Supporting Information

Unveiling the Influence of Absorber Thickness on Efficient Sb₂(S, Se)₃ Solar Cells Through Controlled Chemical Bath Deposition

Jun Zhao^{1#}, Xuerui Li^{1#}, Junhui Lin^{1,2*}, Xiaofang Zhao^{2*}, Muhammad Ishaq¹, Shuo Chen¹, Zhuanghao Zheng¹, Zhenghua Su¹, Xianghua Zhang³, Guang-Xing Liang¹

^{1.} Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.

^{2.} International School of Microelectronics, Dongguan University of Technology, Dongguan 523000, Guangdong, P. R. China

^{3.} Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35000, France

[#] Jun Zhao and Xuerui Li contributed equally.

* Corresponding author. E-mail: <u>13669872773@163.com</u> (Prof. Lin)

zhaoxf@dgut.edu.cn (Prof. Zhao)

Table S1. Prepared materials for each layers of solar cells.

Each layers of solar cells	Prepared materials
CdS	Thiourea, NH ₃ OH aqueous solution, and
	Cadmium Sulfate
$Sb_2(S,Se)_3$	$C_4H_4KO_7Sb\cdot 0.5H_2O$, $Na_2S_2O_3\cdot 5H_2O$, and
	Selenourea (CH ₄ N ₂ Se)
Spiro-OMeTAD	Spiro-OMeTAD, Chlorobenzene, and 4-
	tert-butylpyridine lithium bis
Sb ₂ (S,Se) ₃ Spiro-OMeTAD	C ₄ H ₄ KO ₇ Sb·0.5H ₂ O, Na ₂ S ₂ O ₃ ·5H ₂ O, and Selenourea (CH ₄ N ₂ Se) Spiro-OMeTAD, Chlorobenzene, and 4- tert-butylpyridine lithium bis

Supplementary note 1. Background of DLTS measurements

The deep-level transient spectroscopy (DLTS) was used to analyze the deep defects in the $Sb_2(S,Se)_3$ absorber layer of 2H and 4H solar cells. Fig. 6(b) shows the arrhenius plots obtained from defect peaks in DLTS signal. The active energy (E_A , E_C-E_T or E_T-E_V) and capture cross section (σ) of electron and hole defects are calculated from the Arrhenius plots according to the following equations.

$$\ln(\tau_{e} \upsilon_{ih,n} N_{c}) = \frac{E_{c} - E_{T}}{k_{B} T} - \ln(X_{n} \sigma_{n})$$
(1)

$$\ln(\tau_e \upsilon_{h,p} N_v) = \frac{E_T - E_v}{k_B T} - \ln(X_p \sigma_p)$$
⁽²⁾

There, τ_{e} , N_{C} , N_{V} , E_{C} , E_{V} and E_{T} are the emission time constant, conduction band state density, valence band state density, conduction band, valence band, and trap energy level, respectively. X_{n} and X_{p} are the entropy factor of hole and electron, σ_{n} and σ_{p} are the electron and hole defects capture cross-section, respectively. T and k_{B} are the temperature and Boltzmann constant,

respectively. $v_{th,n}$ and $v_{th,p}$ are the thermal velocities associated with electron and hole defects. The $v_{th,n}$ and N_C can be obtained by following equations.

$$v th, n = \sqrt{\frac{3kT}{m_n^*}}$$
 (3) $N_c = 2(\frac{2\pi m_n^* kT}{h^2})^{\frac{3}{2}}$

(4)

Where m_n^* is the effective mass for electrons, with similar equations for $v_{th,p}$ and N_V . The activation energy of electron (E_C - E_T) and hole (E_T - E_C) traps were obtained from the slopes of equations (2) and (3) through linear regression. σ_n and σ_p values can be extracted from the intersection with y-axis. Defect concentration (N_T) can be obtained from following equations.

$$N_{T} = 2N_{s} \frac{\Delta C}{C_{R}}$$

$$N_{s} = \frac{2C^{2}}{q \varepsilon A^{2}} (V + V_{d})$$
(5)
(6)

Where $N_{\rm T}$ and $N_{\rm S}$ are the trap density and the shallow dopant concentration, respectively. $C_{\rm R}$ is the capacitance under reverse bias, and ΔC is the amplitude of capacitance transient. V and $V_{\rm d}$ are the applied voltage and diffusion voltage, respectively."