus, by combining eqs. (9) and (10), the final formulation
of the EG can be introduced as follows

Gexp(t) = Gexp(t)A
⊤(t) +A(t)Gexp(t) +Q(t). (11)

Equation (11) is obtained by linearizing system (1)–(2)
around a nominal trajectory q(t) and neglecting the unknown
part fu(·) and process noise w(t). Finally, an approach for
implementing an exploration algorithm can consist of the
maximization of (some norm of) the GP covariance matrix
Q(t) which model the uncertainty of the unknown dynamic.
Alternatively, the maximization of the Gexp(t) can be used.

In general, the training set in eq. (3) is built during
real experiments exploiting sensor readings that might be
extremely noisy and hence adversely affect the learning
of the model. Therefore, an estimator – e.g., an Extended
Kalman Filter as in this work – is needed, and an Active
Sensing control strategy must be also introduced to improve
the estimator performance.

B. Active Sensing and sensory information measure

The issue of developing optimal control strategies for
maximizing the quantity of information collected by the
sensors is known as active sensing/perception control, or
optimal information gathering. This novel paradigm is gain-
ing significance in various domains of robotics, including
aerial [14], [15], multi-agent [16]), and underwater [17]
robotics. A crucial aspect in this context is the selection of
an appropriate measure for the optimization.

In the scientific domain, numerous information metrics
have been introduced, inspired by various theoretical bases
such as entropy [18], Bayesian optimization techniques [19],
and Fisher’s information matrix [20]. Moreover, as intro-
duced in [13] and [21], another suitable metric for quan-
tifying the amount of information – provided by the robot
sensors along a trajectory – about the final state q(tf), is
given by the Constructibility Gramian (CG) [22], defined as

Gc(t0, tf) ≜
∫ tf

t0

Φ⊤(τ, tf)H
⊤(τ)W c(τ)H(τ)Φ(τ, tf) dτ ,

(12)
where tf > t0, H(τ) = ∂h(q(τ))

∂q(τ) , and W c(τ) ∈ Rp×p

is a symmetric positive definite weight matrix (a design

parameter), that may be used for, e.g., accounting for outputs
with different units and different uncertainties.

The CG is also related to the covariance matrix of the
estimation error P defined as

Ṗ (t) = P (t)A(t)⊤ +A(t)P (t)−
P (t)H⊤(t)R−1H(t)P (t) +Σ.

(13)

Equation (13) is linked to the linear time-varying system
obtained by linearizing system (1)–(2) around a nominal
trajectory q(t) and neglecting the unknown part fu(·).

By exploiting the following link Ṗ = −P−1ṖP−1 and
neglecting the process noise covariance matrix Σ, eq. (13)
becomes

Ṗ (t)−1 = −P (t)−1A(t)−A(t)⊤P (t)−1+H⊤(t)R−1H(t).
(14)

By explicating eq. (14) and for P (t0) = P0 it follows

P (t)−1 = Φ−⊤(t, t0)P 0Φ
−1(t, t0)+∫ t

t0

Φ−⊤(t, τ)H⊤(τ)R−1H(τ)Φ−1(t, τ)dτ

and hence
P−1(t) = Gc(−∞, t). (15)

with W c(τ) = R−1. Thus, maximizing (a certain norm
of) the CG Gc is equivalent to minimizing (a certain norm
of) the covariance matrix P , resulting in a reduction of
the estimation uncertainty. It is worth pointing out that
eq. (15) holds if the actuation/process noise is neglected.
Otherwise, a more complete measure that quantifies both
the information from sensors and the degrading effect of the
actuation/process noise is (a norm of) P (t).

III. PROBLEM FORMULATION

Let us consider the system in eqs. (1)-(2) and an Extended
Kalman Filter, built on the nominal system, that provides an
estimate q̂(t) of the real system state q(t). Our goal is to
design an optimal control problem that drives the system in
the state space regions with large model uncertainty (with the
aim of reducing it) and, simultaneously, selects the control
action that maximizes the amount of information provided by
the robot sensors with the goal of improving the estimator
performance. Our control problem is formulated as follows:

Problem 1 For all t ∈ [t0, tf], find online the optimal
control sequence

u∗(t) = max
u

J(q̂(t),u(t))

s.t.

1) ˙̂q(t) = fn(q̂(t),u(t)) (16)
2) q ≤ q̂(t) ≤ q̄ (17)

4) u ≤ u(t) ≤ ū (18)
5) c(u(t), q̂(t)) ≤ 0 (19)

where J(q̂(t),u(t)) is an optimization metrics based on the
tools introduced in Section II, (16) is the nominal system
dynamics, (17) are the state constraints, (18) are the control



constraints, while (19) are other possible constraints as, for
example, a constraint on the total energy consumption for
the execution of the task or a Lyapunov constraint to better
ensure stability.

A. Optimization Metrics
In Section II, we have shown how it is possible to

measure the system uncertainty and the quantity of infor-
mation collected by the onboard robot sensors. Moreover,
we have also introduced a novel measure, the EG, that
can be exploited for the implementation of an exploration
algorithm. However, it is worth noting that the two elements
can exhibit contrasting behaviors. In fact, the main goal of
active sensing is to steer the system towards areas where
better measurements are expected, thereby improving the
estimation quality. Consequently, active sensing will avoid
exploring novel regions, since it does not know which kind
of information it will be able to gather. Paradoxically, the
primary purpose of the exploration component is to discover
and investigate these unexplored regions, resulting in the
above-mentioned conflict. Hence, different metrics can be
defined, depending on which function the robot should focus
on.

The first metric that we introduce in this section is

J1(q̂(t),u(t)) = trace (Q(t)) . (20)

This metric takes into account only the exploration part,
ignoring the active sensing contribution. By maximizing J1,
the system will tend to explore regions with high uncertainty
from an exploration point of view. We will use this metric
as a baseline in our simulations (see Section V).

Another metric is the result of the combination of the
exploration and the active sensing components, which can
be defined as follows

J2(q̂(t),u(t)) = trace (Q(t)) + trace
(
P−1(t)

)
. (21)

In eq. (21), the traces (i.e., the mean values) of the covariance
matrices of the exploration Q(t) and of the active sensing
P−1(t) are linearly combined. The maximization of J2 will
result in finding the trajectory that simultaneously leverages
the sensor information and explores the regions with high
model uncertainty. However, while Q(t) provides the un-
certainty about the input-output relationship at each time t
without considering how it evolves along the entire robot’s
planned trajectory, P−1(t) quantifies the sensory information
gained along the complete path. This aspect emphasizes
the conflicting behavior between the exploration and active
sensing parts. Therefore, a better combination may be the
following

J3(q̂(t),u(t)) = trace
(
P−1(t)

)
+ trace (Gexp(t)) . (22)

Unlike J2, in J3 both P−1(t) and Gexp(t) are cumulative
functions that quantify the sensory information and the evo-
lution of the model uncertainty along the planned trajectory.

The metrics introduced in this section will be used as
objective functions in Problem 1. The obtained results will be
compared to show the improvements of the Active Sensing
component in the collection of the data for the training set.

(a) (b)

Fig. 2. Unicycle and quadrupedal robot with their relevant quantities.

IV. CASE STUDIES

In order to prove the validity and versatility of our
methodology, we tested it on a simulated unicycle vehicle
and a quadrupedal robot. Before delving into the presentation
of the two case studies, let us consider system (1), wherein
a GP is employed to model errors in q̇, the time derivative
of the state variable q. The training data set for this GP
is constructed with input x = [q,u] and output y =
˙̂q − fn, where ˙̂q represents the estimation of q̇. However,
an estimator recovers only the state of the system (1). Since
we need also ˙̂q for training the GP, an augmentation of the
state system becomes necessary.

A. Unicycle vehicle

Let us consider a unicycle vehicle moving on the plane
FW = XW×Y W (see Fig. 2(a)) and affected by an external
disturbance. Its dynamics can be expressed as:

q̇ =

cos θ 0
sin θ 0
0 1

u+ fu(q,u), fn(q,u) =

cos θ 0
sin θ 0
0 1


(23)

with q = [px, py, θ]
⊤ the system state and u = [v, ω]⊤

the control input. Moreover, (px, py) is the robot position
w.r.t. FW, θ is the vehicle yaw, v is the forward velocity,
ω is the angular velocity, fn(q,u) is the nominal model
and fu(q,u) is a unknown disturbance modeled by a GP.
For the purpose of constructing the GP’s training set, it is
essential to estimate both the linear and angular velocities
of the robot. Consequently, it is necessary to reformulate the
nominal part in system (23) as follows

q̇aug =


ṗx
ṗy
θ̇

− sin θωv + cos θv̇
cos θωv + sin θv̇

ẇ

 (24)

with qaug = [px, py, θ, ṗx, ṗy, θ̇]
⊤ and uaug = [v, ω, v̇, ω̇]⊤

as the new state and input vectors, respectively. The new
extended nominal system will be used for the prediction in
the Problem 1 and in the EKF.



B. Quadrupedal robot

Let us consider a quadrupedal robot as shown in Fig. 2(b).
According to [23], its approximate dynamics can be ex-
pressed, in the world frame, as follows

d

dt


p
Θ
ṗ

Θ̇

 =


03×3 03×3 13×3 03×3

03×3 03×3 03×3 R(ψ)
03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3




p
Θ
ṗ

Θ̇

+


03×3 . . . 03×3

03×3 . . . 03×3

1/m . . . 1/m
I(ψ)−1[r1]× . . . I(ψ)−1[r4]×


f1

...
f4

+


0
0
g
0


(25)

where p ∈ R3 is the robot’s position, m is the robot’s mass,
g ∈ R3 is the gravity vector and I ∈ R3 is the robot’s inertia
tensor. Moreover, Θ = [ϕ, θ, ψ]⊤ is the robot’s orientation
where ϕ, θ, and ψ are the roll, pitch, and yaw angles,
respectively. Notice that we assumed that the roll and pitch
angles do not significantly vary during the robot’s motion.
Moreover, ri ∈ R3 is the vector connecting the center of
mass (CoM) to the point where the force f i ∈ R3 is applied
with i = 1 . . . 4.

Here, we assume a model mismatch on the CoM linear and
angular accelerations of the floating base. Hence, system (1)
becomes

q̇ =


ṗ

Θ̇∑4
i=1 f i
m + g∑4

i=1 I(ψ)ri × f i

+

 03×1

03×1

fu(q,u)

 ,

fn(q,u) =

( ∑4
i=1 f i
m + g∑4

i=1 I(ψ)ri × f i

)

where q = [p,Θ, ṗ, Θ̇]⊤,u = [f i, ri]
⊤ with i = 1 . . . 4.

To construct the training set, the CoM accelerations need
to be estimated. Therefore, system (25) is extended as
follows

d

dt



p
Θ
ṗ

Θ̇
p̈

Θ̈

 =


03×3 03×3 13×3 03×3 03×3 03×3

03×3 03×3 03×3 R(ψ) 03×3 03×3

03×3 03×3 03×3 03×3 13×3 03×3

03×3 03×3 03×3 03×3 03×3 13×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3





p
Θ
ṗ

Θ̇
p̈

Θ̈

+


03×3 . . . 03×3

03×3 . . . 03×3

03×3 . . . 03×3

03×3 . . . 03×3

1/m . . . 1/m
I(ψ)−1[r1]× . . . I(ψ)−1[r4]×


ḟ1

...
ḟ4


(26)

where x = [p,Θ, ṗ, Θ̇, p̈, Θ̈]⊤ is the system’s state, u =
ḟ i for i = 1 . . . 4 is the input and ri for i = 1 . . . 4 is an
external parameter. We named the augmented system (26) as
Single Rigid Body Dynamic (SRBD) and it will be used for
the prediction in the Problem 1 and in the EKF.

V. RESULTS

This section focuses on evaluating the improvement of our
method in the training set sample collection of a GP. For
each case study, we initially gather the training set samples
by individually optimizing each of the objective functions
introduced in Section III-A, and then training a GP for each
of them, obtaining estimates of the unknown dynamics fu

in eq. (1). In order to test the quality of the reconstructed
dynamics, we generated different testing trajectories, also
computing the nominal control inputs for tracking them.
For each trajectory (qtrue, q̇true,u)⊤, we calculated eq. (1)
using the reconstructed unknown dynamics fu by the GP,
obtaining q̇. Finally, we computed the Root Mean Square
(RMS) of the mismatch errors between q̇true and q̇. Finally,
Problem 1 is solved with the CasADi tool [24] using the
direct single shooting method in an MPC architecture.

A. Unicycle

This section shows the results obtained by testing the
proposed approach on the unicycle vehicle case study.

The robot starts form an initial robot configuration
q0 = 06 with zero estimation error and initial uncer-
tainty P 0 = 0.4 I6×6. The system is equipped with
sensors that provide noisy distances w.r.t. four markers
located at (0,−5)m, (0, 5)m, (10, 6)m, (−10,−10)m. We
assume the measurement noise covariance matrix R =
0.25I4×4 and a process noise with covariance matrix
Σ = diag(0.32, 0.32, 0.152, 0.112, 0.102). The control input
bounds are: −3m/s ≤ v ≤ 3m/s and −3rad/s ≤ ω ≤ 3rad/s.
We choose a sampling time ∆T = 0.1, a prediction horizon
L = 10, and we simulate the unknown true disturbance
fu(q,u) as

fu(q,u) =
(
−0.3 sin θ, 0.3 cos θ, 0.3 cos θ sin θ

)⊤
.

The goal of the GP is to learn f̄u(q,u). We train the GP
on a dataset of 200 samples collected every 0.5s. Each
sample of the training set consists of the input xj =

[p̂jx, p̂
j
y, θ̂

j , vj , ωj ]⊤ and the output yj = [ˆ̇pjx, ˆ̇p
j
y,

ˆ̇
θj ]⊤ − f̂

j

n

where f̂
j

n = fn(q̂
j ,uj) is the nominal unicycle dynamics

evaluated on the estimated state q̂ provided by the EKF, and
j = 1, . . . , 200. Chosen a testing trajectory (qtrue, q̇true,u)⊤,
we compute the mismatch error along it as follows:

e = q̇true −
(
fn(q

true,u) + f̄u(q
true,u)

)
(27)

with qtrue = [ptrue
x , ptrue

y , θtrue]⊤, q̇true its derivative, u =
[v, ω], and f̄u(q

true) is the output of the GP. Since q̇true =
fn(q

true) + fu(q
true), the previous equation reduces to e =

fu(q
true)− f̄u(q

true), i.e., the mismatch error. It is important
to underline that we compute the error from eq. (27), which
does not depend on the knowledge of the unknown dynamics
but only on the output of the GP. To assess the quality of
the learned models, we compared the RMS of the mismatch
errors whose values are shown in TABLE I. Generally, the
active sensing component contributes to an enhancement in
the quality of the training dataset. Consequently, the RMSE



Fig. 3. Control system block diagram for the case study involving the quadrupedal robots.

values for J2 and J3 are smaller than those for J1 (second
and third rows vs. the first row in TABLE I). Moreover, the
inclusion of the Exploration Gramian (J3) in place of the
covariance matrix Q (J2) of the GP shows a reduction of the
mismatch errors, due to the fact that it optimizes the amount
of information related to the exploration over a trajectory
rather than on the solely current time (as Q does).

RMS(e) % decrease
J1 [0.152 0.111 0.080] –
J2 [0.141 0.022 0.001] [-6%, -80%, -99%]
J3 [0.009 0.011 0.001] [-94 -90%, -98%]

TABLE I
THE COMPARISON OF THE THREE DIFFERENT OBJECTIVE FUNCTIONS

FOR THE UNICYCLE CASE. THE ERROR IN THE TABLE IS DEFINED AS

e = (evx , evy , eω)
T , WHERE evx (RESP. evy ) IS THE VELOCITY ERROR

ALONG XW (RESP. Y W) IN THE WORLD FRAME FW . SIMILARLY, eω IS

THE ANGULAR VELOCITY ERROR IN THE WORLD FRAME. THE RMS
ERROR IS REPORTED IN THE LEFT COLUMN, WHILE THE IMPROVEMENT

W.R.T. J1 (CHOSEN AS BASELINE) IS REPORTED IN THE RIGHT COLUMN

IN PERCENTAGE.

B. Quadrupedal Robot

Here, we show the results obtained by testing the proposed
methodology on a simulated quadrupedal robot as shown
in Fig. 3. At each time instant, an SRBD-MPC solves Prob-
lem 1, producing a reference for the robot CoM. Horizon [25]
converts the output of SRBD-MPC to references for the
robot’s motors, which are actuated through PD low-level
controllers.

The robot is simulated in PyBullet1, providing a near-real-
world scenario by considering the robot’s physics.

For the simulation, we consider q0 = 018 with zero
estimation error and initial uncertainty P 0 = 0.32I18×18.
The system is equipped with an IMU that provides the linear
acceleration and the angular velocity of the robot CoM.
Additionally, a laser scan that provides noisy distances of
the floating base CoM w.r.t. three fixed landmarks located at
(5, 5)m, (−5,−2)m, (−1,−1)m. We assume the measure-
ment noise covariance matrix R = 0.12I9×9 and a process
noise with covariance matrix Σ = 0.52I18×18. Moreover,
we chose the sampling time ∆T = 0.04 s and the prediction
horizon L = 20.

We trained each GP on a dataset of 200 samples collected
every 0.04 s. Each sample of the training set consists of the

1https://pybullet.org/wordpress/

input xj = [p̂j , Θ̂
j
, ˆ̇pj , ˆ̇Θj ,f j

i , r
j
i ]
⊤ and the output yj =

[ˆ̈pj , ˆ̈Θj ]⊤−f̂n(q̂
j ,uj) with q̂ provided by the EKF, and j =

1, . . . , 200. As for the unicycle, we computed the mismatch
error on a testing trajectory as follows:

e = q̇true −
(
fn(q

true,u) + f̄u(q
true,u)

)
with qtrue = [ṗtrue, Θ̇

true
]⊤, q̇true its derivative, u = [f i, ri]

with i = 1, . . . , 4, and f̄u(q
true) is the output of the GP. The

true trajectories (qtrue, q̇true,u)⊤ are provided by PyBullet.
Since we noticed small variations in the height, roll, and
pitch angles of the robot during walking motions, we have
excluded these variables from the discussion of the results.

TABLE II shows the comparison between the RMS of
mismatch errors. We can observe an overall improvement
thanks to the introduction of the active sensing (second and
third rows vs the first row in TABLE II). Moreover, the
Exploration Gramian confirms, as in the unicycle case, to
outperform the other metrics.

RMS(e) %
J1 [0.867, 0.552, 0.946] –
J2 [0.576, 0.419, 0.969 ] [-33%, -24%, 2%]
J3 [0.341, 0.279, 0.706] [-61%, -49%, -25%]

TABLE II
THE COMPARISON OF THE THREE DIFFERENT OBJECTIVE FUNCTIONS

FOR THE QUADRUPED CASE. THE ERROR IN THE TABLE IS DEFINED AS

e = (eax , eaz , eaψ )
T , WHERE eax , eay ARE THE ACCELERATION

ERRORS ALONG XW , Y W , RESPECTIVELY. SIMILARLY, eaψ IS THE YAW

ANGULAR ACCELERATION ERROR. THE RMS ERROR IS REPORTED IN

THE LEFT COLUMN, WHILE THE IMPROVEMENT W.R.T. J1 (CHOSEN AS

BASELINE) IS REPORTED IN THE RIGHT COLUMN IN PERCENTAGE.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a novel approach that combines an active
sensing strategy with an exploration algorithm to improve
the quality of a dataset exploited for learning unknown
dynamics has been proposed. We tested the validity of our
approach through simulations involving two case studies: a
unicycle and a quadrupedal robot. We compared the results
with a metric that does not consider active sensing in
its formulation, showing a data quality improvement using
our approach. Future works will aim at implementing our
approach in real-time experiments. We are also planning
to apply it to different robotic systems (e.g., drones) and
integrate it within a control task context.

https://pybullet.org/wordpress/
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