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ASYMPTOTICS IN FINITE MONOIDAL CATEGORIES

ABEL LACABANNE, DANIEL TUBBENHAUER AND PEDRO VAZ

Abstract. We give explicit formulas for the asymptotic growth rate of the number of summands in tensor
powers in certain monoidal categories with finitely many indecomposable objects, and related structures.
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1. Introduction

Let R = (R,C) be a finite based R≥0-algebra with basis C = {1 = c0, ..., cr−1} (recalled in Section 3 together
with some other notions used in this introduction). Recall that we thus have

cicj =
∑
k

mk
i,j · ck with mk

i,j ∈ R≥0.(1A.1)

Iterating this gives us coefficients mk
i,j,...,l ∈ R≥0, and summing gives us coefficients for all c ∈ R.

Fix c ∈ R. We write m∗
n(c) for these coefficients as they appear in cn where ∗ ∈ {0, ..., r − 1}. Define

bR,c
n := #total sum of coefficients m∗

n(c).

Moreover, we define the function

bR,c(n) : Z≥0 → Z≥0, n 7→ bR,c
n .

We are interested in the asymptotic behavior of the function bR,c(n). We main question we address is:

Question 1A.2. Find an explicit formula a(n) such that

bR,c(n) ∼ a(n),

where we write ∼ for asymptotically equal. 3

We answer Question 1A.2 as follows.
For ai ∈ R≥0, the (transposed) action matrix of c = a0 ·c0+ ...+ar−1 ·cr−1 ∈ R is the matrix (

∑
i aim

k
i,j)k,j .

Abusing language, we will call the submatrix of it corresponding to the connected component of 1 also the
action matrix and use this below.

Assume that the Perron–Frobenius theorem holds, that is the action matrix of c ∈ R has a leading eigenvalue
λ0 = PFdim c of multiplicity one that we call the Perron–Frobenius dimension of c. Moreover, the action
matrix has some period h ∈ Z≥0 such that there are precisely h− 1 other eigenvalues λi = ζiPFdim c, and all
of these are of multiplicity one, where ζ = exp(2πi/h). We will drop this assumption in Section 3 below.

Let us denote the right (the one with for Mv = λi · vi) and left (the one with wT
i M = λi ·wT

i ) eigenvectors
by vi and wi, normalized such that wT

i vi = 1.
Let viw

T
i [1] denote taking the sum of the first column of the matrix viw

T
i . Define

a(n) =
(
v0w

T
0 [1] · 1 + v1w

T
1 [1] · ζn + v2w

T
2 [1] · (ζ2)n + ... + vh−1w

T
h−1[1] · (ζh−1)n

)
· (PFdim c)n ∈ Z.(1A.3)

Let λsec be the second largest eigenvalue of the action matrix of c. We will prove (see Section 3 below):

Theorem 1A.4. We have

bR,c(n) ∼ a(n),

and the convergence is geometric with ratio |λsec/PFdim c|. In particular,

βR,c := lim
n→∞

n

√
bR,c
n = PFdim c.
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2 A. LACABANNE, D. TUBBENHAUER AND P. VAZ

The reason why Theorem 1A.4 is interesting from the categorical point of view is the following. For us a
finite monoidal category is a category such that:

(i) It is monoidal.

(ii) It is additive Krull–Schmidt.

(iii) It has finitely many (isomorphism classes of) indecomposable objects.

Example 1A.5. Here are a few examples:
(a) Let G be a finite group and consider Rep(G) = Rep(G,C) the category of finite dimensional complex

representations of G. This is a prototypical example of a finite monoidal category.

(b) More generally, all fusion categories are finite monoidal.

(c) For a finite group G, and arbitrary field, we can consider projective Proj(G) or injective Inj(G) rep-
resentations. These are finite monoidal categories. More generally, one can take any finite dimensional
Hopf algebra instead of a finite group.

(d) If we assume that a Hopf algebra H is of finite type, then we can even consider Rep(H). An explicit
example is the Taft algebra by [CVOZ14, Theorem 2.5].

(e) In any additive Krull–Schmidt monoidal category one can take {X⊗d|d ∈ Z≥0}⊕,⊂⊕ , the additive
idempotent completion of the full subcategory generated by an object X, as long as this has finitely
many indecomposable objects. Explicitly, for a finite group G one can take any two dimensional
G-representation for X, which follows from [Alp79]. There are many more examples, see e.g. [Cra13].

(f) Consider Soergel bimodules SBim(W ) as in [Soe92]. These are finite monoidal categories if W =
(W,S) is of finite Coxeter type.

There are of course many more examples. 3

The following is very easy and omitted:

Lemma 1A.6. The additive Grothendieck ring of a finite monoidal category is a finite based R≥0-algebra with
basis given by the classes of indecomposable objects. □

Fix a finite monoidal category C and an object X ∈ C. Following [COT23], we define

bC,X
n := #indecomposable summands in X⊗n counted with multiplicities.

Note that a(n) has an analog in this context, denoted by the same symbol, obtained for the (transposed)
action matrix for left tensoring. Similarly as before we also have λsec. We then get:

Theorem 1A.7. Under the same assumption as in Theorem 1A.4, we have

bC,X(n) ∼ a(n),

and the convergence is geometric with ratio |λsec/PFdim X|. In particular,

βC,X := lim
n→∞

n

√
bC,X
n = PFdim X.

Proof. From Theorem 1A.4 and Lemma 1A.6. □

In the next section we will discuss examples of Theorem 1A.7, and then we will prove Theorem 1A.4. We
also generalize these two theorems in Section 3 by getting rid of the assumption on the action matrix. Before
that, let us finish the introduction with some (historical) remarks.

Remark 1A.8.
(a) To study asymptotic properties of tensor powers is a rather new subject and most things are still

quite mysterious. Let us mention a few facts that are known. An early reference we know is [Bia93],
which studies questions similar to the one in this note but for Lie algebras, and this was carried on
in several works such as [PR20]. As another example, the paper [BS20] studies the growth rate
of the dimensions of the non-projective part of tensor powers of a representation of a finite group.
More generally, the paper [CEO23b] studies, working in certain tensor categories, the growth rates
of summands of categorical dimension prime to the underlying characteristic. The paper [COT23]
studies the growth rate of all summands, while [KST22] studies the Schur–Weyl dual question.

(b) Theorem 1A.4 and Theorem 1A.7 generalize [CEO23a, Proposition 2.1]. And for us one of the main
features of that proposition is it simplicity, having a simple statement and proof. As we will see, the
same is true for Theorem 1A.4 and Theorem 1A.7 as well: Clearly, the statements themselves are
(surprisingly) simple yet general. Moreover, the proof of Theorem 1A.4, and therefore the proof of
Theorem 1A.7 as well, is rather straightforward as soon as the key ideas are in place.
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(c) The second statements in Theorem 1A.4 and Theorem 1A.7 were already observed in [COT23], but
the (finer) asymptotic behavior appears to be new.

Finally, let us mention that similar questions have been studied much earlier, see for example [AE81] for a
related notion involving length of projective resolutions, or [LS77] for counting and Young diagrams. 3

Acknowledgments. We like to thank Kevin Coulembier, Pavel Etingof and Victor Ostrik for very helpful
email exchanges. DT thanks randomness for giving them/us the key idea underlying this note.

This project was in part sponsored by Université Clermont Auvergne and Université Catholique de Louvain,
which is gratefully acknowledged. DT was supported by the Australian research council, and PV was supported
by the Fonds de la Recherche Scientifique-FNRS under Grant no. J.0189.23.

2. Examples

Let us call Theorem 1A.4 and Theorem 1A.7 our main theorems or MT for short. To underpin the explicit
nature of these theorems, we now list examples of MT and also add that all the below can be double checked
using the code on [LTV23]. That page also contains a (potentially empty) Erratum.

2A. Finite groups. Let G be a finite group. Given a finite dimensional complex G-representation V , we
denote its character by χV . Denote by ZV (G) ⊂ G the subgroup consisting of elements of g that acts as a
scalar on V and by ωV (g) ∈ C the corresponding scalar. If V is simple, then ωV is known as the central
character of V .

Suppose that V is a faithful G-representation. Since V is faithful we get that ZV (G) is a subgroup of Z(G)
and also that the action graph of tensoring with V is connected (in the oriented sense). Then MT implies:

a(n) =

 1

#G

∑
g∈ZV (G)

( ∑
L∈S(G)

ωL(g) dimC L
)
· ωV (g)

n

 · (dimC V )n,(2A.1)

where S(G) = {simple G-representations}/ ∼=. This follows directly from MT after recalling the connection
from Perron–Frobenius theory to character theory as explained in e.g. [EGNO15, Chapter 3].

Remark 2A.2. If V is not faithful, then the action graph of tensoring with V needs not to be connected, but
that is not an issue in our main theorems. Thus, the assumption that V is faithful can be easily relaxed. 3

Remark 2A.3. Alternatively one can prove (2A.1) using character theory, similarly to [CEO23a, Proposition
2.1]. (2A.1) still generalizes [CEO23a, Proposition 2.1]. 3

Let us give a few explicit examples.

Example 2A.4 (Dihedral groups). Let m ∈ Z≥3 and let G be the dihedral group of order 2m. Let m′ = m/2,
if m is even, and m′ = (m − 1)/2, if m is odd. Choose V any faithful representation of dimension 2 of G.
Then (2A.1) gives the formulas

a(n) =


m+1
2m · 2n if m is odd,
m+2
2m · 2n if m is even and m′ is odd,(
(m+2)
2m · 1 + 1

m · (−1)n
)
· 2n if m is even and m′ is even.

Two explicit examples are m ∈ {4, 5} and V is the G-representation corresponding to rotation by 2π/m. Then:

m = 4: b(n)

a(n)

5 10 15 20

0.5

1

2

Dihedral Group

, m = 5: b(n)

a(n)

5 10 15 20

0.9

1.0

1.1

1.2

1.3

Dihedral Group

.

Here and throughout, we display the graphs of b(n)/a(n) in the usual way but log plotted. Moreover, for
m = 4 we have b(n) = a(n) and we will omit plots in case that happens. 3

The next example can be seen as a m = 4 and p > 2 version of Example 2A.4.

Example 2A.5 (Extraspecial groups). Let p be a prime and m ∈ Z≥1. Recall that a p-group of order p1+2m

is called extraspecial if its center Z(G) is of order p and the quotient G/Z(G) is a p-elementary abelian group.
For each p and m, there exists two isomorphism classes of extraspecial groups of order p1+2m, and they have
the same character table. Thus, by (2A.1) we can take any of these two without difference. In the special case
p = 2 and m = 1, we recover the dihedral group and the quaternion group of order 8.

Fix now an extraspecial group G of order p1+2m. The simple G-representations are given as follows:
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(i) There are p2m nonisomorphic one dimensional representations that arise from the representations of
G/Z(G).

(ii) There are p− 1 nonisomorphic irreducible representations of dimension pm which are characterized by
their central character.

Choose V any of the simple G-representation of dimension pn. Then ZV (G) = Z(G) and (2A.1) gives

a(n) =

{
(pm)n if p | n,
(pm)n−1 otherwise.

It turns out that this formula is not only asymptotic: we have b(n) = a(n). This is due to the fact that the
character of V vanishes outside of Z(G). 3

Example 2A.6 (Imprimitive complex reflection groups). Let d and m be integers in Z≥1 and consider
the imprimitive complex reflection group G = G(d, 1,m). This group can be seen as the group of m-by-m
monomial matrices with entries being dth roots of unity. For d = 1 we recover the symmetric group, covered
by [CEO23a, Example 2.3], and if d = 2 we recover the Weyl group of type Bm.

Choose V the standard representation given by the matrix description of G. Then (2A.1) gives a formula
akin to [CEO23a, Example 2.3] which we decided not to write down as its a bit tedious.

In any case, for the special cases d ∈ {1, 2} and m = 2, or d = 2 and m = 4 we get{
d = 1,
m = 3 : a(n) =

2

3
· 3n,

{
d = 2,
m = 3 : a(n) =

5

12
· 3n,

{
d = 2,
m = 4 : a(n) =

(
19

96
· 1 + 1

32
· (−1)n

)
· 4n.

We get the plots

{
d = 2,
m = 3 :

b(n)

a(n)

5 10 15 20

0.80

0.85

0.90

0.95

1.00

1.05

Weyl Group of type B3

,

{
d = 2,
m = 4 :

b(n)

a(n)

5 10 15 20

1.0

1.1

1.2

1.3

1.4

1.5

Weyl Group of type B4

.

Moreover, the formula a(n) = 2
3 · 3n is exact for d = 1 and m = 3. 3

2B. Fusion categories. This section discusses Fusion categories over C different from Rep(G).

Example 2B.1 (Fibonacci category). Let F be the Fibonacci category, see for example [EGNO15, Exercise
8.18.7] where F is denoted YL+ (or YL−, depending on conventions). All we need to know is that F is
⊗-generated by one object X with action matrix M(X) = ( 0 1

1 1 ).
We want to estimate bF,X(n). To this end, the eigenvalues of M(X) are the two roots of x2 = x + 1, in

particular, PFdim X = ϕ, the golden ratio. Its Perron–Frobenius eigenvectors are v = w =
( √

5−1√
10−2

√
5
,
√

1
10 (

√
5 + 5)

)T
and we therefore get

a(n) =
1

10
(
√
5 + 5) · ϕn =

1√
5
ϕn−1,

b(n)

a(n)

5 10 15 20

0.90

0.95

1.00

1.05

Fibonacci category

,

from MT . Note that the classical asymptotic for the Fibonacci numbers is 1√
5
ϕn and not 1√

5
ϕn−1, but bF,X(n)

is equal to the (n+ 1)th Fibonacci number and hence the off-by-one-error in the exponent. 3

Example 2B.2 (Verlinde category). We now consider the Verlinde category Verk(SL2) for k ∈ Z≥2, see for
example [EGNO15, Section 8.18.2] (denoted differently therein). This fusion category has k simple objects,
and we take the generating object X of categorical dimension 2 cos(π/(k + 1)). The case k = 2 compares to
super vector spaces.

The action matrix for X has the type A Dynkin diagram as its associated graph, and the eigenvalues and
eigenvectors of this graph are well-known, see for example [Smi70]. In particular, PFdim X = 2 cos

(
π/(k+1)

)
.

Let q = exp
(
πi/(k + 1)

)
. Then MT gives us

a(n) =


[1]q+...+[k]q
[1]2q+...+[k]2q

·
(
2 cos(π/(k + 1))

)n if k is even,(
[1]q+...+[k]q
[1]2q+...+[k]2q

· 1 + [1]q−[2]q+...−[k−1]q+[k]q
[1]2q+...+[k]2q

· (−1)n
)
·
(
2 cos(π/(k + 1))

)n if k is odd.
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Here [a]q denotes the ath quantum number evaluated at q. We get, for example:

k = 4:

b(n)

a(n)

5 10 15 20

0.90

0.95

1.00

1.05

Verlinde category for k=4

, k = 6:
b(n)

a(n)

5 10 15 20

0.95

1.00

1.05

1.10

1.15

Verlinde category for k=6

,

k = 7:

b(n)

a(n)

5 10 15 20

1.00

1.05

1.10

1.15

Verlinde category for k=7

, k = 9:
b(n)

a(n)

5 10 15 20

1.0

1.1

1.2

1.3

1.4

Verlinde category for k=9

.

Moreover, for k ∈ {3, 5} the formula a(n) is spot on. 3

Example 2B.3 (Higher rank Verlinde categories). Verlinde categories can be defined for all simple Lie algebras
as quotients of representations of quantum groups at a root of unity as explained in [AP95]. Let us focus
in this example on Verk(SL3), the one for the special linear group of rank three (with k determined as e
in [MMMT20, Section 2]).

For Verk(SL3) we take the generating object X corresponding to the vector representation of SL3(C). Its
action matrix is the oriented version of the graph displayed in [MMMT20, Fig. A1] with the orientation as
in [MMMT20, (3-1)]. Using this, and omitting k = 1 since this is trivial, MT gives

k = 2: a(n) = 1
10 (

√
5 + 5) · ϕk, k = 3: a(n) = 1/2 · 2n, k = 4: a(n) = 1

7

(
2 + 2 cos

(
3π
7

))
·
(
1 + 2 cos

(
2π
7

))n
,

k = 2:

b(n)

a(n)

5 10 15 20

0.90

0.95

1.00

1.05

SL3 Verlinde category for k=2

, k = 4:

b(n)

a(n)

5 10 15 20

1.0

1.1

1.2

1.3

SL3 Verlinde category for k=4

.

For k = 3 the displayed formulas are exact. Moreover, one can find a(n) explicitly in general using the formulas
in [Zub98] or [MMMT20, Section 2]. 3

2C. Nonsemisimple examples. We now discuss to two nonsemisimple examples.

Example 2C.1 (SL2(Fp) in defining characteristic). Let our ground field be Fp for some prime p > 2. We
consider the finite group SL2(Fp) and its representations over Fp. Take V = F2

p to be the vector representation
of SL2(Fp). In this case the action matrices are exemplified by

p = 3:

(
0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 3 0 1
0 0 0 1 0

)
, p = 5:


0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 2 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0

, p = 7:



0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 2 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0

.

These can be described as follows. The matrix is the one obtained as a (2p − 1)-by-(2p − 1) cut-off of the
matrix for the infinite group over Fp that can be obtained from [STWZ23, Proposition 4.4], together with an
extra entry 1 in position (2p− 2, p).

Then MT gives

a(n) =

(
1

2p− 2
· 1 + 1

2p2 − 2p
· (−1)n

)
· 2n.
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Explicitly, for p ∈ {3, 5} we get

p = 3:

b(n)

a(n)

5 10 15 20

1.0

1.5

2.0

2.5

3.0

SL2 over F3

, p = 5:

b(n)

a(n)

5 10 15 20

1

2

3

4

5

SL2 over F5

.

The convergence is rather slow (but still geometric). 3

Example 2C.2 (Dihedral Soergel bimodules). We now look at the category of dihedral Soergel bimodules
as studied in details in, for example, [Eli16], [MT19] or [Tub22]. In particular, [Tub22, Section 3C] lists
all the formulas relevant for MT . To get a finite based R≥0-algebra we collapse the grading, meaning we
specialize [Tub22, Section 3C] at q = 1.

Fix ⟨s, t|s2 = t2 = (st)m⟩ as the presentation for the dihedral group of order 2m where m ∈ Z≥3. Let us
take X to be the Bott–Samelson generator for st. By the explicit formulas in [Tub22, Section 3C], the action
graph of X is almost the same as the action graph of tensoring with C3 as a SO3(C)-representation. The first
ones are (read from left to right):

m ∈ {3, 5, 7} : , , ,

m ∈ {4, 6, 8} : , , .

The pattern generalizes. It is then easy to show that the leading eigenvalues is always 4 and the absolute
values of all other eigenvalues are strictly smaller. Moreover, MT gives:

a(n) =
1

2m
· 4n,

m = 3:

b(n)

a(n)

5 10 15 20

1.0

1.1

1.2

1.3

1.4

1.5

Dihedral SBim for m=3

, m = 7:

b(n)

a(n)

5 10 15 20

1.0

1.5

2.0

2.5

3.0

3.5

Dihedral SBim for m=7

.

The rate of convergence is rather slow for m ≫ 0. 3

3. Generalizations and proofs

We will prove several versions of Theorem 1A.4.

3A. Perron–Frobenius theory. We start with the main player, the Perron–Frobenius theorem. To this
end, recall that one can associate an oriented and weighted graph, its adjacency graph, to an m-by-m matrix
M = (mij)1≤i,j≤m ∈ Matm(R≥0) as follows:

(i) The vertices are {1, ...,m}.
(ii) There is an edge with weight mij from i to j.

We call a nonzero matrix M ∈ Matm(R≥0) irreducible if its associated graph is connected in the oriented sense
(this is called strongly connected). Recall that in this note a right eigenvector satisfies Mv = λ · v, and a left
eigenvector satisfies wM = λ · w.

Theorem 3A.1 (Perron–Frobenius theorem part I). Let M ∈ Matm(R≥0) be irreducible.
(a) M has a Perron–Frobenius eigenvalue, that is, λ ∈ R>0 such that λ ≥ |µ| for all other eigenvalues µ.

This eigenvalue appears with multiplicity one, and all other eigenvalues with λ = |µ| also appear with
multiplicity one.

(b) There exists h ∈ Z≥1, the period, such that all eigenvalues µ with λ = |µ| are exp(k2πi/h)λ for
k ∈ {0, ..., h− 1}. We call these pseudo-dominant eigenvalues.

(c) The eigenvectors, left and right, for the Perron–Frobenius eigenvalues can be normalized to have values
in R≥0.
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Proof. Well-known. See for example, Frobenius’ paper 92 in Band 3 of [Fro68]. (This is the paper “Über
Matrizen aus nicht negativen Elementen”.) □

Fix a function f : Z≥0 → Z≥0. We say that f(n) converges geometrically to a ∈ R with ratio β ∈ [0, 1) if
for all γ ∈ (β, 1) we have that {(f(n)− a)/γn}n∈Z≥0

is bounded. The following accompanies Theorem 3A.1:

Theorem 3A.2 (Perron–Frobenius theorem part II). Let M ∈ Matm(R≥0) be irreducible, λ be its Perron–
Frobenius eigenvalue and h be its period. Let ζ = exp(2πi/h). For each k ∈ {0, ..., h − 1}, choose a left
eigenvector vi and a right eigenvector wi with eigenvalue ζkλ, normalized such that wT

i vi = 1.
Then we have:

Mn ∼ v0w
T
0 · λn + v1w

T
1 · (ζλ)n + v2w

T
2 · (ζ2λ)n + ... + vh−1w

T
h−1 · (ζh−1λ)n.

Moreover, the convergence is geometric with ratio |λsec/λ|, where λsec is any second largest (in the sense of
absolute value) eigenvalue.

Proof. This is known, but proofs are a bit tricky to find in the literature, so we give one. The proof also shows
where the vectors vi and wj come from.

For any µ ∈ C, let Vµ be the generalized eigenspace associated to the eigenvalue µ. Then we have

Cm ∼=
h⊕

k=0

Vζkλ ⊕
⊕

µ,|µ|<λ

Vµ.

By Theorem 3A.1, the space Vζkλ is the eigenspace associated to the eigenvalue ζkλ and vkw
T
k is the projection

onto that subspace.
This implies that we have

Mn = v0w
T
0 · λn + v1w

T
1 · (ζλ)n + v2w

T
2 · (ζ2λ)n + ... + vh−1w

T
h−1 · (ζh−1λ)n +R(n),

where R(n) is the multiplication action of Mn onto the rest. Since the eigenvalues µ of M on the rest satisfies
|µ| < λ, we have R(n)/λn →n→∞ 0 geometrically with ratio |λsec/λ|. □

For a general matrix M ∈ Matm(R≥0) things change, but not too much:

Theorem 3A.3 (Perron–Frobenius theorem part III). Let M ∈ Matm(R≥0).
(a) M has a Perron–Frobenius eigenvalue, that is, λ ∈ R≥0 such that λ ≥ |µ| for all other eigenvalues µ.

(b) Let s be the multiplicity of the Perron–Frobenius eigenvalue. There exists (h1, ..., hs) ∈ Zs
≥1, the

periods, such that all eigenvalues µ with λ = |µ| are exp(k2πi/hi)λ for k ∈ {0, ..., hi − 1}, for some
period. We call these pseudo-dominant eigenvalues.

(c) The eigenvectors, left and right, for the Perron–Frobenius eigenvalues can be normalized to have values
in R≥0.

(d) Let h = lcm(h1, ..., hs), and let ν the maximal dimension of the Jordan blocks of M containing λ.
There exist matrices Si(n) with polynomial entries of degree ≤ (ν − 1) for i ∈ {0, ..., h− 1} such that

lim
n→∞

| (M/λ)
hn+i − Si(n)| → 0 ∀i ∈ {0, ..., h− 1},

and the convergence is geometric with ratio |λsec/λ|h. There are also explicit formulas for the matrices
Si(n), see [Rot81, Section 5].

Proof. This can be found in [Rot81]. See also [Hog07, Section I.10] (in the second version) for a useful list
of properties of nonnegative matrices. □

3B. Three versions of the MT . We recall based algebras. These algebras originate in work of Lusztig on
so-called special representations of Weyl groups [Lus79]. We follow [KM16, Section 2] with our definition.

Let K ⊂ C be a unital subring. A K-algebra R with a finite K-basis C = {1 = c0, ..., cr−1} is called a finite
based R≥0-algebra if all structure constants are in R≥0 with respect to the basis C. That is, (1A.1) holds.

Example 3B.1. Examples include:
(a) The Grothendieck rings of all the examples in Example 1A.5.

(b) Group or more general semigroup algebras for finite groups or semigroups.

(c) There are many interesting infinite examples coming from skein theory, see e.g. [Thu14].
Decategorifications are our main examples where R≥0 can be replaced by Z≥0. 3
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A finite based R≥0-algebra is actually a pair (R,C), but we will write R for short. Next, fix such an R
and c ∈ R≥0C. In this setting we can define the (pre) action matrix M ′(c)k,j =

∑
i aim

k
i,j ∈ R≥0. The

action matrix M(c) is then the adjacency matrix for the connected component, in the nonoriented sense,
of the identity 1 ∈ C in the adjacency graph of M ′(c). Note that M(c) ∈ Matm(R≥0) is a submatrix of
M ′(c) ∈ Matr(R≥0) for some 1 ≤ m ≤ r.

We give three versions of MT , stated in terms of finite based R≥0-algebras. The categorical version then
follows immediately from Lemma 1A.6.

Theorem 3B.2 (Version 1). Fix a finite based R≥0-algebra R, and c a R≥0-linear combination of elements
from C. Assume that the action matrix M(c) is irreducible. Then Theorem 1A.4 holds with a(n) as in
(1A.3).

Proof. Consider the following matrix equation:

M(c)c(n− 1) = c(n),

where c(k) =
(
c0(k), ..., cr−1(k)

)
∈ Rr

≥0 are vectors such that their ith entry is the multiplicity of ci in ck,
and a(0) = (1, 0..., 0)T with the one is the slot of c0 = 1. This equation holds by the definition of the action
matrix. Iterating this process, we get

M(c)nc(0) = c(n).

Note that M(c)nc(0) is the same as taking the first column of M(c)n. Hence,

bR,c(n) = M(c)n[1]

in the notation of the introduction. Thus, Theorem 3A.2 implies the result. □

Remark 3B.3. Theorem 3B.2 is sufficient for many example. Explicitly, Theorem 3B.2 works for all transitive
finite based R≥0-algebras. Examples include all finite monoidal categories that are rigid by [EGNO15,
Proposition 4.5.4]. 3

We say that M ∈ Matm(R≥0) has the Perron–Frobenius property if its Perron–Frobenius eigenvalue has
multiplicity one.

Theorem 3B.4 (Version 2). Fix a finite based R≥0-algebra R, and c an R≥0-linear combination of elements
from C. Assume that the action matrix M(c) has the Perron–Frobenius property. Then Theorem 1A.4
holds with a(n) as in (1A.3).

Proof. The iteration works as in the proof of Theorem 3B.2, so let us focus on the growth rate. We will use
Theorem 3A.3 for s = 1. This implies that ν = 1, by its definition. In particular, we only have Si(n) with
entries of degree zero, so these are matrices that do not depend on n, so we can simply write Si. We will argue
that they are essentially the matrices viw

T
i .

Precisely, as follows from [Rot81, Section 5], we have

Si = v0w
T
0 + v1w

T
1 · ζi + v2w

T
2 · ζ2i + ... + vh−1w

T
h−1 · ζ(h−1)i

= v0w
T
0 + v1w

T
1 · ζnh+i + v2w

T
2 · ζ2(nh+i) + ... + vh−1w

T
h−1 · ζ(h−1)(nh+i)i.

Now we apply Theorem 3A.3.(c). □

Remark 3B.5. Theorem 3B.4 is the version we used in Section 2. 3

Recall that the polynomials Si(n) are explicitly given in [Rot81, Section 5] and define:

a(n) =
1

h

h−1∑
i=0

h−1∑
j=0

Sj
(
⌊n/h⌋

)
· ζi(n−j).(3B.6)

Theorem 3B.7 (Version 3). Fix a finite based R≥0-algebra R, and c an R≥0-linear combination of elements
from C. Then Theorem 1A.4 holds with a(n) as in (3B.6).

Proof. Observing that 1 + ζi + ... + ζ(h−1)i = 0 if i ̸≡ 0 mod h, this follows as for the previous theorems. □
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