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Arguably the most classical form of Howe duality relates commuting actions of GL m (C) and GL n (C) on the symmetric algebra of C m ⊗ C n , see [START_REF] Howe | Remarks on classical invariant theory[END_REF] or [START_REF] Howe | Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond[END_REF].

Howe's approach turned out to be a game changer, even in fields beyond representation theory. For example, quantum versions of these dualities provide powerful and categorification-friendly descriptions of quantum invariants such as the colored Jones polynomial.

In this paper we prove a version of the Howe duality above where symmetric powers are replaced by Verma modules. We call this duality Verma Howe duality. To the best of our knowledge, Verma Howe duality is the first example of a Howe duality that involves modules that are not lowest or highest weight modules. Consequently, our proofs are very different from Howe's proofs. For example, Verma Howe duality is not a "limit" of symmetric Howe duality but genuinely new.

Moreover, we give an application of Verma Howe duality: after extending Verma Howe duality to quantum groups, which is fairly straightforward, we show that the LKB (Lawrence-Krammer-Bigelow) representations and their colored and higher counterparts arise from quantum Verma Howe duality, which in turn enables us to show that the LKB representations are simple modules of various subgroups of Artin's braid group, including pure and handlebody braid groups. One direct advantage of our approach is that we can work over an arbitrary field and with a large variety of the involved parameters.

1A. Schur-Weyl(-Brauer) and Howe dualities. Three main themes in Weyl's seminal book "The classical groups" [START_REF] Weyl | The classical groups[END_REF] are the study of polynomial invariants for actions of the eponymous classical groups, and, more or less equivalent, decomposition of the tensor algebra for such an action, and, again more or less equivalent, the description of the invariants in the tensor algebra.

The two most prominent examples that fit into Weyl's setting are the celebrated Schur-Weyl duality [START_REF] Schur | Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen[END_REF] for tensor invariants of GL m (C) and Brauer duality [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF] for tensor invariants of O m (C) and SP m (C) (for the symplectic group m is even). Both of these were studied by using commuting actions of GL m (C), and O m (C), SP m (C) on one side and the symmetric group S n and the Brauer algebra, respectively, on the other side, both acting on a tensor product of the defining representation of the classical groups in question. In this commuting-action-approach, for example Schur-Weyl duality essentially reads:

(A) There are commuting actions of GL m (C) and S n on (C m ) ⊗n .

(B) The two actions generate each others centralizer.

(C) The GL m (C)-S n bimodule (C m ) ⊗n can be explicitly decomposed into a direct sum of nonisomorphic simple GL m (C) modules tensored with nonisomorphic simple S n modules. A statement of this form is what we call a double centralizer (a.k.a. double commutant) approach.

Howe [START_REF] Howe | Remarks on classical invariant theory[END_REF], [START_REF] Howe | Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond[END_REF] studied polynomial invariants, e.g. via symmetric powers, of classical groups using a double centralizer approach, and the resulting dualities are called Howe dualities in this paper. A prominent example is symmetric Howe duality where GL m (C) and GL n (C) act on k∈Z ≥0 Sym k (C m ⊗ C n ). Howe, albeit formulated differently, proves (A)-(C) as above for this and other dualities.

It is not surprising that Howe-type dualities have been of paramount importance for the representation theory of reductive groups every since, see also [START_REF] Cheng | Dualities and representations of Lie superalgebras[END_REF] for a summary of various such dualities, but are also pervasive in other fields. For example, in the early stages of quantum group theory Jimbo studied quantum Schur-Weyl duality [START_REF] Jimbo | A q-analogue of U (gl(N + 1)), Hecke algebra, and the Yang-Baxter equation[END_REF], which, in one way or the other, is central for the study of quantum invariants: that the Jones polynomial arises from the Temperley-Lieb calculus [START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF] is an instance of quantum Schur-Weyl duality, although originally not formulated as such. And this is just the tip of the iceberg.

It did not take long for quantum Howe dualities to appear, see [START_REF] Noumi | Dual pairs, spherical harmonics and a Capelli identity in quantum group theory[END_REF] for an early reference. Also due to their relation to diagrammatics, quantum Howe dualities have been studied intensively since their first appearance in the 1990s, and also turned out to be very useful for the study of quantum invariants. For a few type A examples of such quantum Howe dualities, see [START_REF] Lehrer | A quantum analogue of the first fundamental theorem of classical invariant theory[END_REF], [START_REF] Cautis | Webs and quantum skew Howe duality[END_REF] for quantum exterior and [START_REF] Rose | Symmetric webs, Jones-Wenzl recursions, and q-Howe duality[END_REF] for quantum symmetric Howe duality, and for some more "exotic type A settings", see [START_REF] Queffelec | Mixed quantum skew Howe duality and link invariants of type A[END_REF], [START_REF] Tubbenhauer | Super q-Howe duality and web categories[END_REF] or [START_REF] Chang | Howe duality for quantum queer superalgebras[END_REF], [START_REF] Brown | Quantum webs of type q[END_REF].

Remark 1A.1. Quantum Howe dualities are of course not restricted to type A, but the reader should be warned at this stage: experience tells us that quantum Howe dualities often run into quantization issues and nonstandard quantum objects tend to pop up. Examples are [START_REF] Noumi | Dual pairs, spherical harmonics and a Capelli identity in quantum group theory[END_REF], [START_REF] Ehrig | Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality[END_REF] or [START_REF] Sartori | Webs and q-Howe dualities in types BCD[END_REF] where coideal subalgebras as in [START_REF] Noumi | Quantum symmetric spaces and related q-orthogonal polynomials[END_REF] appear. There are even such phenomena that are entirely in type A see e.g. [START_REF] Lacabanne | Annular webs and Levi subalgebras[END_REF] and related quantization issues in [START_REF] Cautis | Quantum K-theoretic geometric Satake: the SL n case[END_REF], [START_REF] Queffelec | Extremal weight projectors II[END_REF].

Quantum exterior and symmetric Howe dualities as well as their Verma counterparts are notable exceptions, and the quantization in these cases is not a big deal. In fact, our proofs will mostly stay in the non-quantum setting and the quantum case then follows using a flatness argument.

1B. What this paper does. The main theorem of this paper is Theorem 2B.3 where we formulate a (quantum) Verma Howe duality. To explain the main points let us be less general than Theorem 2B.3 actually is. For example, as we wrote in Remark 1A.1, quantization is not an issue for us and we can work over with general fields and quite general parameters, see Remark 1B.1, but we stay in the classical case in this introduction for simplicity. The classical, non-quantum, version of Theorem 2B.3 is then still more general then the following.

To work with Verma modules we go from the Lie group to the Lie algebras. For generic enough λ i ∈ C, where i ∈ {1, ..., n}, let M λ i be the U (gl 2 ) Verma module of highest sl 2 weight λ i . We take the tensor product M λ 1 ⊗ ... ⊗ M λn . For the same reason as for symmetric Howe duality, we then take a certain direct sum of the M λ 1 ⊗ ... ⊗ M λn . Call this direct sum M ⊕λ where λ = (λ 1 , ..., λ n ). Now, essentially by definition, U (gl 2 ) acts on M ⊕λ and we also construct a dual action of U (gl n ) on M ⊕λ . Using the double centralizer approach, Theorem 2B.3 states and proves (A)-(C) for the U (gl 2 )-U (gl n ) bimodule M ⊕λ . Since all symmetric powers for U (gl 2 ) are quotients of Verma modules, we think of this Verma Howe duality as a generalization of symmetric Howe duality (with a caveat, see Section 1C below). Verma Howe duality is however much more difficult to prove: Firstly, the whole setting is, by its very nature, infinite dimensional and most of the classical statements need to be appropriately reformulated and adjusted to the infinite dimensional setting. Second, and more importantly, the simple U (gl n ) appearing in (C) are neither highest nor lowest weight modules; they are simple dense (weight) modules in the sense of [START_REF] Mathieu | Classification of irreducible weight modules[END_REF]. This is, to the best of our knowledge, very different from all other Howe-type dualities in the literature and makes calculations (for example actions of Casimir elements) much more involved. In particular, we need to take quite a detour to identify the dense modules explicitly and we crucially use results from [START_REF] Mazorchuk | Quantum deformation and tableaux realization of simple dense gl(n, C)modules[END_REF] and [START_REF] Millson | Casimir operators and monodromy representations of generalised braid groups[END_REF], and implicitly computer help, to identify them. (This is also our main reason to stay with U (gl 2 ) instead of U (gl m ).) Along the way we partially generalize [START_REF] Mazorchuk | Quantum deformation and tableaux realization of simple dense gl(n, C)modules[END_REF] so that we can use fairly general parameters.

Remark 1B.1. Let us also stress that our approach works in quite some generality. That is, we work over an arbitrary field K and fix a quantum parameter that is not a root of unity. Moreover, the λ i of the Verma modules are, up to a certain degree, allowed to be integers, see Definition 2A.18 for a precise condition.

As an application of Theorem 2B.3 we prove that the (colored higher) LKB representations constructed in [START_REF] Jackson | The Lawrence-Krammer-Bigelow representations of the braid groups via U q (sl 2 )[END_REF] and [START_REF] Martel | Colored version for Lawrence representations[END_REF] are simple as modules of the associated (colored) braid groups. This not just gives a new proof of [JK11, Theorem 3] but also strengthen the result of Jackson-Kerler quite a bit: we prove simplicity for much smaller groups, namely the corresponding pure braid groups. Moreover, Jackson-Kerler work over K(q) for Q ⊂ K and with a generic parameter for the LKB representations. Our setting is more general, see Remark 1B.1. In fact, we think it is remarkable that the LKB representations stay simple even after specializing some parameters or leaving characteristic zero. Finally, since we can allow different parameters, our methods also relate the LKB representations to handlebody braid groups as in e.g. [START_REF] Vershinin | On braid groups in handlebodies[END_REF], [START_REF] Häring-Oldenburg | Knot theory in handlebodies[END_REF], [START_REF] Rose | HOMFLYPT homology for links in handlebodies via type A Soergel bimodules[END_REF] or [START_REF] Tubbenhauer | Handlebody diagram algebras[END_REF].

1C. Outlook. Separate from the evident question how to replace U (gl 2 ) by U (gl m ), here are a few directions one could try to explore:

(a) While (A) and (B) as above often hold in more generality, (C) is using that the underlying representation is semisimple. The nonsemisimple versions of some of the above are known, see for example [START_REF] Du | Quantum Weyl reciprocity and tilting modules[END_REF] for an integral version of quantum Schur-Weyl duality. But these are also much more involved and often need some form of tilting theory.

A nonsemisimple version Theorem 2B.3 would be a true generalization of quantum symmetric Howe duality since the cases where only symmetric powers appear within the Verma modules are precisely ruled out by our condition in Definition 2A.18. However, we can still have symmetric powers but need at least also a "generic enough" highest weight.

(b) Several papers discuss dualities involving one Verma and tensor products of finite dimensional modules, see e.g. [START_REF] Iohara | Equivalence of a tangle category and a category of infinite dimensional U q (sl 2 )-modules[END_REF] or [START_REF] Lacabanne | Schur-Weyl duality, Verma modules, and row quotients of Ariki-Koike algebras[END_REF]. It would be interesting to compare these to this work, also with an eye on categorification of the story as in [START_REF] Lacabanne | Tensor product categorifications, Verma modules and the blob 2-category[END_REF].

(c) Another interesting direction is the identification of the LKB representations with specialized parameters as cell representations of algebras within the symmetric web category from [START_REF] Rose | Symmetric webs, Jones-Wenzl recursions, and q-Howe duality[END_REF]. We suspect that this is a consequence of Verma Howe duality for (the quantum version of) λ i ∈ Z ≥0 . Note that special cases of this are known: Jones' work [START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF] implicitly showed the respective statement for the Burau representation and the Temperley-Lieb calculus, and [START_REF] Zinno | On Krammer's representation of the braid group[END_REF] implicitly showed an analog for the LKB representation. Note that Temperley-Lieb and the Brauer-type calculus used in [START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF] and [START_REF] Zinno | On Krammer's representation of the braid group[END_REF], respectively, are special cases of the symmetric web calculus. (For the Temperley-Lieb calculus this is clear, while the Brauertype calculus makes its appearance due to the "small number coincidence" that matches SO 3 (C) representations and odd dimensional SL 2 (C) representations.) In [For96, Lemma 6] it is shown that the reduced Burau representation of the n strand braid group is simple if and only if quantum n does not vanish, and Verma Howe duality should be helpful to prove similar results for the other LKB representations.

(d) A striking question is how to categorify Verma Howe duality. We suspect this should be related to categorification of tensor products of infinite dimensional representations as in [START_REF] Dupont | Categorification of infinite-dimensional sl 2 -modules and braid group 2-actions I: tensor products[END_REF]. One could also hope, in some sense, that a categorification of LKB representations would be an upshot of such a categorical Verma Howe duality.
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A duality involving Verma modules

In this section we state a duality that we call (quantum) Verma Howe duality.

Remark 2.1. We use colors in this paper, but these are a visual aid and do not have other significance.

In particular, the paper is readable in black-and-white without restrictions.

2A. Verma and dense modules. The following specifies the underlying field:

Notation 2A.1. Fix an arbitrary field K and an element q ∈ K \ {0} that is not of finite order. We call q the quantum parameter.

We additionally allow q = ±1, but then we assume that K is of characteristic zero. This is the non-quantum or classical case. The reader is warned that the below is tailor-made for the quantum case and needs to be adjusted for the classical case. We leave the adjustments to the reader.

We consider the quantum enveloping algebra U q (gl 2 ) of gl 2 over K with respect to the quantum parameter q. We specify our conventions later on in Section 3B and for now it is enough to know that U q (gl 2 ) is, as a K algebra, generated by E, F , L ±1 1 and L ±1 2 . From now on fix n ∈ Z ≥1 . Notation 2A.2.

(a) We use a bold fond for tuples, e.g. λ = (λ 1 , ..., λ n ) ∈ K n .

(b) Whenever an index of tuple is not defined but appears in a formula, then the associated element is zero, by convention. For example, λ <1 = λ >n = 0 if we specify λ = (λ 1 , ..., λ n ).

(c) We will also use sums of the form a 1 + a 2 + ... + a k-1 + a k for k ∈ Z ≥1 very often in this paper, and we abbreviate them to Σa k = k i=1 a i . (d) Denote by i = (0, ..., 0, 1, 0, ..., 0) the tuple with the ith entry being 1, and

α i = i -i+1 .
We also use ij below meaning a matrix-style notation with only one nonzero entry.

Definition 2A.3. Given λ ∈ K we consider the field K λ q = K(q λ ). We define the quantum numbers as [x] q = q x -q -x q-q -1 ∈ K λ q , where x ∈ Z or x ∈ λ + Z. Similarly, for λ ∈ K n we use the field K λ q = K(q λ 1 , ..., q λn ) and quantum numbers will be elements of K λ q . The following will be often used silently throughout: Lemma 2A.4. All quantum numbers are nonzero and thus invertible.

Proof. Easy since Notation 2A.1 forces this to be true, in particular, we need characteristic zero for q = ±1. Details are omitted.

Remark 2A.5. The tuple λ ∈ K n consist of the underlying parameters that we use. Note that our formulation includes the case where the quantum parameter q and the λ i are formal variables by e.g. choosing K = Q(Z, Z 1 , ..., Z n ), for indeterminates Z and Z i , and q = Z, λ i = Z i . In contrast, the parameters could be in Z ⊂ K, but we partially need to avoid that, see e.g. Definition 2A.18 below. It is allowed that some (or even all) of the λ i are the same.

We consider U q (gl 2 ) also over fields such as K λ q by scalar extension. The parameters only play a role for U q (gl 2 ) modules and not for U q (gl 2 ) itself. Definition 2A.6. For any λ ∈ K the (quantum) dual Verma module M λ q of highest weight λ is M λ q = K λ q {m i |i ∈ Z ≥0 } as a K λ q vector space and the left U q (gl 2 ) action is

E m i = [i] q • m i-1 , F m i = [λ -i] q • m i+1 , L 1 m i = q λ-i • m i , L 2 m i = q i • m i , (2A.7)
where we use the quantum numbers from Definition 2A.3 and let m -1 = 0.

More generally, we define M λ,t q for t ∈ K by tensoring M λ-2t q with the one dimensional U q (gl 2 ) module of highest gl 2 weight (t, t).

We call the M λ q Verma modules for simplicity although they coincide with what are often called dual Verma modules in the literature, e.g. our modules correspond to M ∨ in [START_REF] Humphreys | Representations of semisimple Lie algebras in the BGG category O[END_REF].

Remark 2A.8. The highest weight of M λ q is strictly speaking (q λ , q 0 ), but in Definition 2A.6, and throughout, we use the notion weight in the sense of classical sl 2 weight combinatorics. We however sometimes need to be more specific. For example, for M λ,t q we need the gl 2 weight notation and the classical highest weight of M λ,t q is (λ -t, t) which is the same as (λ -2t, 0) when restricted to sl 2 weight notation. Whenever we use gl 2 notation we point that out.

Example 2A.9. The U q (gl 2 ) module M λ q is given by the usual picture but with slightly more generic quantum numbers in the action:

M λ q m 0 [λ-0] q [0] q q λ-2•0 m 1 [λ-1] q [1] q q λ-2•1 m 2 [λ-2] q [2] q q λ-2•2 m 3 [λ-3] q [3] q q λ-2•3 m 4 [λ-4] q [4] q q λ-2•4 m 5 [λ-5] q [5] q q λ-2•5 [6] q • • • , E moves to the right, F moves to the left, K = L 1 L -1
2 is a loop. The highest weight is λ.
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We will also use the quantum enveloping algebra U q (gl n ) of gl n , again over K λ q , with conventions specified later on, see Section 3B. The generators are E i , F i for i ∈ {1, ..., n -1}, and

L ±1 i for i ∈ {1, ..., n}.
Notation 2A.10. We consider U q (gl 2 ) and U q (gl n ) as different algebras, even if n = 2. All U q (gl 2 ) modules used in this paper are left U q (gl 2 ) modules, while all U q (gl n ) modules used in this paper are right U q (gl n ) modules. If we mean either U q (gl 2 ) or U q (gl n ), then we will write U q (gl k ). Similarly for their classical versions, and we will often drop the adjectives left and right.

We will need certain U q (gl n ) modules with bases indexed by:

Definition 2A.11. Fix m = (m 1 , ..., m n ) ∈ K n and y = (y 1 , ..., y n-1 ) ∈ K n-1 such that m 2 - m 3 , ..., m n-1 -m n ∈ Z ≥0 and y i -m 2 /
∈ Z for all i ∈ {1, ..., n -1}. A GT (Gelfand-Tsetlin) pattern GT x for (m, y) is a triangular array of the form

GT x = x n1 x n2 ... ... x nn . . . . . . . . . . . . x 31
x 32 x 33 x 21

x 22 x 11 (2A.12) where x = (x n1 , ..., x nn , x (n-1)1 , ...) (i.e. the pattern read row-wise) is such that:

(i) x ni = m i for i ∈ {1, ..., n} (m gives the top row), (ii) x i1 -y i ∈ Z for i ∈ {1, ..., n} (y gives the first diagonal up to integers), (iii) x jk -x (j-1)k ∈ Z ≥0 and x (j-1)k -x j(k+1) ∈ Z ≥0 for j ∈ {3, ..., n} and k ∈ {2, ..., j}, that is, x jk ≥ x j(k+1) ≥ ≥ x (j-1)k .
A two diagonal GT pattern (appearing in Verma Howe duality) is a GT pattern with m = (x n = Σλ n + b, c, 0, ..., 0) with b, c ∈ Z to be chosen and y determined by y i = Σλ i for i ∈ {1, ..., n -1}. Letting c n = c, we denote these by

GT x,c = x n c n 0 ... 0 x n-1 c n-1 . . . . . . . . . . . . 0 x 2 c 2 x 1 , (2A.13) with x = (x 1 , ..., x n ) ∈ (K λ q ) n as above and c = (c 2 , ..., c n ) ∈ Z n-1 ≥0 .
In (2A.12) and (2A.13) we have shaded the parts of the GT patterns which play significantly different roles. We call the shaded block to the right the integral part of the pattern since all the patterns we need will have integral entries in this part, and nonintegral entries otherwise. Definition 2A.14. Consider two diagonal GT patterns as in Definition 2A.11. Define the dense module, as a K λ q vector space, as D m,y q = K λ q {GT x |GT x is a two diagonal GT pattern for (m, y)} and the U q (gl n ) action is given later in (3B.7) (on a different basis).

Example 2A.15. If n = 2, then the only entry in a GT patterns that is not completely determined by (m, y) is x 11 . The latter is some integer shift of y 1 , so we can index a basis of D m,y q as {w i |i ∈ Z}. For certain values of A i , B i and C i that can be explicitly obtained from (3B.7) the picture is then

D m,y q w 3 1 -[B 3 ] q [C 3 ] q q A 3 w 2 1 -[B 2 ] q [C 2 ] q q A 2 w 1 1 -[B 1 ] q [C 1 ] q q A 1 w 0 1 -[B 0 ] q [C 0 ] q q A 0 w -1 1 -[B -1 ] q [C -1 ] q q A -1 w -2 1 -[B -2 ] q [C -2 ] q q A -2 1 -[B -3 ] q [C -3 ] q • • • • • • , E moves to the right, F moves to the left, K is a loop.
The module D m,y q has neither a highest nor a lowest weight. Note also that the conventions for the scalars in this example are different from Example 2A.9. (That is also why the basis vectors here are denoted by w i and not by m i .) But that can be fixed by appropriate base change.
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Remark 2A.16. For U q (gl 2 ) there are four interval-type pictures as in Example 2A.9 and Example 2A.15. First, a finite interval [a, b], having a highest and a lowest weight, which corresponds to a finite dimensional U q (gl 2 ) module. One could also use ]-∞, b] or [a, ∞[, and the associated U q (gl 2 ) modules are Verma and coVerma modules, respectively. These have either a highest or a lowest weight. Finally, the interval ]-∞, ∞[= R corresponds to the dense modules and these have neither a highest nor a lowest weight. In this sense, dense modules are a natural family of U q (gl 2 ) modules. More generally, dense modules appear in the study of weight modules for U q (gl k ). That is, every simple weight module of U q (gl k ) is dense or induced from a dense module, see [START_REF] Futorny | The weight representations of semisimple finite dimensional lie algebras[END_REF] and [START_REF] Fernando | Lie algebra modules with finite-dimensional weight spaces[END_REF], which reduces the classification of simple weight modules to dense modules. Hence, one could say that dense modules are prototypical weight modules.

Lemma 2A.17. (2A.7) and Definition 2A.14 endow M λ q and D m,y q , respectively, with structures of U q (gl 2 ) and U q (gl n ) modules.

Proof. Well-known and easy for M λ q , and this follows from (3B.7) below for D m,y q .

Definition 2A.18. We call λ admissible parameters if exists a permutation σ ∈ Aut{1, ..., n} such that Σλ σ(k) / ∈ Z for all k ∈ {1, ..., n}.

Example 2A.19. Note that Definition 2A.18 allows to have some λ i ∈ Z. For example, the parameters λ = (1, 2, 3, π, 4, 5, 6) ∈ R 7 are admissible. 3

We will need admissible parameters because of Remark 2B.6 below and also because of:

Lemma 2A.20. For admissible parameters we have that the U q (gl 2 ) module M λ q and the U q (gl n ) module D b,c q are simple. Similarly, M λ,t q is a simple U q (gl 2 ) module if λ -2t is generic. Proof. For the dense modules we will show this later in Lemma 3A.28 while λ / ∈ Z implies simplicity of M λ q , as usual in the theory, cf. [Hum08, Section 1.5].

2B. Verma Howe duality. Since we work with infinite dimensional K λ q vector spaces and their homomorphisms, we need to be careful with respect to finite vs. infinite sums. To avoid convergence issues, we use the following definition, where rings, as throughout, are associative and unital. Definition 2B.1. Let S ⊂ T be two rings, and let M be a left (or right) T module. We call S a dense subring of T (with respect to M) if for any t ∈ T and m 1 , ..., m k ∈ M there exists s ∈ S such that s m i = t m i (or m i s = m i t) for i ∈ {1, ..., k}.

We say {s i |i ∈ I} ⊂ T densely-generates T (with respect to a fixed M) if {s i |i ∈ I} generates a dense subring of T and we write {s i |i ∈ I} d T in this case. Notation 2B.2. We also write End S (M) instead of End S op (M), i.e. we suppress the necessary but not enlightening appearance of the opposite ring.

We will write D b,c q for the dense modules with b, c as in Definition 3A.18.

Let S be a ring. For a left or right S module M, the ring S = End S (M) is called the centralizer of S (on M). We call the following theorem (quantum) Verma Howe duality :

Theorem 2B.3.
(a) There are commuting actions

U q (gl 2 ) M ⊕λ q = d∈Z n M λ 1 +d 1 q ⊗ ... ⊗ M λn+dn q U q (gl n ).
(b) Let φ k q be the algebra homomorphism induced by the U q (gl k ) actions from (a). Then, for admissible parameters λ:

φ 2 q : U q (gl 2 ) d End Uq(gl n ) (M ⊕λ q ), φ n q : U q (gl n ) d End Uq(gl 2 ) (M ⊕λ q )
. That is, the two actions densely-generate the others centralizer.

(c) For admissible parameters λ we have the decomposition of the

U q (gl 2 )-U q (gl n ) bimodule M λ q into M ⊕λ q ∼ = g∈Z t∈Z ≥0 M Σλn+g-t,t q ⊗ D g-t,t q . (2B.4)
The various M Σλn+g-t,t q and D g-t,t q are nonisomorphic simple U q (gl 2 ) modules respectively U q (gl n ) modules. There is also a similar statement in the non-quantum case which the reader can spell out easily themselves by removing all q above. The proof of Theorem 2B.3 is nontrivial and given in its own section, see Section 3 below. Remark 2B.5. If M in Definition 2B.1 is finitely generated, then densely-generating the centralizer is the same as generating the centralizer. In this case Theorem 2B.3 is a classical Schur-Weyl(-Brauer) or Howe duality as in the introduction. The formulation above is copied from [AST17, Section 3], which also gives an overview of Schur-Weyl(-Brauer) dualities.

Remark 2B.6. We suspect that Theorem 2B.3.(b) works without the assuming that we have admissible parameters, and we would expect tilting theory as in the proofs of Lemma 3A.9 and Lemma 3B.10 below to play a major role. However, note that M λ q for λ ∈ Z ≥0 is not tilting which makes the nonsemisimple situation much more delicate. Note that Theorem 2B.3 for λ ∈ Z n ≥0 could be used to generalize (quantum) symmetric Howe duality as in, for example, [How95, Theorem 2.1.2] and [RT16, Theorem 2.6].

Remark 2B.7. The GT patterns in Theorem 2B.3 always have many zeros, exactly as in (2A.13). This is because we consider U q (gl 2 ) and not U q (gl m ) for general m ∈ Z ≥1 .

Remark 2B.8. Verma Howe duality Theorem 2B.3 is formulated for U q (gl 2 ), U q (gl n ) . If the reader likes to work with the special linear group instead of the general linear group, then they can replace U q (gl 2 ), U q (gl n ) with U q (sl 2 ), U q (gl n ) or U q (gl 2 ), U q (sl n ) in Theorem 2B.3.

The proof of Verma Howe duality

We first prove the classical version of Theorem 2B.3, and then use a flatness argument to get the quantum version. Recall that in the classical case we assume that K is of characteristic zero.

3A. The classical case. We will need the Lie algebra gl k and it elements of the form E ij . These are the k×k matrices with a one in the ith row and jth column and zeros otherwise. Lemma 3A.1. If Theorem 2B.3 holds for λ ∈ K n , then it holds for any permutation of λ as well.

Proof. This follows since the category of gl k -representations is symmetric.

Notation 3A.2.
(a) We also write

E i = E i(i+1) , F i = E (i+1)i and L i = E ii .
For gl 2 , we simplify this notation and use E = E 1 = ( 0 1 0 0 ) and F = F 1 = ( 0 0 1 0 ), and we also have L 1 = ( 1 0 0 0 ) and L 2 = ( 0 0 0 1 ). (b) We denote the operators used in actions by e.g. e ij to distinguish then from the elements of the Lie algebras. The operators are always elements of some endomorphism space. The appearing operators will always be denoted using lowercase letters.

(c) By Lemma 3A.1 we can and will assume that Σλ k / ∈ Z for all k ∈ {1, ..., n} instead of Σλ σ(k) / ∈ Z for all k ∈ {1, ..., n}. This will be of importance in some of our formulas.

We will need the following realization of M ⊕λ . Let K[X ±1 , Y ] be the algebra generated by indeterminates

X ±1 = (X ±1 1 , ..., X ±1 n ) and Y = (Y 1 , ..., Y n ).
We shift the exponents of the X in K[X ±1 , Y ] by λ so that powers of the variables X and Y are now in λ + Z n and Z n ≥0 , respectively. The resulting K vector space is denoted by P λ = K[X λ+Z n , Y ]. We view P λ as a K[X ±1 , Y ] bimodule, meaning that we allow multiplication by X ±1 i and by Y i . We also use P λ defined similarly. Definition 3A.3. For i ∈ {1, ..., n} we let operators ∂ X i and ∂ Y i act on P λ as formal derivations, i.e. for r ∈ Z and s ∈ Z ≥0 we define

∂ X i X λ+r j = δ i,j (λ + r) • X λ+r-1 i , ∂ X i Y s j = 0, ∂ Y i Y s j = δ i,j s • Y s-1 i , ∂ Y i X λ+r j = 0,
and we then extend these rules to all of P λ linearly and by the Leibniz rule.

We let the algebra U (gl 2 ) act on P λ by

E → e = X∂ Y , F → f = Y ∂ X , L 1 → l 1 = X∂ X , L 2 → l 2 = Y ∂ Y . (3A.4)
The action (3A.4) extends to an action of U (gl 2 ) on

P λ ∼ = n i=1 P λ i by using the usual coproduct of U (gl 2 ) determined by ∆(x) = x ⊗ 1 + 1 ⊗ x for all x ∈ gl 2 .
We have a dual action of U (gl n ) on P λ determined by

E ij → e ij = X i ∂ X j + Y i ∂ Y j . (3A.5)
In particular, E i acts as e i(i+1) , F i acts as e (i+1)i and L i acts as e ii .

For r ∈ Z and s ∈ Z ≥0 let X λ+r i Y s i be of degree r + s. This gives us a Z n grading on P λ . For d = (d 1 , ..., d n ) ∈ Z n we denote the Z n graded piece of P λ of degree d by (P λ ) d .

Lemma 3A.6. The graded K vector space

P λ ∼ = d∈Z n (P λ ) d
is an U (gl 2 ) module when endowed with (3A.4) that is isomorphic to M ⊕λ that decomposes as above. Moreover, it is also an U (gl n ) module when endowed with (3A.5), and the two actions commute.

Proof. That (3A.4) defines a homogeneous action of U (gl 2 ) is easy to see.

The resulting U (gl 2 ) module is isomorphic to M ⊕λ as in the classical gl 2 theory: For d = 0 the basis elements of (P λ ) 0 are of the form X λ-r Y r for r ∈ Z ≥0 and e.g.

f (X λ-r Y r ) = (λ -r) • X λ-r-1 Y r+1 .
Comparing this with the classical version of Example 2A.9 shows that (P λ ) 0 ∼ = M λ . For general d ∈ Z the story is just shifted and we get (P λ ) d ∼ = M λ+d . These isomorphisms extend to P λ ∼ = M ⊕λ by using the coproduct.

That (3A.5) defines an U (gl n ) action and that the two actions commute are direct calculations.

We always use the two actions (3A.4) and (3A.5) for the reminder of this section. Note that Lemma 3A.6 gives us a U (gl 2 )-U (gl n ) bimodule structure on P λ . Notation 3A.7.

For Z = (Z 1 , ..., Z n ) and b = (b 1 , ..., b n ) we write Z b = Z b 1 1 • ... • Z bn n . Lemma 3A.8. The element X λ+r Y s is annihilated by E ∈ gl 2 if and only if s = 0.
Proof. This holds since e = X∂ Y so that e(X λ+r Y

s ) = s • X λ+r+1 Y s-1 . An U (gl k ) module is called countable semisimple if it is a countable direct sum of countable dimensional simple U (gl k ) modules.
Lemma 3A.9. For admissible parameters λ the U (gl 2 ) module P λ is countable semisimple.

Proof. Extending e.g. [Kåh10, Section 2] to K λ q , we let Õ denote enlarged category O. We will not define Õ here as it can be defined, mutatis mutandis, as in [Kåh10, Section 2] with the same properties as therein. In particular, we have P λ ∼ = M ⊕λ ∈ Õ.

By the usual Yoga, the M λ i are costandard objects in Õ. The usual Yoga, see e.g. [Kåh10, Proposition 2.7] or [AST18, Section 2] and the extra notes for that paper in the arXiv version of it, also gives that tensor products of U (gl 2 ) modules with a costandard filtration have a costandard filtration. Moreover, the condition Σλ i / ∈ Z for all i ∈ {1, ..., n} ensures that all appearing costandard filtration factors have highest weight not being in Z. Thus, all costandard filtration factors are tilting since they are simple and costandard, which is also a consequence of the usual Yoga.

It then follows that M ⊕λ decomposes into a direct sum of indecomposable tilting U (gl 2 ) modules in Õ, and tracking the highest weight as in Lemma 3A.8 and using that λ is admissible shows that these indecomposable tilting U (gl 2 ) modules are actually simple and of the form M µ for generic µ ∈ K.

Finally, everything involved is clearly countable, so we are done.

Lemma 3A.10. Let λ be admissible. As U (gl 2 ) modules we have

P λ ∼ = M ⊕λ ∼ = g∈Z t∈Z ≥0 M Σλn+g-t,t ⊗ D Σλn+g-t,t , (3A.11)
where D Σλn+g-t,t is a multiplicity K vector space.

Proof. For generic λ ∈ K and any λ ∈ K one can decompose M λ ⊗M λ explicitly, i.e. as U (gl 2 ) modules we have

M λ ⊗ M λ ∼ = t∈Z ≥0 M λ+λ -t,t ⊗ D λ+λ -t,t , (3A.12)
for some countable dimensional multiplicity K vector space D λ+λ -t,t . This decomposition (3A.12) follows from Lemma 3A.8 and Lemma 3A.9 and the universal property of Verma modules.

More general, the decomposition (3A.12) can then be proven by using the proof of Lemma 3A.9 which shows that P λ is a(n infinite) direct sum of of simple tilting U (gl 2 ) modules. The point is that the characters of simple tilting U (gl 2 ) modules are well-known, since these are Verma modules, and we of course know the character of P λ itself. Using this and semisimplicity Lemma 3A.9, we hence get the claimed formula by successively identifying the characters in P λ . That is, we first get

P λ ∼ = M ⊕λ ∼ = d∈Z n M λ 1 +d 1 ⊗ ... ⊗ M λn+dn ∼ = d∈Z n t∈Z ≥0 M Σλn+Σdn-t,t ⊗ D Σλn+Σdn-t,t ,
and then grouping isomorphic U (gl 2 ) modules gives (3A.11).

We now aim to identify D Σλn+g-t,t from (3A.11) explicitly. To this end, we define a K sub vector space D b,c of P λ that we will use for this purpose:

Definition 3A.13. Write a ij = det x i y i x j y j , a i = a i(i+1) , a = (a 1 , ..., a n-1 ) and l = (l 1 ..., l n-1 ) ∈ Z n-1 ≥0 . For b ∈ Z and c ∈ Z ≥0 let D b,c = KB Det ⊂ P λ , where B Det = B Det (b, c) = {X λ+r a l |Σr n = b -c, Σl n-1 = c}.
Lemma 3A.14. For fixed c ∈ Z ≥0 let r,s a rs be a product of c determinants. Then r,s a rs ∈

K[X ±1 ]{a l |Σl n-1 = c}.
Proof. The determinant of the singular matrix

det Xr Xr Yr X i X i Y i Xs Xs Ys = X r a is -X i a rs + X s a ri = 0
gives the relation a rs = X -1 i (X r a is +X s a ri ) for all i ∈ {1, ..., n}. This relation can then be successively applied to prove the statement.

Lemma 3A.15. The U (gl n ) action from Lemma 3A.6 stabilizes D b,c ⊂ P λ .

Proof. A straightforward calculation gives

e ij (a rs ) =      a is if j = r, a ri if j = s, 0 else.
Using this we get e ij (X λ+r a l ) = e ij (X λ+r )a l + X λ+r e ij (a l ) = (λ i + r i ) • X λ+r+ i -j a l + l j-1 • X λ+r a l-j-1 a (j-1)i rewrite +l j • X λ+r a l-j a i(j+1) rewrite .

Now we use the rewriting as in the proof of Lemma 3A.14 on the marked terms, and we are done. Explicitly, we get

e ii (X λ+r a l ) =(λ i + r i + l i-1 + l i ) • X λ+r a l , e i(i+1) (X λ+r a l ) =(λ i + r i + l i+1 ) • X λ+r+α i a l + l i+1 • X λ+r-α i+1 a l+α i , e (i+1)i (X λ+r a l ) =(λ i + r i + l i-1 ) • X λ+r-α i a l + l i-1 • X λ+r+α i-1 a l-α i . (3A.16)
Here we used

a i(i+2) = X -1 i+1 (X i a i+1 + X i+2 a i ) and a (i-1)(i+1) = X -1 i (X i-1 a i + X i+1 a i-1 ).
We want to show that D b,c is a dense module as in Theorem 2B.3. To do this we need an analog of the GT basis, and to define it we need to prepare the definition with some preliminaries. Notation 3A.17.

(a) For d = (d 1 , ..., d n-1 ) ∈ Z n-1 ≥0 , we denote by d s ∈ Z ≥0 the multinomial-type number defined by the expansion n-1 i=1 (ΣX i )

d i = s d s • X s . (b) We let (k) l = k(k + 1) • ... • (k + l -1) be the (increasing) Pochhammer symbol. (c) We write Π(λ, r, d, j) for (Σλ 1 +Σr 1 -j 1 +1) d 1 +j 1 -j 0 •...•(Σλ n-1 +Σr n-1 -j n-1 +1) d n-1 +j n-1 -j n-2 ,
where j ∈ Z n with j n-1 = j n = 0.

Definition 3A.18. For the GT pattern

GT x,c = x n c n 0 ... 0 x n-1 c n-1 . . . . . . . . . . . . 0 x 2 c 2 x 1 , c 1 = 0, c n = c, d = (c 2 -c 1 , c 3 -c 2 , ..., c n -c n-1 ), Σr i = x i -Σλ i -Σc i-1 + c i+1 ,
we define d = (d 1 , ..., d n-1 ) and r = (r 1 , ..., r n ) as above. The associated GT vector is

GT d,r = j∈Z n-2 ≥0 d d+ n-2 i=1 j i α i Π(λ, r, d, j) • X λ+r-n i=1 (j i -j i-2 ) i a d+ n-2 i=1 j i α i ∈ D b,c . (3A.19)
The set of these GT vectors is denoted by B GT .

The following manipulation of one of the scalars defining GT d,r will come in handy.

Lemma 3A.20. We have

d d+ n-2 i=1 j i α i = n-2 i=1 d i+1 +j i+1 j i . Proof. By using (ΣX i ) d i = (ΣX i-1 + X i ) d i = d i j=0 d i j (ΣX i-1 ) d i -j X j i recursively.
Let z k = 1≤j<i≤k e ji e ij for k ∈ {1, ..., n}. We need what we call the Casimir elements of gl n , which are defined for k ∈ {1, ..., n} as

Cas k = 1≤i =j≤k E ij E ji + k i=1 E 2 ii = 2z k + 1≤j<i≤k (E ii -E jj ) + k i=1 E 2 ii . (3A.21)
The notation is such that Cas k is the usual Casimir element of gl k . We write cas k for the associated operator. For Lemma 3A.23 below, which is the main lemma regarding the Casimir elements, we need the following formula for the action of z k .

Lemma 3A.22. We have z k (X λ+r a l ) = s • X λ+r a l + e with s ∈ K and an error term e given by

s = k i=1 (λ i + r i )(Σλ i-1 + Σr i-1 + Σl n -l i-1 -l i + i -1) + (i -1)l i + (i -2)l i-2 + (l i-1 + l i )Σl i-2 , e =l k k-1 i=1 (λ i + r i ) • X λ+r+ k + k+1 -i -i+1 a l-k + i .
Proof. A tedious calculation using the previous formulas.

Lemma 3A.23. Let λ be admissible. The Casimir elements separate B GT (on weight spaces), and B GT is a basis of D b,c .

Proof. The proof splits into three steps.

Separation. We first assume that the Casimir elements act by a scalar on B GT . We let ν k = x k 1 + c k 2 where we recall that x k = Σr k -Σλ k -Σc k-1 + c k+1 . We assume the scalar is

Cas k acts on GT d,r by ν k + 2ρ (k) , ν k = x k (x k + k -1) + c k (c k + k -3), (3A.24)
where ρ (k) = 1 2 k i=1 (k -2i + 1) • i mimics the usual half-sum of the positive roots of gl n . On a weight space we have c k = a -x k for some a ∈ Z. Hence, we get the parabola 2x 2 k + (2 -2a)x k + a 2 + ka -3a from (3A.24). Assume that there are two values x k and x k as in the nonintegral part of GT patterns which satisfy this parabola. Solving 2x

2 k +(2-2a)x k +a 2 +ka-3a = 2(x k ) 2 + (2 -2a)x k + a 2 + ka -3a gives either x k = x k or x k + x k -a = -1.
The second solution gives x k ∈ Z, which contradicts admissibility.

Note that this implies that the Casimir elements separate, so it remains to verify (3A.24). Scalar verification. We thus need to compute cas k (GT d,r ). The calculation that cas k (GT d,r ) equals (3A.24) boils down to a longish manipulation of symbols where one reindexes the sum defining GT d,r appropriately. We sketch the main step in this calculation now.

(a) First, we use the second expression of Cas k in (3A.21). As before, we use z k = 1≤j<i≤k e ji e ij and we also write h k for the Cartan part so that cas k = 2z k + h k . By (3A.16), the Cartan part gives h k (X λ+r a l ) = s • X λ+r a l with scalar

s = 1≤j<i≤k (λ i + r i + l i-1 + l i -λ j -r j -l j-1 -l j ) + k i=1 (λ i + r i + l i-1 + l i ) 2 ∈ K.
(b) We also have the scalar s from Lemma 3A.22. Thus, we get, again using Lemma 3A.22, that cas k (X λ+r a l ) = (2s + s ) • X λ+r a l + e, (3A.25) where e is the error term in Lemma 3A.22.

(c) Next, we need to take the sum of (3A.25) as in the definition of the GT vectors. The resulting expression can then by manipulated as in the next few bullet points. 

d i-1 + j i-1 -1 j i-2 -1 = j i-2 d i-1 + j i-1 d i-1 + j i-1 +0 j i-2 +0
.

We further use a-1 b = a-b a a b to rewrite for example

d i-1 + j i-1 -1 j i-2 = d i-1 + j i-1 -j i-2 d i-1 + j i-1 d i-1 + j i-1 +0 j i-2 .
Here we marked the parts that we change to match the GT vectors. (If a = 0 in these formulas, then we would use a a-1 b-1 = b a b and a a-1 b = (a -b) a b which give 0 = 0 so we can ignore these cases.)

• We rewrite the Pochhammer symbols as well, for example:

(Σλ i + Σr i -j i +2 ) d i +j i -j i-1 -1 = 1 Σλ i + Σr i -j i + 1 (Σλ i + Σr i -j i +1 ) d i +j i -j i-1 +0 .
We again highlight the parts we change to match the expressions in the GT vectors.

(e) All introduced fractions disappear in the end. To elaborate, we get

k-1 i=1 k-1 l=i j l d l + j l (d i + j i -j i-1 ) k l=i+1 (Σλ l + Σr l + d l -j l-1 + 1) k-1 l=i (Σλ l + Σr l -j l + 1) (Σλ i + Σr i -j i -j i-1 + 1).
The sum of the two first terms is:

k-1 i=2 j i k-1 i=3 (d i + j i ) k i=3 (Σλ i + Σr i + d i -j i-1 + 1) k-1 i=3 (Σλ i + Σr i -j i + 1)
.

We continue, analyzing three, four etc. terms, until we find

j k-1 (Σλ k + Σr k + d k -j k-1 + 1).
(f) This implies that the overall scalar for the j

∈ Z n-2 ≥0 summand of GT d,r is k i=3 (λ i + r i + d i + d i-1 )(Σd i-2 +j i-2 ) + k i=2 (Σλ i-1 + Σr i-1 -j i-1 -j i-2 )(d i +j i -j i-1 ) +(λ i + r i + d i +j i-2 -j i-1 )(Σλ i-1 + Σr i-1 -j i-1 -j i-2 + i -1) +(i -2)(d i-1 +j i-1 -j i-2 ) +j k-1 (Σλ k + Σr k + d k -j k-1 + 1) . (3A.26)
We marked the dependencies on j.

(g) The dependencies on j in (3A.26) cancel and we get cas k (GT d,r ) = s • GT d,r for the scalar

s = k i=3 (λ i + r i + d i + d i-1 )Σd i-2 + k i=2 (Σλ i-1 + Σr i-1 )d i +(λ i + r i + d i )(Σλ i-1 + Σr i-1 + i -1) + (i -2)d i-1 + k i=1 (k -2i + 1)(λ i + r i + d i-1 + d i ) + (λ i + r i + d i-1 + d i ) 2 ∈ K.
(h) Finally, matching s with (3A.24) is done by comparing the linear and the quadratic terms separately. This is again tedious, but straightforward. Basis. The linear independence of B GT follows from (3A.24) and that B GT spans follows because the definition of GT d,r implies that B GT is uppertriangular (with an appropriate order) to B Det . Remark 3A.27. We were able to guess the formulas in (3A.24) because of significant help of Magma and Mathematica, which were used to find the GT bases expressions in Definition 3A.18, as well as the formula given in [MTL05, (6.2)]. The computational expensive proof of Lemma 3A.23 was then also obtained by computer help. We however stress that everything can be done by hand and computers were only used to guess the various steps.

Lemma 3A.28. For admissible parameters λ we have that D b,c is a simple dense U (gl n ) module that has a GT pattern realization.

Proof. We first show that D b,c is a simple U (gl n ) module. To this end, we use that the Casimir elements separate the GT patterns in B GT , see Lemma 3A.23, and then we use similar arguments as in [START_REF] Mazorchuk | Quantum deformation and tableaux realization of simple dense gl(n, C)modules[END_REF]Lemma 3]. That is, we claim that the e ij act injectively (and thus, bijectively) on GT d,r and also that the action graph of the e ij action on B GT is strongly connected.

The first claim follows from Lemma 3A.23, which implies that it is enough to show injectivity on B GT , and the formulas for the action of e ij on GT d,r that we get from (3A.16).

For the second claim we compute that

e i(i+1) (GT d,r ) = (Σλ i + Σr i + 1) (Σλ i+1 + Σr i+1 + d i+1 ) Σλ i + Σr i + d i + 1 • GT d,r+α i + d i (Σλ i+1 + Σr i+1 + d i + d i+1 + 1) Σλ i + Σr i + d i + 1 • GT d+α i-1 ,r-α i-1 ,
with the second term being

zero if i = 1 or if d + α i-1 ∈ Z n-1 ≥0 .
There is also a similar formula for e (i+1)i (GT d,r ) with swapped signs in front of the α j and similar coefficients. Note that all appearing coefficients are nonzero since we have admissible parameters.

Thus, the action graph is strongly connected and hence, the e ij act bijectively and have a strongly connected action graph, showing that D b,c is a simple gl n module.

Finally, it follows from the definitions that D b,c is a dense U (gl n ) module in the sense of e.g. the introduction of [START_REF] Mazorchuk | Quantum deformation and tableaux realization of simple dense gl(n, C)modules[END_REF].

Let D b,c denote the dense U (gl n ) module defined in [Maz03, Section 3] associated to a two diagonal GT pattern.

Proposition 3A.29. Assume that we have admissible parameters satisfying λ i / ∈ Z for i ∈ {1, ..., n}. We have an isomorphism of U (gl n ) modules D b,c ∼ = D b,c .

Proof. We have also verified that D b,c is simple and dense in Lemma 3A.28. Thus, we can use the classification of these modules from [START_REF] Mathieu | Classification of irreducible weight modules[END_REF], see also [START_REF] Mazorchuk | Quantum deformation and tableaux realization of simple dense gl(n, C)modules[END_REF]Section 2.3].

Remark 3A.30. Note that the isomorphism in Proposition 3A.29 is not explicit. Any explicit isomorphism would divide, or multiply, by our parameters plus integers. That is why we need the assumption λ i / ∈ Z for i ∈ {1, ..., n} in Proposition 3A.29.

Abusing notation, we will write D b,c instead of D b,c to refer to its underlying GT pattern realization.

Proof of the classical version of Theorem 2B.3. There are three statements to verify.

Commuting actions. By Lemma 3A.6, we can consider the U (gl 2 )-U (gl n ) bimodule P λ and it remains to verify the centralizer property and the U (gl 2 )-U (gl n ) bimodule decomposition of Theorem 2B.3.

All parameters in this proof are admissible from now on. Bimodule decomposition. Let b = g -t and c = t. The U (gl 2 )-U (gl n ) bimodule decomposition follows from Lemma 3A.28 after identifying D b,c with the multiplicity space D Σλn+g-t,t from Lemma 3A.10 as a K vector space. Note that D b,c is a U (gl n ) module so it has a Z n grading coming from the U (gl n ) weight spaces. At the same time, because P λ is an U (gl 2 )-U (gl n ) bimodule, Lemma 3A.10 implies that D Σλn+g-t,t is also a U (gl n ) module, so we also have the notion of U (gl n ) weight spaces. Explicitly, m in either D b,c or D Σλn+g-t,t is of degree

d ∈ Z n if e ii (m) = (λ i + d i ) • m.
We apply this definition and (3A.16) to B Det and get

Zdim K D b,c = d∈Z n δ b+c,Σdn c+n-2 c Z d ,
where we use Z = (Z 1 , ..., Z n ) to keep track of the graded pieces and Zdim K means graded dimensions. Moreover, using t c=0 c+n-2 c

= t+n-1 t , we get

Zdim K P λ = d∈Z n t∈Z ≥0 t+n-1 t Z d = d∈Z n t∈Z ≥0 t c=0 c+n-2 c Z d .
Thus, (3A.11) implies that

Zdim K D b,c = Zdim K D Σλn+g-t,t = d∈Z n δ b+c,Σdn c+n-2 c Z d . (3A.31)
Finally, note that D b,c ⊂ D Σλn+g-t,t because e(B Det ) = {0}, as a simple calculation shows. Hence, D b,c = D Σλn+g-t,t .

Dense. Thus, it remains to prove that have dense subrings induced from the U (gl 2 ) and U (gl n ) actions. We denote their images in End K (P λ ) by S and T, respectively. The U (gl 2 )-U (gl n ) bimodule decomposition implies that T is dense in S since

U (gl 2 ) d End U (gl n ) g∈Z t∈Z ≥0 M Σλn+g-t,t ⊗ D g-t,t ∼ = End U (gl n ) (P λ ).
Similarly, with swapped roles of U (gl 2 ) and U (gl n ), we get that S is dense in T .

Remark 3A.32. Note that (3A.31) implies that the dense modules we use have weight spaces of constant dimension. This is actually true in more generality, see e.g. [Maz03, Lemma 2].

3B. The quantum case. We now specify our quantum conventions.

Notation 3B.1. (a) Let µ = (µ 1 , ..., µ n ) denote a tuple of variables. Let A v = Z[v, v -1 ] denote the A-form, A v = Q(v) the field of fractions of A v , A µ v = A v [µ, v µ 1 , ..., v µn ] and A ,µ v the field of fractions of A µ v .
(b) For a fixed ring S and choices v, v-1 ∈ S and μ = (μ 1 , ..., μn ) ∈ S n such that vμ 1 , ..., vμn ∈ S, we can specialize any construction defined with coefficients from A µ v using -⊗ A µ v S where we see S as an A µ v module by v ±1 → v±1 and µ → μ. We will use this always without the bar notation. We can similarly specialize from A v instead of A µ v in the very same way. (c) The classical and the quantum specializations are v → 1 and v → q, respectively, and

µ → λ for S = K as fixed in Section 2A. Similarly for A v instead of A µ v .
For k ∈ Z ≥1 , let U A (gl k ) denote the quantum enveloping algebra over A v of gl k . We use the conventions, excluding the Hopf algebra structure, from [START_REF] Lusztig | Quantum groups at roots of 1[END_REF] or [START_REF] Andersen | Representations of quantum algebras[END_REF] with

K ±1 i = L ±1 i L ∓1 i+1 .
The A v algebra U A (gl k ) specializes to either U (gl k ) for v → 1 and to U q (gl k ) for v → q. The classical specialization is the one we studied in Section 3A.

We use the same notation as in Definition 2A.3 for quantum numbers, but we see them as elements of A v or A µ v in general, and these specialize to the ones in Definition 2A.3. The A v algebra U v (gl k ) is generated by E i , F i for i ∈ {1, ..., k -1}, and L ±1 i for i ∈ {1, ..., k} such that the L ±1 i commute with one another, L -1 i is the inverse of L i , and

L i E j = v δ i,j -δ i,j+1 • E j L i , L i F j = v -δ i,j +δ i,j+1 • F j L i , E i F j -F j E i = δ i,j L i L -1 i+1 -L -1 i L i+1 v-v -1 , [2] v • E i E j E i = E 2 i E j + E j E 2 i , if |i -j| = 1, E i E j -E j E i = 0, if |i -j| > 1, [2] v • F i F j F i = F 2 i F j + F j F 2 i , if |i -j| = 1, F i F j -F j F i = 0, if |i -j| > 1
, for all suitable i, j. We also choose the Hopf algebra structure on U A (gl k ) given by

∆(E i ) = E i ⊗ L i L -1 i+1 + 1 ⊗ E i , (E i ) = 0, S(E i ) = -E i L -1 i L i+1 , ∆(F i ) = F i ⊗ 1 + L -1 i L i+1 ⊗ F i , (F i ) = 0, S(F i ) = -L i L -1 i+1 F i , with L ±1 i being group like. Following [Lus90], U A (gl k ) is the A v subalgebra of U v (gl k ) generated by the divided powers for E i and F i , i.e. E (j) i = E j i [j] v ! , F (j) i 
= F j i [j] v ! , i ∈ {1, ..., k -1}, j ∈ Z ≥0 ,
and also by some adjustments of the L i , see [START_REF] Andersen | Representations of quantum algebras[END_REF]. As the Hopf algebra structure of U A (gl k ) we take the one induced by U v (gl k ).

Remark 3B.2. The A v algebra U A (gl k ) specializes to U (gl k ) for v → 1 and to U q (gl k ) for v → q. In both cases the divided power generators are only needed for j = 1.

We scalar extend U A (gl k ) to an A µ v algebra, keeping the same notation. The additional parameters only play a role for U A (gl k ) modules and not for U A (gl k ) itself. Lemma 3B.3. Definition 2A.6 works verbatim over A µ v giving U A (gl 2 ) modules. Proof. All appearing scalars can be interpreted in A µ v . The U A (gl 2 ) modules from Lemma 3B.3 are the integral Verma modules. We denote these as before but using A as a subscript, e.g. M µ

A is the integral version of M λ q . Using the Hopf algebra structure we can then define M ⊕µ A similarly as we defined M ⊕λ q . Remark 3B.4. We now copy the approach taken in Section 3A. That is, we define a quantum polynomial algebra P µ A on which U A (gl 2 ) and U A (gl n ) act by quantum derivatives in the spirit of e.g. [Kas95, Section VII.3]. This is done such that P µ A ∼ = M ⊕µ A as U A (gl 2 )-U A (gl n ) bimodules. However, we do not use the language of quantum derivatives because of the various quantum parameters appear everywhere which make this setup cumbersome instead of helpful. For example, one would have relations of the form Y j X i = X i Y j + (v -v -1 )X j Y i and commutativity turns into quantum commutativity. In order to avoid these technical difficulties we decided to define P µ A instead as a free A µ v module with an explicit biaction defined on basis elements. The reader is still invited to think of the below as quantum derivatives acting on a quantum polynomial algebra. Definition 3B.5. We define the free A µ v module

P µ A = A µ v {X µ+r Y s |r ∈ Z n , s ∈ Z n ≥0 }
where we, as before, use formal parameters.

Write X µ i +r i i = [µ i + r i ] v ! • X µ i +r i i and Y s i i = [s i ] v ! • Y s i i .
We let U v (gl 2 ) act on the scalar extension of

P µ A to A ,µ v by E X µ+r Y s = n i=1 v Σµn+Σrn-Σµ i -Σr i -Σsn+Σs i [s i ] v • X µ+r+ i Y s-i , F X µ+r Y s = n i=1 v -Σµ i-1 -Σr i-1 +Σs i-1 [µ i + r i ] v • X µ+r-i Y s+ i , L 1 X µ+r Y s = v Σµn+Σrn • X µ+r Y s , L 2 X µ+r Y s = v Σsn • X µ+r Y s . (3B.6)
We also define an U v (gl n ) action on the scalar extension of P µ A to A ,µ v by

X µ+r Y s E i = [µ i+1 + r i+1 ] v v µ i +r i -µ i+1 -r i+1 • X µ+r+α i Y s + [s i+1 ] v • X µ+r Y s+α i , X µ+r Y s F i = [µ i + r i ] v • X µ+r-α i Y s + v -µ i -r i +µ i+1 +r i+1 [s i ] v • X µ+r Y s-α i , X µ+r Y s L i = v µ i +r i +s i • X µ+r Y s . (3B.7)
As before, we also get graded pieces (P µ A ) d for d ∈ Z n . Lemma 3B.8. The graded free A v module

P µ A ∼ = d∈Z n (P µ A ) d
is an U A (gl 2 ) module when endowed with the A µ v -version of (3B.6) that decomposes as above and is isomorphic to M ⊕µ A . Moreover, it is also an U A (gl n ) module when endowed with the A µ v -version of (3B.7), and the two actions commute.

Proof. A direct calculation verifies that (3B.6) and (3B.7) give the scalar extension of P µ A the structure of an U v (gl 2 )-U v (gl n ) bimodule. One then checks that (3B.6) and (3B.7) when successively applied to E (c) By being (generically) flat as an U A (gl 2 )-U A (gl n ) bimodule we mean being flat as an U A (gl 2 ) module and as an U A (gl n ) module.

Lemma 3B.10. The U A (gl 2 )-U A (gl n ) bimodule M ⊕µ A ∼ = P µ A is flat, its classical specialization is the U (gl 2 )-U (gl n ) bimodule M ⊕λ ∼ = P λ and its quantum specialization is the U q (gl 2 )-U q (gl n ) bimodule M ⊕λ q ∼ = P λ q .

Proof. The quantum version of Lemma 3A.9 holds as well, with the same proof. This implies that M µ A is tilting when specialized to characteristic zero fields with µ → λ for λ admissible parameters. Therefore M µ A is flat by the usual arguments, see e.g. the arXiv appendix to [START_REF] Andersen | Cellular structures using U q -tilting modules[END_REF]. Moreover, comparison of formulas implies that the specializations are the claimed ones.

Remark 3B.11. For the below note that, by their very construction, all U A (gl k ) modules used in this paper are of type (1, ..., 1) in the sense of e.g. [APW91, Section 1.4] or [Jan96, Section 5.2].

Proof of Theorem 2B.3. As we will see now, using flatness, the quantum Verma Howe duality theorem follows from the classical case. Our exposition below follows [ST19, Section 7A], but flatness arguments along the same lines are very common in the literature.

Commuting actions. To use Lemma 3B.10, one first needs to establish the existence of the commuting actions as in Theorem 2B.3 in the quantum case independently of the classical case. This is done in Lemma 3B.8, so we can focus on the U q (gl 2 )-U q (gl n ) bimodule decomposition.

As before in the classical case, all parameters in this proof are admissible from now on. Bimodule decomposition. We will now repeatedly use Lemma 3B.10. We compare the U q (gl 2 ) module M ⊕λ q and the U (gl 2 ) module M ⊕λ , and we see that the weights of these modules are the same under the usual identification of quantum and classical weights. Moreover, the weight multiplicities are also the same and all finite. It follows then from Lemma 3B.10 that we have

M λ q ∼ = g∈Z t∈Z ≥0 M Σλn+g-t,t q ⊗ D Σλn+g-t,t q
as the quantum analog of (3A.11), where D Σλn+g-t,t q are multiplicity K λ q vector spaces. We actually know that these multiplicity K λ q vector spaces are U q (gl n ) modules by the quantum specialization of the previously established U v (gl 2 )-U v (gl n ) bimodule structure.

We want to show that all appearing D Σλn+g-t,t q are simple as U v (gl n ) modules. This is equivalent to the action giving a surjection f : U q (gl n ) End Uq(gl 2 ) (M λ q ). (3B.12) Now, setting v → 1 or v → q , respectively, and µ → λ in the A µ v version, we can identify M ⊕µ A with M ⊕λ , and the biactions of U A (gl 2 )/(v -1, µλ)-U A (gl n )/(v -1, µλ) and U (gl 2 )-U (gl n ) coincide under this specialization, and verbatim for U q (gl 2 )-U q (gl n ) instead of U (gl 2 )-U (gl n ). In particular, the images of these two actions agree. It follows now from the classical version of Theorem 2B.3 that the action map f is surjective classically. Thus, Lemma 3B.10 implies that (3B.12) holds and D Σλn+g-t,t q are simple as U v (gl n ) modules. Next, comparison of definitions verifies that the classical version of D Σλn+g-t,t q and D g-t,t q are D Σλn+g-t,t and D g-t,t , respectively. By the classification recalled in [Maz03, Section 2.3] (originally proven in [START_REF] Mathieu | Classification of irreducible weight modules[END_REF]) we get also that D Σλn+g-t,t ∼ = D g-t,t , as before. Finally, D Σλn+g-t,t q and D g-t,t q are of type (1, ..., 1), by construction, and true quantum deformation in the sense of [Maz03, Section 2.1] which implies D Σλn+g-t,t q ∼ = D g-t,t q . Dense. By Lemma 3B.10 and the U q (gl 2 )-U q (gl n ) bimodule decomposition from (2B.4), the argument is now the same as in the classical case.

The colored higher LKB representations are simple

Recall that we have fixed n ∈ Z ≥1 and parameters λ = (λ 1 , ..., λ n ) ∈ K n . 4A. Pure and colored braids. Let B n denote the braid group with n strands which can be illustrated using the usual diagrammatics, e.g.

, β i,i+1 = i+1 i+1 i i , β -1 i,i+1 = i i i+1 i+1 . (4A.1)
As displayed above, the transposition generators, crossing the ith and (i + 1)th strand, of B n are denoted by β i,i+1 and β -1 i,i+1 .

Example 4B.13. The representation LKB n,0 A,µ is always trivial, while LKB n,1 A,µ is the (reduced) Burau representation of B n , and LKB n,2 A,µ is its classical LKB representation as in [START_REF] Lawrence | Homological representations of the Hecke algebra[END_REF], or closer to our formulation, as in [START_REF] Jackson | The Lawrence-Krammer-Bigelow representations of the braid groups via U q (sl 2 )[END_REF].

Or, to be completely precise, LKB n,2 A,µ is a multiparameter version of the construction from [START_REF] Jackson | The Lawrence-Krammer-Bigelow representations of the braid groups via U q (sl 2 )[END_REF], see also [START_REF] Martel | Colored version for Lawrence representations[END_REF]. Moreover, the representation LKB n,l A,µ can then further be matched with it homological counterpart up to playing with parameters, see [Koh12, Theorem 6.1] and [Mar22, Theorem 1.5] for a precise statement.

Using an appropriate ground field and quantum parameter, LKB n,2 q,λ for λ = (λ, ..., λ) is a faithful B n module by [START_REF] Bigelow | Braid groups are linear[END_REF] and [START_REF] Krammer | Braid groups are linear[END_REF], and thus, LKB n,2 q,λ is also faithful for B ρ n for all ρ. 3

Specializing to the quantum case, the following is our main application of Theorem 2B.3:

Theorem 4B.14. Assume that the parameters are admissible. Then the representation LKB n,l q,λ is a simple B ρ n module for ρ ≤ λ and all l ∈ Z ≥0 .

The proof of Theorem 4B.14 is given in Section 5.

Remark 4B.15. Theorem 4B.14 extends and generalizes [JK11, Theorem 3] in multiple ways. First, Theorem 4B.14 is a multiparameter version of [JK11, Theorem 3]. Theorem 4B.14 also generalizes the result in loc. cit. to arbitrary fields and generic q, and also allows much more general parameters.

And even when we have only one parameter, i.e. λ = (λ, ..., λ), and work over Q(λ, q) Theorem 4B.14 is stronger than [JK11, Theorem 3] since we e.g. also prove that LKB n,l q,λ is a simple PB n module not just a simple B n module. The proof given below is also very different from the one given in [START_REF] Jackson | The Lawrence-Krammer-Bigelow representations of the braid groups via U q (sl 2 )[END_REF], and we do not know how to generalize the proof in [START_REF] Jackson | The Lawrence-Krammer-Bigelow representations of the braid groups via U q (sl 2 )[END_REF] to e.g. include the various subgroups of B n , including the pure and handlebody braid groups.

The proof of simplicity

Our proof of Theorem 4B.14 uses Verma versions of [LZ06, Theorem 5.5 and Remark 8.6].

Remark 5.1. We think of Verma modules as limits of symmetric powers and this was one of our main motivation to follow the approach taken in [START_REF] Lehrer | Strongly multiplicity free modules for Lie algebras and quantum groups[END_REF].

5A. The classical case. Our ground field in this section is K.

Definition 5A.1. For k ∈ Z ≥2 the infinitesimal pure braid group is the K algebra PB ε n generated by β ε ij for 1 ≤ i < j ≤ k subject to [β ε ij , β ε rs ] = [β ε ir + β ε is , β ε rs ] = [β ε ij , β ε ir + β ε jr ] = 0 
, for pairwise distinct i, j, r, s, and [ -, -] denotes the commutator. For k = 1 we let PB ε n = K. Remark 5A.2. The motivation to study PB ε n is that it gives rise to the so-called monodromy representation of the KZ equation of the pure braid group PB n which works for very general tensor products of Lie algebra representations, see [Koh02, Proposition 2.3] for details. It remains to show that all endomorphisms of (D g-t,t ) d come from PE ε n in the dense sense. The Casimir subalgebra. To this end, let Cas n ⊂ End K (M ⊕λ d ) , by definition, be the K algebra generated by e ij e ji + e ji e ij , e kk |1 ≤ i < j ≤ n, 1 ≤ k ≤ n with the endomorphisms as in (3A.5). It is important to observe that the images of the Casimir operators Cas k from (3A.21) are in Cas n . Moreover, note that Cas n ⊂ End U (gl 2 ) (M ⊕λ ) d by Theorem 2B.3 and the elements of Cas n are homogeneous, and hence, Cas n acts on (D g-t,t ) d .

Definition 5A.3. For all 1 ≤ i < j ≤ n define operators on M ⊕λ ∼ = P λ by γ ε ij = X i X j ∂ X i ∂ X j + X i Y j ∂ Y i ∂ X j + Y i X j ∂ X i ∂ Y j + Y i Y j ∂ Y i ∂ Y j . (5A.4) Lemma 5A.5. The assignment β ε ij → γ ε ij endows M ⊕λ with
E = F , F = E, L i = L i . Then define Casimir-type elements by Cas ij = b∈B 1 ⊗i-1 ⊗ b ⊗ 1 ⊗j-i-1 ⊗ b ⊗ 1 ⊗n-j ∈ U (gl 2 ) ⊗n for 1 ≤ i < j ≤ k.
Simplicity. We aim to show that (D g-t,t ) d is simple as a Cas n module. For this we use an analog of [MTL05, Theorem 6.1 and Remark 6.2], where the main observation is that the Casimir operators Cas k from (3A.21) have a joint simple spectrum on (D g-t,t ) d with diagonal basis given by the GT vectors. This follows from the proof of Lemma 3A.23.

Using the GT formulas from Definition 2A.14 it is not hard to see that the action graph of the Cas k on (D g-t,t ) d with vertices given by the relevant GT vectors is strongly connected. Hence, as soon as a nonzero Cas n submodule M ⊂ (D g-t,t ) d contains at least one GT vector we have M = (D g-t,t ) d . Finally, since the spectrum of the Cas k is simple with diagonal basis given by the GT vectors by the above, every such M ⊂ (D g-t,t ) d contains indeed a GT vector.

Wrap-up. It follows that Cas n generates the whole of End K (D g-t,t ) d . A calculation then verifies that e ij e ji = γ ε ij + e ii and e ii acts as a scalar, which completes the proof since the elements γ ε 5B. The quantum case. Instead of infinitesimal braids we come back to the pure braid groups.

To this end, recall that (M ⊕λ q ) d is a B ρ n module for all ρ ≤ λ by Lemma 4B.7. In particular, (M ⊕λ q ) d is a PB n module. Let PE ε n,q be the image of this action, and similarly for admissible parameter we let PE ε n,v be the respective image.

Lemma 5B.1. The K λ v algebra PE ε n,v contains an A µ v subalgebra PE ε n,v whose classical specialization contains PE ε n and whose quantum specialization is PE ε n,q .

Proof. First note that all appearing scalars are in A µ v ⊂ K λ v , so the construction in Section 4B works verbatim over A µ v . The statement about the quantum specialization is then clear since this is how the quantum specialization is defined.

For the classical specialization the same argument as [LZ06, Proof of Theorem 7.5] works.

Lemma 5B.2. Assume that the parameters are admissible. We have PE ε n,q ⊂ End Uq(gl 2 ) (M ⊕λ q ) d and PE ε n,q d End Uq(gl 2 ) (M ⊕λ q ) d .

Proof. PE ε n,q ⊂ End Uq(gl 2 ) (M ⊕λ q ) d follows from Lemma 4B.7 and the definition of the R matrices. For the second statement recall that M ⊕µ A is flat and specialize to M ⊕λ classically and to M ⊕λ q in the quantum case, see Lemma 3B.10. Thus, on the side of the endomorphism algebra we can change between the classical and the quantum case. Moreover, Lemma 5B.1 shows that PE ε n,q is at least as big as PE ε n . Taking both together and using Lemma 5A.7 implies then the claim. We are ready for the final proof of this paper:

Proof of Theorem 4B.14. It is enough to consider B ρ n = PB n , so we restrict to this case. Note that (M ⊕λ q ) d is a U q (gl 2 )-PB n bimodule by Lemma 4B.7, and Lemma 5B.2 shows that PE ε n,q densely-generates the centralizer of U q (gl 2 ) on (M ⊕λ q ) d . Having this and the usual statements about simple modules of centralizers as e.g. in [GW09, Theorem 4.2.1], it remains to argue that the LKB representations are PB n submodules of some (D g-t,t ) d . (Note hereby that the LKB story is finite dimensional and densely generates turns into generates, and hence, [GW09, Theorem 4.2.1] applies.)

To see this we note that, as in the proof of the classical version of Theorem 2B.3, D g-t,t consists of highest weight vectors for the U q (gl 2 ) action, so the condition on LKB n,l q,λ to be annihilated by e holds. Moreover, by (3B.6) we get that K acts on D g-t,t as the scalar q Σλn+g . In particular, for g = -2l we get ker(k -q Σλn-2l ) ⊂ D g-t,t . Hence, the LKB representations are PB n submodules of some (D g-t,t ) d (for some d ∈ Z n depending on l) as desired.

( d )

 d We change the summation and use a few tricks to get the same expressions defining the GT vectors from (3A.19):• For the part with the multinomial scalars we use Lemma 3A.20 and the well-known formula a

  i has coefficients in A µ v when acting on the basis of the elements of the form X µ+r Y s (to see this it is helpful to keep the quantum derivative picture from Remark 3B.4 and∂ X X r r! = X r-1 (r-1)!in mind), so the biaction can be restricted and gives anU A (gl 2 )-U A (gl n ) bimodule structure on P µ A . The final claim that P µ A ∼ = M ⊕µ A as U A (gl 2 )-U A (gl n )bimodules can be verified as in Lemma 3A.6. Definition 3B.9.(a) We call an A µ v module M (generically) flat if its free and all specializations to characteristic zero fields where µ are specialized to admissible parameters are of the same dimension.(b) We call an U A (gl k ) module M (generically) flat if it is flat as an A µ v module and if all specializations of End U A (gl k ) (M) to characteristic zero fields where µ are specialized to admissible parameters are of the same dimension.

  ij generate PE ε n , by definition, and we then have PE ε n d End K t∈Z ≥0 (D g-t,t ) d ∼ = End U (gl 2 ) (M ⊕λ ) d which gives denseness.

  the structure of a PB ε n module. This PB ε n action stabilizes (M ⊕λ ) d for all d ∈ Z n . Proof. A direct calculation, see also [LZ06, Theorem 2.1]. Remark 5A.6. The PB ε n action on M ⊕λ using (5A.4) factors through an PB ε n action on U (gl 2 ) ⊗n , see [Koh02, Section 2]. This works as follows. Let B = {E, F, L 1 , L 2 } be the usual basis of gl 2 , and

  Then β ε ij → Cas ij defines an PB ε n action that factors the PB ε n action given byβ ε ij → γ ε ij .We have M ⊕λ ∼ = d∈Z n (M ⊕λ ) d as PB ε n modules, by construction. But we in the end only need a fixed arbitrary direct summand (M ⊕λ ) d ∼ = M λ 1 +d 1 ⊗ ... ⊗ M λn+dn . Let PE ε n denote the image of the PB ε n action from Lemma 5A.5 restricted to (M ⊕λ ) d . Note that PE ε n ⊂ End K (M ⊕λ ) d but we will need the following stronger statement. Lemma 5A.7. Assume that the parameters are admissible. We havePE ε n ⊂ End U (gl 2 ) (M ⊕λ ) d and PE ε n d End U (gl 2 ) (M ⊕λ ) d .Proof. The proof splits into several parts.Containment. PE ε n ⊂ End U (gl 2 ) (M ⊕λ ) d follows from (5A.4) via a direct computation. Applying Verma Howe duality. From Theorem 2B.3 we get commuting actions of U (gl 2 ) and U (gl n ) on M ⊕λ and the U (gl 2 )-U (gl n ) bimodule decomposition(M ⊕λ ) d ∼ = t∈Z ≥0 M Σλn+g-t,t ⊗ (D g-t,t ) d ,with M Σλn+g-t,t and D g-t,t being simple. It follows that End U (gl 2 ) (M ⊕λ ) d ∼ = End K t∈Z ≥0 (D g-t,t ) d .
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Recall that the pure braid group is the subgroup PB n ⊂ B n of all elements with the bottom and the top of each strand in the same position. More generally, we define: Definition 4A.2. Let P({1, ..., n}) be the set of partitions of {1, ..., n}. For every S ∈ P({1, ..., n}), the braid group that is pure on S is the subgroup B S n ⊂ B n such that the strands with bottom points in A ∈ S have their top points in A as well. .

Example 4A.6. If all λ i are different, then B λ n = PB n , and if λ = (λ, ..., λ), then B λ n = B n . For the leftmost braid in (4A.1) the finest set of parameters is λ = (λ 1 , λ 2 , λ 3 , λ 3 , λ 3 , λ 6 , λ 7 , λ 3 , λ 3 ) for pairwise distinct λ i .
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Example 4A.7. For the handlebody braid group as in Example 4A.4, a natural choice of λ is λ 1 = ... = λ g / ∈ Z and λ g+1 = ... = λ g+n ∈ Z otherwise. Note that such a choice of parameters is admissible for g > 0.

3 4B. LKB representations. We again work over A µ v and K λ q . We always consider

, but the direct sum is only needed for the dual action).

We now adjust the construction from [JK11, Section 3] (and the references to [Kas95] therein) to our setting. See also [START_REF] Martel | Colored version for Lawrence representations[END_REF]Definition 2.19].

where s is the swap map s(x ⊗ y) = y ⊗ x.

Lemma 4B.2. The operators řµ i ,µ j and ř-1 µ i ,µ j are well-defined, i.e. the appearing summations are finite on every m k ⊗ m l .

Proof. This holds because the operator e is locally nilpotent.

Graphically we will denote these operators by

We now define a B λ n action on M λ A by colored reading. That is, one colors the strands of β ∈ B λ n by λ, and then we get an element of End A µ v (M λ A ) by composing the relevant version of (4B.3) from bottom to top. We call this element řβ .

Example 4B.4. For λ = (µ 1 , µ 2 , µ 3 , µ 3 , µ 3 , µ 6 , µ 7 , µ 3 , µ 3 ) and the leftmost braid in (4A.1) we get

The endomorphism řβ has eighteen R matrix factors in total. 3 Definition 4B.5. A refinement ρ of µ is a set of parameters that gives a refined partition compared to µ when applying Definition 4A.5. We write ρ ≤ µ for refinements of µ.

Notation 4B.6. For U v (gl 2 ) we extend scalars to A v or A ,µ v but do not indicate this in the notation.

Similar to the braid group action in symmetric Howe duality, the braid group acts on one gl n weight space of M ⊕λ A and this action commutes with the gl 2 action: Lemma 4B.7.

(a) (4B.3) and colored reading endows M µ A with the structure of a B ρ n module for ρ ≤ µ. (b) Colored reading commutes with the U v (gl 2 ) action coming from (3B.6).

(c) The image of B ρ n under this module structure is in End Uv(gl 2 ) (M µ A ). Proof. One first proves, by copying [JK11, Theorem 7], that (4B.3) satisfies the colored braid relations, e.g.

Hence, řβ is independent of the choices in colored reading, and we obtain the claimed B µ n module structure. For B ρ n ⊂ B µ n this B µ n module structure restricts to B ρ n . That the two actions commute follows because of the well-known fact (and easy calculation) that the R matrices are U v (gl 2 ) equivariant with respect to (3B.6).

The final claim follows since the action maps commute with the U v (gl 2 ) action on M µ A . We thus have a U v (gl 2 )-B ρ n bimodule structure on M µ A . Remark 4B.8. Lemma 4B.7 can be strengthened: the image of B ρ n commutes with the action of the A µ v subalgebra of U A (gl 2 ) generated by E, F [r] for r ∈ Z ≥0 , L ±1 1 and L ±1 2 . We now turn our attention to the (colored higher) LKB representations, which, following [JK11, Section 3], we define as follows: Definition 4B.9. Let ker(e) and ker(k

) be the kernels of the indicated operators coming from the U v (gl 2 ) action on M µ A . For l ∈ Z ≥0 the lth LKB representation is defined as LKB n,l A,µ = ker(e) ∩ ker(k -v Σµn-2l ).

Lemma 4B.10. For ρ ≤ µ the free A µ v module LKB n,l A,µ is stable under the B ρ n action.

Proof. Note first that the definition of LKB n,l A,µ only involves the operators e, k and A µ v multiples of the identity. Hence, LKB n,l A,µ is defined over A µ v , by construction. The rest can be proven, mutatis mutandis, as in [JK11, Theorem 1].

Example 4B.11. With respect to the basis {m i |i ∈ Z ≥0 } in Example 2A.9, LKB n,1

A,µ has a basis given by an n fold tensor product of m i with one entry being m 1 and all other entries being m 0 . Hence, the A µ v rank is n-1 1 . In general, LKB n,l A,µ is of A µ v rank n+l-2 l . 3

Remark 4B.12. The representation LKB n,l A,µ has between two and n + 1 parameters, depending on µ. For example, for µ = (µ, ..., µ) one has v and µ as parameters.