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ARTICLE OPEN

Prediction of long-term humoral response induced by the
two-dose heterologous Ad26.ZEBOV, MVA-BN-Filo vaccine
against Ebola
Marie Alexandre 1,2, Mélanie Prague 1,2,8, Chelsea McLean3, Viki Bockstal3,6, Macaya Douoguih 3, Rodolphe Thiébaut 1,2,8✉ and
for the EBOVAC 1 and EBOVAC 2 Consortia*

The persistence of the long-term immune response induced by the heterologous Ad26.ZEBOV, MVA-BN-Filo two-dose vaccination
regimen against Ebola has been investigated in several clinical trials. Longitudinal data on IgG-binding antibody concentrations
were analyzed from 487 participants enrolled in six Phase I and Phase II clinical trials conducted by the EBOVAC1 and EBOVAC2
consortia. A model based on ordinary differential equations describing the dynamics of antibodies and short- and long-lived
antibody-secreting cells (ASCs) was used to model the humoral response from 7 days after the second vaccination to a follow-up
period of 2 years. Using a population-based approach, we first assessed the robustness of the model, which was originally
estimated based on Phase I data, against all data. Then we assessed the longevity of the humoral response and identified factors
that influence these dynamics. We estimated a half-life of the long-lived ASC of at least 15 years and found an influence of
geographic region, sex, and age on the humoral response dynamics, with longer antibody persistence in Europeans and women
and higher production of antibodies in younger participants.

npj Vaccines           (2023) 8:174 ; https://doi.org/10.1038/s41541-023-00767-y

INTRODUCTION
The 2014–2016 Ebola virus disease (EBOV) outbreak in West Africa
and the current SARS-CoV-2 pandemic have led to accelerated
development of vaccines to control the spread of infection and
reduce the severity of disease in infected individuals. As a result,
effective vaccines were developed and became available quickly
after the start of these two epidemics. In the case of Ebola, the
recombinant replication-competent vesicular stomatitis viral
vectored vaccine (Ervebo) was approved by the FDA in December
20191 and used during epidemics in a ring vaccination strategy.
The two-dose heterologous strategy, combining immunizations
with Ad26.ZEBOV (Zabdeno) and MVA-BN-Filo (Mvabea), were
approved by the European Commission in July 20202 under
exceptional circumstances for use in children and adults. An
important question for those who have already been vaccinated,
and for using the vaccines as a preventive strategy to control the
occurrence of outbreaks, is the duration of protection conferred
by vaccination.
In the context of rapid vaccine development, long-term follow-

up in large populations of vaccinated persons, as with older
vaccines, is not possible3,4. When data are sparse, mathematical
modeling is helpful because it can provide estimates of the
duration of response by using additional information from
biological knowledge about the vaccine mechanism and biologi-
cal parameters. It is also helpful in quantifying the effect of factors
that influence the response to the vaccine. This type of work is
performed by modeling the dynamics of one or several markers
that could be considered good correlates of protection5. Vaccine
efficacy and mechanisms of action, or optimal immunogenic
vaccine doses, have been evaluated for various infectious diseases,
such as influenza6–8, yellow fever9,10, Zika11, tuberculosis12, and

more recently SARS-CoV-213. In the case of the Ad26.ZEBOV and
MVA-BN-Filo vaccine strategy, the concentration of binding
antibodies is considered a good correlate of protection based
on work performed in non-human primates14. It was agreed with
the FDA to be suitable for use in a Biological Licensing Application
under the Animal Rule15 and it was the basis for marketing
authorization in the EU.
In a previous publication16, we used a mathematical model for

antibody-secreting cell (ASC) dynamics that distinguishes between
short-lived and long-lived cells (SL and LL, respectively), and we
estimated the model parameters using the data from the available
first Phase I studies. We found that antibody production is
maintained by the population of long-lived cells with an estimated
half-life of at least 5 years. New data from three Phase II
studies17–19 conducted in two international consortia (EBOVAC1
and EBOVAC2) provided an opportunity to validate the model and
better characterize factors associated with the variation of the
antibody response.

RESULTS
Descriptive analysis of the data
The baseline and demographic characteristics of the 487
participants included in the study are shown in Table 1. In all
results hereafter, Benjamini and Hochberg correction20 for multi-
ple testing has been used (see the section “Methods” for more
details). Comparable baseline characteristics in terms of age, body
mass index (BMI), and weight are observed in European
participants across the Phase I and II clinical studies (all p-
values > 0.80). Similarly, no differences are observed in Africa
across trials and sites in terms of weight, however, BMI appears
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significantly higher in East African participants (+6%, p-value=
0.007) than in West African ones. European participants were
significantly older than Africans (41 vs. 29 years, p-value < 0.001)
and consequently, participants in EBL2002 tended to be older (34
vs. 27 years, p-value < 0.001). BMI and weight (p-values < 0.001 in
both cases) were significantly higher in European participants
(+13% and +18%, respectively) than in African participants.
Figure 1 shows the dynamics of antibody concentrations (median

and interquartile ranges) 7 days after the second vaccination for each
study according to the assay used to quantify the binding antibodies.
In addition, Table 2 summarizes antibody concentrations observed at
predefined sampling time points. Only participants who had received
both the first and second vaccinations were included in both the
descriptive and the modeling analyses. Similar kinetics were observed
in all studies, with the highest binding antibody concentrations
observed at 21 days post-dose 2 (hereafter referred to as “peak"),
followed by a biphasic decline up to 1 year after the first vaccination.
Furthermore, the longer-term dynamics observed in EBL3001 suggest
a durable immune response after the biphasic decline.

Mechanistic model of the humoral response
To better identify the factors associated with the dynamic of the
antibody response and to predict its duration, we used a model
initially applied by Pasin et al.16 in Phase I trials evaluating the
two-dose heterologous Ad26.ZEBOV, MVA-BN-Filo vaccine regi-
men. In this mechanistic model, antibodies are assumed to be
produced by plasma cells (antibody-secreting cells, ASCs) divided
into two distinct sub-populations characterized by their lifespan:
short-lived (SL) and long-lived (LL). For various infectious diseases,
a rapid expansion of antigen-specific ASCs in blood peaking on
day 7 post-infection or vaccination, followed by a fast depletion is
observed21,22. Therefore, strictly decreasing dynamics were
considered from 7 days after the second vaccination for the two
compartments of plasma cells assuming no additional exposure to
the antigen. A schematic diagram of the mathematical model
used to describe the humoral response from 7 days after the
second vaccination is displayed in Fig. 2. This simple model relied
on three biological processes. LL and SL ASCs decay with time at
rate δL and δS, respectively, and produce antibodies at rates θL and

Table 1. Demographic and baseline characteristics of participants.

Phase I trials Phase II trials Total

Europe East Africa Europe East Africa West Africa West Africa

UK Kenya Tanz./Ug. UK/France Ken./Tanz. BFA/IVC Sierra Leone

EBL1001 EBL1003 EBL1004 EBL2001 EBL2002 EBL3001

Part., no. 14 15 15 71 79 58 235 487

Sex

Men 4 (29%) 11 (73%) 10 (67%) 32 (45%) 45 (57%) 44 (75%) 203 (86%) 349 (72%)

Women 10 (71%) 4 (27%) 5 (33%) 39 (55%) 34 (43%) 14 (24%) 32 (14%) 138 (28%)

Age (yrs) 37.6 (9.3) 23.7 (2.8) 26.5 (6.8) 41.2 (14.7) 34.1 (13.5) 34.1 (10.8) 27.2 (10.0) 31.3 (12.4)

BMI (kg/m2) 26.1 (3.3) 22.5 (4.1) 22.9 (4.2) 25.4 (4.5) 23.8 (4.0) 23.0 (3.4) 21.9 (3.3) 23.0 (3.9)

Weight (kg) 73.7 (13.7) 63.3 (12.7) 63.5 (11.7) 74.7 (14.7) 63.9 (10.2) 67.2 (9.9) 62.4 (9.4) 65.4 (11.7)

Data are n (%) or mean (SD). Only healthy adults receiving Ad26.ZEBOV followed by MVA-BN-Filo 56 days later were selected within each of the 6 trials.
Part. participants, no. number, yrs years, kg kilograms, m meter, UK United Kingdom, Tanz. Tanzania, Ug. Uganda, BFA Burkina Faso, IVC Ivory Coast.

Fig. 1 Dynamics of Ebola GP-specific binding antibody concentrations, in log10 scale (ELISA units/mL, EU/mL) for each clinical study from
7 days after the second vaccination. Each subplot represents the antibody dynamics measured in one of the three accredited laboratories:
Battelle (left side), Focus (middle) and Q2 Solutions (right side). Each color corresponds to a clinical study (red: EBL1001, dark blue: EBL1003,
light blue: EBL1004, orange: EBL2001, turquoise: EBL2002, light green: EBL3001). Solid and dashed lines represent medians in European and
African participants, respectively. Circles correspond to Phase I studies and triangles to Phase II studies. Error bars correspond to 25th–75th
confidence intervals. The vertical dotted line represents the first year after the first vaccination (309 days after the 2nd vaccination). The
horizontal dot-dashed lines represent the LLOQ values considered for each laboratory (36.60, 26.22, and 36.11 EU/mL, at Battelle, Focus, and
Q2 Solutions, respectively).
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Table 2. Ebola glycoprotein-specific antibody concentrations (in log10 ELISA units/mL) in each trial from 7 days after the second vaccination to study
completion.

Phase I trials Phase II trials

EBL1001 EBL1003 EBL1004 EBL2001 EBL2002 EBL3001

(n= 14)a (n= 15)a (n= 15)a (n= 71)a (n= 137)b (n= 235)c

Day 64 (7 days after the 2nd vaccination, MVA-BN-Filo)

Number Part. 14 15 15

Positive Part.d 14 (100%) 15 (100%) 15 (100%)

Missing data 0 (0%) 0 (0%) 0 (0%)

Mean [IQR] 3.19 [2.99; 3.48] 3.33 [2.90; 3.73] 3.09 [2.55; 3.58]

Day 78 (21 days after the 2nd vaccination, MVA-BN-Filo)

Number Part. 14 15 15 70 137 231

Positive Part.d 14 (100%) 15 (100%) 15 (100%) 70 (100%) 137 (100%) 231 (100%)

Missing data 0 (0%) 0 (0%) 0 (0%) 1 (1%) 0 (0%) 4 (2%)

Mean [IQR] 3.88 [3.64; 4.10] 4.21 [3.96; 4.45] 4.03 [3.80; 4.31] 4.00 [3.79; 4.43] 3.88 [3.62; 4.16] 3.60 [3.34; 3.88]

Day 156 (155 days after the 1st vaccination, Ad26.ZEBOV)

Number Part. 42e

Positive Part.d 42 (100%)

Missing data 1 (2%)

Mean [IQR] 2.73 [2.54; 3.00]

Day 180 (179 days after the 1st vaccination, Ad26.ZEBOV)

Number Part. 12 15 15 23f

Positive Part.d 12 (100%) 15 (100%) 15 (100%) 23 (100%)

Missing data 2 (14%) 0 (0%) 0 (0%)

Mean [IQR] 3.47 [3.29; 3.60] 3.00 [2.67; 3.20] 2.97 [2.71; 3.25] 2.70 [2.47; 2.85]

Day 240 (239 days after the 1st vaccination, Ad26.ZEBOV)

Number Part. 13 15 15

Positive Part.d 13 (100%) 15 (100%) 15 (100%)

Missing data 1 (7%) 0 (0%) 0 (0%)

Mean [IQR] 3.35 [3.20; 3.41] 2.66 [2.22; 2.93] 2.83 [2.56; 3.09]

Day 360/365 (1 year after the 1st vaccination, Ad26.ZEBOV)

Number Part. 12 15 15 51 134 207

Positive Part.d 12 (100%) 15 (100%) 15 (100%) 51 (100%) 134 (100%) 205 (99%)

Missing data 2 (14%) 0 (0%) 0 (0%) 20 (28%) 3 (2%) 28 (12%)

Mean [IQR] 3.24 [3.09; 3.33] 2.61 [2.40; 2.96] 2.74 [2.46; 3.06] 3.07 [2.89; 3.28] 2.54 [2.26; 2.78] 2.44 [2.11; 2.68]

Day 540 (539 days after the 1st vaccination, Ad26.ZEBOV)

Number Part. 33e

Positive Part.d 33 (100%)

Missing data 10 (23%)

Mean [IQR] 2.43 [2.15; 2.68]

Day 720 (2 years after the 1st vaccination, Ad26.ZEBOV)

Number Part. 190

Positive Part.d 184 (97%)

Missing data 45 (19 %)

Mean [IQR] 2.45 [2.19; 2.69]

IQR: Interquartile range= 75% confidence intervals, Part.: Participants.
aParticipants receiving the 2nd vaccination in the protocol-defined window of 57 ± 1 day.
bParticipants receiving the 2nd vaccination in the protocol-defined window of 57 ± 3 days.
cParticipants receiving the 2nd vaccination in the protocol-defined window of 57 ± 1 week.
dRefers to the number of participants with antibody concentration above the lower limit of quantification (LLOQ), expressed as n/N (%) where n is the number
of participants with a concentration above the LLOQ (i.e., 36.11 EU/mL for Battelle lab, 26.22 EU/mL for Focus lab and 36.11 EU/mL for Q2 Solutions lab) at that
timepoint and N is the total number of participants with data at the first and the second vaccination and at that time point.
eRefers only to 43 participants enrolled in a substudy to receive a third dose (Ad26.ZEBOV) 2 years after the first vaccination.
fRefers to participants enrolled in EBL 2002 having an additional timepoint, initially scheduled for participants who do not receive a second vaccination
because of a study pause.
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θS, respectively. Finally, antibodies are assumed to decay over time
at rate δAb. Since the baseline level of ASCs is unknown, the
parameters ϕL= θLL0 and ϕS= θSS0 were defined, which represent
the influx of LL and SL ASCs, respectively (see “Mathematical
model of antibody kinetics” for more details).

Quality of model prediction
Using parameter estimations obtained by Pasin et al.16 on humoral
response observed in Phase I trials, we evaluated the robustness
of the model and its predictive abilities.
First, we looked at the capacity of the model to capture the

dynamic of the antibodies during the early phase following
vaccination, based on the previously estimated parameters, in a
new population of participants. Fixing the antibody, short- and
long-lived ASCs half-lives at 24 days, 3.0 days and 6.0 years,
respectively, as well as the SL ASC influx parameter at 2755 ELISA
units/mL/day and the LL ASC influx parameter at 16.6 and 70.7
ELISA units/mL/day for African and European participants (see the
“Methods” subsection “Evaluation of the model quality of
prediction” for more details), only random effects (i.e. individual
deviation from population mean) for the 487 participants were
evaluated using empirical Bayes estimates (EBEs).
When restricted from 7 days post-second vaccination to the

peak of individual dynamics, the model predictions fit well with
observed antibody concentrations (see Table 3). The overall
percent of observations falling within the 95% individual
prediction intervals (also referred to as the percent of coverage)
was evaluated at 100%. The root mean squared error (RMSE) was
consistent with a relatively small average difference between
observations and predictions estimated at 0.012 log10 ELISA units/
ml (RMSE= 0.028 log10 ELISA units/ml in Phase I studies
accounting for two observations). The model provided similar
goodness of predictions when observations extended to the first
year following vaccination were used to update EBEs (Supple-
mentary Table 1). The percent of coverage was evaluated at 100%
and the RMSE at 0.045 log10 ELISA units/ml (RMSE= 0.066 and
0.038 log10 ELISA units/ml in Phase I and Phase II studies,
respectively). These results confirmed the ability of the model,

estimated using only data from Phase I trials, to capture the
antibody response in all additional participants included in Phase
II trials.
Then, we looked at the ability of the model to predict antibody

concentrations beyond the peak of the dynamics. Individual
parameters assessed for the early part of the dynamics of humoral
responses were then used to predict both short-term antibody
responses between the peak and 1 year after the first vaccination,
and long-term antibody responses between 1 year and 2 years. As
described in Table 2, while participants from all trials were
included in the analysis of short-term predictions, only partici-
pants from the EBL3001 clinical trial contributed to the analysis of
long-term predictions because they were the only ones with a
follow-up beyond 12 months. As shown in Fig. 3 and Table 3, the
model demonstrated a high quality of short- and long-term
predictions with a total of 98% of the observed antibody
concentrations falling within the 95% individual prediction
intervals. Nevertheless, the high width of 95% prediction intervals
(2.297 and 2.479 log10 ELISA units/mL for short- and long-term
forecast, respectively) highlights a large uncertainty in individual
model parameters and explains the high percentage of coverage.
Plots of individual predictions for more participants having at least
two observations from 7 days post-second vaccination are given
in Supplementary Figs. 1–3. Similar work was done to evaluate the
ability of the model to predict long-term antibody concentrations
beyond 12 months when data from 7 days post-second
vaccination to 1 year were used to estimate individual parameters
(see Supplementary Figs. 4–6). These results highlight the benefit
of using an additional short-term observation to improve long-
term predictions (beyond 1 year after the second vaccination). The
uncertainty of predictions was much lower (65% reduction in
the size of prediction intervals) leading to a fair but smaller
coverage (90% vs. 98%) and a significant improvement in the
quality of the predictions (RMSE: 0.298 instead of 0.518; bias:
−0.017 instead of 0.253).

Additional insight on longevity of the humoral immune
response
The model performed well in forecasting short- and long-term
humoral response. However, the increase in RMSE and the width
of 95% prediction intervals, and the decrease in the percent
coverage beyond 12 months (see Table 3 and Supplementary
Table 1) motivated an update of the parameters using all available
data from both the Phase I and Phase II trials. First, the model was
modified to include laboratory effects (Battelle, Focus, or Q2

Solutions) in the observation model. Among the four observation
models tested (see the “Methods” subsection “Update and re-
estimation of the model” for more details), none was able to
outperform the model without adjustment for laboratories.
However, since laboratory effects reflect an observable reality,
the adjusted observation model was constrained and the model
including a scaling factor between the observations and the
compartment Ab in natural scale, providing the lowest corrected
Bayesian information criteria (BICc), was chosen. We secondly
focused on the half-life of LL ASCs, logð2Þ=δL. The estimation of
the lower bound of the loss rate of LL ASCs δL was performed with
a profile likelihood. Thanks to the longer follow-up available, the
previous estimation of 5 years for the lower bound of the half-life
of LL ASCs was updated to 15 years (Fig. 4). The method used to
achieve this estimation is described in Supplementary Methods. In
other words, since long-lived antibody-secreting cells are non-
proliferating cells23, half of these antibody-secreting cells, which
are produced at 7 days after the second vaccination, should
persist for at least 15 years. Given this result, further estimations
were performed with the parameter δL as fixed at the value
corresponding to a lifespan of 15 years.

Fig. 2 Schematic diagram of the model describing the humoral
immune response from 7 days after the 2nd vaccination. S and L
stand for short- and long-lived ASCs, respectively and Ab for
antibodies. The parameters δS, δL, and δAb are respectively the decay
rates of SL ASCs, LL ASCs, and antibodies while θS and θL represent
the production rates of antibodies by SL and LL ASCs.
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The application of three algorithms of covariate selection (SCM,
COSSAC, and SAMBA; see the “Methods” subsection “Update and
re-estimation of the model” for more details) enabled us to
identify factors influencing the dynamics of the humoral response.
Although methods of covariate search differ from one algorithm
to another, the adjustment of the biological parameters of the
model for baseline characteristics, including demographics,
selected by the different methods were quite consistent. All
procedures led to the selection of an effect of continent, sex, and
age on antibody responses. The same covariates were identified in
the model without adjustment for laboratories.
The best model estimated the effect of the continent on ϕL (see

Table 4 presenting a summary of parameter estimations). The
mean value of ϕL was estimated at 36.6 ELISA units/mL/days in
Europe compared to 10.2 ELISA unit/mL/days in African partici-
pants. These results are in accordance with those previously
obtained with Phase I trial data16.
By adding more information with Phase II trial data, we also

identified sex as another significant covariate for explaining the
inter-individual variability of the decay rate of antibodies. Indeed,
we estimated that antibodies have a significantly higher half-life in
women (p-value estimated by Wald test <0.001) with an increase
of the decay rate of 41% (95% confidence interval (CI): [24%; 60%])
for men as compared to women.
We also found that older age was associated with a decrease in

the influx of short-lived ASCs (parameter ϕS). For example, a 31-
year-old participant (ages are assumed to be centered, see
Table 1) displayed a mean value of SL ASCs influx of 3057 ELISA
units/mL/days (see Table 4). Each additional year from this mean
age induces a division of the resulting influx of SL ASCs by 7%
(95% CI: [5%; 9%]). Therefore, for a participant 10 years older, its
influx of SL ASCs will then be divided by 49% (see Table 4

footnote), corresponding to a decrease of the peak of its dynamics
of 0.23 [0.22; 0.25] log10 EU/mL.
Once the optimal structure was identified, we estimated the

value of the parameters of the model as shown in Table 4,
providing the model parameters estimated by Pasin et al.16 on
Phase I data as well as the model parameters obtained on
combined Phase I and II data. Figure 5 displays the dynamics
estimated by the model, highlighting the goodness-of-fit of the
data (the reader can refer to Supplementary Figs. 7 and 8 for
additional results about model estimation and its goodness-of-fit).
Compared with the estimates we obtained from the Phase I

data, the new estimates show a decrease in the magnitude of the
ϕL parameter. This decrease is likely due to the significant increase
in the half-life of the LL ASC from 6 to 15 years. Nevertheless, the
mean ϕL remained four times higher in Europe than in Africa,
similar to the approximation previously obtained using Phase I
data16, where the mean ϕL was 4.3 times higher in Europe than in
Africa. For the dynamics of SL ASCs, the parameter estimates
remained quite stable, between the newly estimated model and
the earlier estimates. As noted above, the information gained from
longer follow-up allowed an update of the lower bound of the LL
ASC decay rate. Similarly, the use of 443 additional participants
improved the precision of the model parameter estimates. Indeed,
the confidence intervals in the new estimates have become
narrower, for each parameter ϕL, ϕS, or δS, and are mostly included
within the confidence intervals of the old estimates. Moreover, a
comparison of the model estimates showed a slight increase in
inter-individual variability for parameters ϕL and δAb in the new
model compared with the old one. The latter may be due to the
use of additional data collected in a more heterogeneous
population than in Phase I studies. However, adjustment of the
parameter ϕS for the age of the participants reduced the

Table 3. Evaluation of the robustness and the quality of prediction of the model developed by Pasin et al.16.

All trials Phase I trials Phase II trials

EBL1001 EBL1003 EBL1004 EBL2001 EBL2002 EBL3001

Time of peaka

Mean [95% CI] 15.0 [5.0; 21.0] 13.4 [11.6; 14.6] 14.4 [13.0; 18.2] 13.4 [12.0; 14.0] 14.3 [13.0; 16.3] 14.0 [12.4; 15.0] 16.0 [3.9; 22.2]

Number of timepointsb

Mean [Min–Max] 1.09 [1.0; 2.0] 2.0 [2.0; 2.0] 2.0 [2.0; 2.0] 2.0 [2.0; 2.0] 1.0 [1.0; 1.0] 1.0 [1.0; 1.0] 1.0 [1.0; 1.0]

Predictions from 7 days post-2nd vaccination to the peak

RMSEc 0.012 0.034 0.023 0.026 0.005 0.006 0.006

Coverage (%) 100 100 100 100 100 100 100

Biasc 0.002 0.018 -0.003 0.006 0.001 0.001 0.000

95% PI width 0.410 0.547 0.502 0.510 0.389 0.389 0.387

Short-term forecast from the peak to 1 year

RMSEc 0.471 0.218 0.539 0.361 0.442 0.460 0.515

Coverage (%) 98.1 100 93.3 100 100 98.7 97.6

Biasc 0.251 0.014 0.239 0.077 0.293 0.224 0.328

95% PI width 2.297 2.097 2.124 2.184 2.502 2.358 2.298

Long-term forecast beyond 1 year

RMSEc 0.518 0.518

Coverage (%) 97.8 97.8

Biasc 0.253 0.253

95% PI width 2.479 2.479

The model was estimated on Phase I data and individual parameters were assessed, for each participant of Phase I and Phase II trials, using observation from 7
days post-second vaccination (day 64) to the peak of individual dynamics.
CI confidence interval, PI prediction interval, RMSE root mean squared error.
aTime delay in days (Mean [95% CI]) from 7 days post-vaccination (day 64) to the peak (first local maximum).
bNumber of observations from 7 days post-vaccination to the peak.
cCriteria calculated on the median of individual predictions.
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Fig. 3 Individual antibody concentrations predicted by the model, estimated on Phase I data, for a random sample of participants from
the six clinical studies. Each subplot represents the individual antibody dynamics (in log10 ELISA units/mL) from 7 days after the 2nd
vaccination. For each participant, the vertical dashed line represents the time limit (individual peak of dynamics) between the predictions (on
the left) and the forecasts (short-term in blue and long-term in orange). Plain dots correspond to observations used to evaluate individual
parameters while circles are observations not used in parameter estimation. Shaded areas correspond to 95% individual prediction intervals
(accounting for the uncertainty on the individual parameter estimation and the measurement error) and the solid lines correspond to the
prediction of the model.
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unexplained inter-individual variability for the same parameter by
24%. Finally, it can be noticed the absence of effects of laboratory
adjustment, with the two scaling factors αfocus and αQ2Sol
estimated as non-significantly different from 1.00, at 1.04 and
1.00, respectively.

In order to evaluate the impact of fixing the parameter δL, we
performed a model averaging analysis24,25, which integrates
model uncertainty in the value of δL in the calculation of the
parameter confidence intervals. Results shown in Supplementary
Tables 2 and 3 indicate very stable estimation.

Fig. 4 Profile likelihood on parameter δL. The y-axis corresponds to the non-penalized log-likelihood computed by importance sampling for
several values of LL ASCs half-life which needs to be maximized. The blue dotted vertical line represents the lower bound of the LL ASCs half-
life estimated by profile likelihood by Pasin et al.16 on Phase I data. The red dashed vertical line represents the newly estimated lower bound
using both Phase I and II data.

Table 4. Model parameters estimated on Phase I participants by Pasin et al.16 and the new estimates obtained on pooled Phase I and Phase II data
and considering adjustment for laboratory effects.

Parameter Meaning Phase I data Phase I & II data

Mean 95% CI Mean 95% CI

Fixed effects

δAb Antibody decay rate (day−1) 0.029 [0.027; 0.033]

Women 0.0251 [0.0223; 0.0283]

Men 0.0353 [0.0296; 0.0421]

logð2Þ=δAb Antibody half-life (days) 24 [22; 26]

Women 27.6 [24.5; 31.1]

Men 19.6 [16.4; 23.4]

δS SL ASCs decay rate (day−1) 0.231 [0.15; 0.36] 0.333 [0.326; 0.340]

logð2Þ=δS SL ASCs half-life (days) 3.0 [1.9; 4.7] 2.08 [2.04; 2.13]

δL LL ASCs decay rate (year−1) 3.16 × 10−4 [1.46; 7.03] × 10−4 1.25 × 10−4

logð2Þ=δL LL ASCs half-life (years) 6.0 [2.7; 13] 15.0

ϕS SL ASCs influx (EU/mL/day) 2755 [1852; 4100]

Mean Age (31.3 years) 3057 [2418; 3865]

FC ΔAge=+ 1 yeara 0.934 [0.915; 0.954]

ϕL LL ASCs influx (EU/mL/day)

African part. 16.6 [13.7; 20.1] 10.2 [9.01; 11.4]

Eur. part. 70.7 [54.0; 92.7] 36.6 [27.3; 49.2]

α Scaling factor—lab effects

αfocus 1.04 [0.93; 1.16]

αQ2sol 1.00 [0.98; 1.02]

Random effects

ωϕS
Sd of RE on ϕS 0.92 [0.83; 1.01] 0.84 [0.56; 1.13]

ωϕL
Sd of RE on ϕL 0.85 [0.78; 0.92] 0.88 [0.81; 0.96]

ωδAb Sd of RE on δAb 0.30 [0.24; 0.36] 0.35 [0.29; 0.41]

Error model

σAb Sd of error model 0.10 [0.10; 0.10] 0.107 [0.101; 0.112]

CI confidence interval, EU ELISA units, Eur. European, FC fold change, LL ASCs long-lived antibody-secreting cells, Part. participants, RE random effects, SL ASCs
short-lived antibody-secreting cells, Sd standard deviation.
aRepresents the multiplicative factor to apply to the value of ϕS, obtained for the mean age, for an increase in participant age of 1 year: ϕS(Mean Age+ 1
year)= ϕS(Mean Age) × FC(ΔAge=+1). Therefore, the percentage of decrease of ϕS for a participant X years older than the mean age is given by
100×(1−FC(ΔAge=+1)X).
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Fig. 5 Individual antibody concentrations estimated by the model for a random sample of participants from the six clinical studies. Each
subplot represents the individual antibody dynamics (in log10 ELISA units/mL) from 7 days after the 2nd vaccination to 2 years. Colored circles
correspond to observations used to estimate the model. The thick solid lines correspond to the individual dynamics and the 95% individual
confidence intervals (accounting for the uncertainty of the estimation of the individual parameters only) are delimited by the shaded areas.
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We examined the ability of our model to predict the response
for new participants by performing Monte Carlo cross-validation
(MCCV) and using RMSE and percent coverage as quality criteria
for prediction. (see the “Methods” subsection “Update and re-
estimation of the model” for more details). The results of this
analysis are summarized in Fig. 6, where these two criteria are
displayed as functions of the percent of participants used in the
training dataset. Finally, despite the wide range of percentages
tested for the split of train and test, the quality of the model
prediction was very stable. The mean RMSE gradually decreased
from 0.0870 to 0.0828 log10 ELISA units/mL until it reached the
value of 0.0843 log10 ELISA units/mL when 100% of the data were
used to estimate the models. The mean percent coverage
remained higher than 95% even when only 20% of participants
were used to estimate the model. Consequently, the model
showed reasonably good quality in predicting the humoral
immune response from 7 days after the second vaccination to
two years after the first vaccination.

DISCUSSION
With this modeling work, we evaluated the quality of long-term
predictions of the mechanistic model developed by Pasin et al.16

which considers two populations of ASCs. We demonstrated with
new data and a longer follow-up from phase 2 trials that the
model, developed with a small number of participants from phase
1 trials, provides long-term predictions of the antibody response
with high validity. Re-estimation of the model with a longer-term
follow-up allowed us to update the value of the lower limit of the
LL ASC half-life and showed that the longevity of LL plasma cells is
much longer than previously estimated.
One advantage of this modeling work is the ability to

distinguish the half-life of the antibodies from that of ASCs. The
estimated values obtained for the half-life of the antibodies (δAb)
were in the range of those reported in the literature of
20–50 days26–32. References on ASC half-lives are more difficult
to figure out because these cells are circulating in various
compartments (lymphoid, bone marrow) and the survival of the
cells may vary greatly according to the infectious agents33. Hence,
estimates of short-lived ASC vary from days34 to several weeks3,35.
The half-life of long-lived ASCs is even more variable and reflects
the variability of the antibody dynamics according to infectious
agents and type of vaccines36. The updated estimate for the long-
lived ASCs calculated in the present study is particularly

encouraging with a half-life of at least 15 years. This is comparable
to the half-life estimated for long-lived ASCs induced by the
Hepatitis A virus vaccine3. Long-term humoral immunity is
maintained through the memory B cells and the long-lived
plasma cells37. These latter cells, residing preferentially in the bone
marrow, produce antibodies in the absence of antigenic stimula-
tion. Interestingly, it has been recently demonstrated that these
cells are intrinsically long-lived and can maintain the secretion of
antibodies without replenishment of the pool of memory B cells38.
Specific niches in the bone marrow promote cell survival through
various factors36.
The model was able to capture inter-individual variation of the

antibody dynamics. A part of this variability was associated with
the geographic region, age, and sex. The cause of the influence of
geographic regions on the humoral response to vaccines is still
unknown. Concomitant malaria infection is suspected to play a
role in compromising the immune response39–41. Nevertheless,
these results should be interpreted cautiously, as simple
nonspecific cross-reactivity within the assays used could also be
responsible for this association40. Chronic parasitic infections, such
as schistosomiasis42, have also been suspected to play a role in
dampening immune response to vaccination43. Both hypotheses
are currently explored in the EBOVAC consortia. The less
pronounced decline of antibodies observed in women is
consistent with several reports from other vaccines, including
SARS-CoV-244,45, Ebola46, and Flu47. The biological mechanism
behind the lower clearance of binding antibodies in women
remains an area of research and may differ from vaccine to
vaccine47. It could also be a limitation of the modeling work in
identifying precisely enough which compartment is influenced by
sex differences in the absence of more immunological measure-
ments. The influence of age on the response to the vaccine is
known48, but the characterization of its effect through the
production of short-lived antibody-secreting cells is novel and
requires further confirmation. Pritz et al.49 have noted an age-
related decline in the number of plasma cells in human bone
marrow. Here also, the identifiability of this effect could have been
compromised because of a restricted range of participant ages
because none of them were older than 65 years.
In conclusion, the dynamical model constructed from early

Phase I data has demonstrated its predictive capacity, with longer
follow-up and updated estimates giving promising results for the
duration of the immune response. Nevertheless, the simplicity of
this model significantly limits its use to fully describe the immune

Fig. 6 Evaluation of the ability of the model to predict unseen data using Monte-Carlo cross-validation. The predictive quality was
assessed by the evaluation of two criteria: the RMSE (left side) and the percent coverage (right side). The x-axis corresponds to the percent of
participants randomly selected for the training dataset and the y-axis to the value of criteria calculated on the testing dataset. One hundred
replicates were performed for each train-test split percentage. Solid lines display the values of criteria and dashed lines, the 95% confidence
intervals. The horizontal red dotted line on the right side displays the threshold of 95%.
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response induced by a multi-dose vaccine strategy. Indeed, the
model focuses exclusively on the decrease in antibody concentra-
tions following vaccination, without modeling the establishment
of the immune response triggered by each injection. Thereafter,
more complex versions of this model have been proposed to
model the establishment, reactivation, and persistence of the
humoral immune responses induced by vaccination50,51. In
particular, these models integrate the stimulation of the immune
system triggered by vaccine antigens and the role of immunolo-
gical memory resulting from interactions with memory B cells and
plasma cells.
The main findings obtained in this modeling work are not

necessarily specific to the Ad26.ZEBOV, MVA-BN-Filo vaccine
strategy. Some parameters, such as the long-lived ASCs half-life,
could be found with other vaccine regimens. Nevertheless, the
value and the interpretation of the parameters are dependent on
the model structure and assumptions. For instance, in the
modeling work conducted by Clairon et al.51 to model antibody
dynamics induced by mRNA vaccine strategies against SARS-CoV-
2, the absence of long-term persistence of antibody responses
required an adaptation of the model for monophasic trajectories.
In our work, the biphasic nature of the model fitted antibody
trajectories perfectly, resulting in the estimation of the long-lived
ASCs half-life.
The sporadic nature of Ebola outbreaks makes the identification

of correlates of protection difficult52. Currently, neither a universal
Ebola immune correlate of protection nor a binding antibody
concentration threshold which would ensure a high probability of
protection against EBOV, has been identified. Nevertheless,
studies performed in non-human primates14 identified vaccine-
induced binding antibody concentrations as the immune para-
meter most highly correlated with survival after the EBOV
challenge. Due to the shorter disease course and full lethality of
the Ebola disease model in non-human primates, the extrapola-
tion of these results from animals to humans remains difficult.
Consequently, no protective threshold of post-vaccination binding
antibody concentration was derived for the Ad26.ZEBOV, MVA-BN-
Filo vaccine.

METHODS
Ethics statement
The Phase I UK trial protocol and study documents were approved
by the UK National Research Ethics Service. The Phase I Kenya trial
protocol and study documents were reviewed and approved by
the local Ethics Committee and the Kenyan regulatory authority.
The Phase I Uganda/Tanzania trial protocol and study documents
were reviewed and approved by the Tanzanian Medical Research
Coordinating Committee of the National Institute for Medical
Research, the Tanzania Food and Drugs Authority, the Uganda
Virus Research Institute Research and Ethics Committee, the
Uganda National Council for Science and Technology, the Uganda
National Drug Regulatory Authority, and the Ethics Committee of
the London School of Hygiene and Tropical Medicine. The Phase II
UK/France trial protocol and study documents were approved by
the French National Ethics Committee (CPP Ile de France III; 3287),
the French Medicine Agency (150646A-61), the UK Medicines and
Healthcare Products Regulatory Agency (MHRA), and the UK
National Research Ethics Service (South Central, Oxford; A 15/SC/
0211). The Phase II Kenya/Uganda/Burkina Faso/Ivory Coast trial
protocol and study documents were approved by local and
national independent Ethics Committees and Institutional Review
Boards. The Phase II Sierra Leone trial protocol and study
documents were approved by The study was approved by the
Sierra Leone Ethics and Scientific Review Committee, the
Pharmacy Board of Sierra Leone, and the London School of
Hygiene & Tropical Medicine ethics committee.

These trials were conducted in accordance with the principles
of good clinical practice and the Declaration of Helsinki, and all
participants gave formal, written consent before undergoing any
trial-related procedure.

Immunogenicity measurements
We considered data from six studies aiming at evaluating the
safety, tolerability, and immunogenicity of two-dose vaccine
regimens with Ad26.ZEBOV and MVA-BN-Filo. Ad26.ZEBOV is a
monovalent, recombinant, E1/E3-deleted, replication-defective,
adenovirus type 26 vector vaccine encoding Ebola virus Mayinga
variant GP, produced in PER.C6 human cells and injected as a
single dose of 5 × 1010 viral particles. MVA-BN-Filo is a recombi-
nant, replication-defective, modified vaccinia Ankara vector
vaccine encoding Mayinga variant GP, Sudan virus Gulu variant
GP, Marburg virus Musoke variant GP, and Tai Forest nucleopro-
tein. This multivalent vaccine was produced in chicken fibroblasts
and injected at a dose of 1 × 108 Infectious Units (Inf. U). Three of
the six studies are randomized, observer-blinded, placebo-
controlled Phase I trials on healthy volunteers aged 18–50 years.
These studies were performed in four countries: the United
Kingdom (UK), Kenya, Tanzania and Uganda. Results of the trials
were previously described by Milligan et al.53 and Winslow et al.54

for the UK (study registered at ClinicalTrials.gov, NCT02313077,
and labeled EBL1001 here), Mutua et al.55 for Kenya (study
registered at ClinicalTrials.gov, NCT02376426, and labeled
EBL1003 here), and Anywaine et al.56 for Tanzania/Uganda (study
registered at ClinicalTrials.gov, NCT02376400, and labeled
EBL1004 here). In addition, we considered data from two
randomized, observer-blinded placebo-controlled, parallel-group
Phase II trials on healthy volunteers aged 18–65 or 75 years. These
studies were performed in six countries: the UK, France, Kenya,
Uganda, Burkina Faso and Ivory Coast. We refer to Pollard et al.17

for a detailed description of results in the European trial and to
Barry et al.18 for the African trial (two studies registered at
ClinicalTrials.gov, NCT02416453 and NCT02564523, and labeled
EBL2001 and EBL2002 here respectively for the European and
African studies). The last study is a combined open-label, non-
randomized stage 1, and a randomized, observer-blinded,
placebo-controlled stage 2 Phase II trial on healthy adults. This
study conducted in Sierra Leone also aimed to evaluate the long-
term immunogenicity and the humoral immune memory induced
by the vaccine regimen. Results of this trial were described by
Ishola et al.19 (study registered at ClinicalTrials.gov, NCT02509494,
and labeled EBL3001 here).
In Phase I trials, participants were equally randomized into four

vaccination regimens: two with MVA-BN-Filo as the first vaccina-
tion on day 1, followed by Ad26.ZEBOV on day 29 or 57, and two
with Ad26.ZEBOV was the prime vaccine on day 1, followed by
MVA-BN-Filo on day 29 or 57. Within each regimen, participants
received either an active vaccine or placebo in a 5:1 ratio. In the
study EBL2001, participants in Cohorts I–III were equally rando-
mized into three parallel groups in which they received
Ad26.ZEBOV was the first vaccine on day 1, followed by MVA-
BN-Filo on day 29, 57, or 85. This first cohort was excluded from
the analysis as participants were enrolled to provide data only on
safety and the timing of anti-Ebola virus GP ASCs responses.
Within each group, participants received active vaccines or
placebo in a 14:1 or 10:3 ratio in cohorts II and III respectively.
In the study EBL2002, healthy adults (Cohort I) were equally
randomized into the same three parallel groups with an active
vaccine: placebo ratio of 5:1. Adults HIV-infected patients (Cohort
IIa) and healthy children (Cohorts IIb and III) were not included in
the analysis. Finally, in the study EBL3001, participants received
either Ad26.ZEBOV as first vaccination on day 1 followed by MVA-
BN-Filo on day 57, or MenACWY vaccine on day 1 and placebo on
day 57, with a ratio of 1:0 and 3:1 in stage 1 and 2 respectively. In
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this work, only participants receiving Ad26.ZEBOV as the first
vaccination on day 1 and MVA-BN-Filo as the second vaccination
in the protocol-defined window of 57 ± X days (Ad26/MVA D57;
with X= 1 for Phase I trials and EBL2001, 3 for EBL2002 and 7 for
EBL3001) were included. Based on these criteria, a total of 487
participants over all studies were included (among the 725
participants enrolled to receive Ad26/MVA D57, a total of 238
participants were excluded for not receiving their second dose
(n= 108) or outside the protocol-defined window (n= 130)), 44 of
whom where in Phase I studies, 71 in EBL2001, 137 in EBL2002 and
235 in EBL3001. In addition, the 168 participants receiving a
placebo as a vaccine strategy were excluded.
Participants were followed up to 1 year after the first

vaccination in all the studies, with longitudinal immunogenicity
measurements performed on blood samples. As shown in Fig. 7,
for the vaccine regimen of interest, immunogenicity samples were
collected in all participants immediately before the administration
of the first vaccination (Ad26.ZEBOV) on day 1, before the second
vaccination (MVA-BN-Filo) on day 57, then 21 days after the
second dose at day 78 and 1 year after the first dose (at day 360 or
365 according to the trial). In Phase I trials, additional samples
were taken at days 7, 29, 64, 180, and 240, while immunological
assays were done on blood samples taken at day 180 and day 156
in EBL2002 and EBL3001 respectively. Participants enrolled in
EBL3001 were additionally followed up to 2 years after the first
vaccination, with blood samples collected every 6 months after
the first year. We analyzed total IgG Ebola virus GP-specific
binding antibody concentrations measured by an Ebola virus GP
(Kikwit strain) Filovirus Animal Non-Clinical Group (FANG) ELISA
assay. The FANG ELISA assays were performed at three different

accredited laboratories: (a) at Battelle Biomedical Research Center
(Columbus, OH, USA; hereafter referred to as Battelle) for the
studies EBL1001 and EBL1004, (b) at Focus Diagnostics (San Juan
Capistrano, CA, USA; hereafter referred to as Focus) for the study
EBL1003, and (c) at Q2 Solutions Laboratory (San Juan Capistrano,
CA, USA; formerly Focus Diagnostics; hereafter referred to as Q2

Solutions) for the studies EBL2001, EBL2002 and EBL3001.
Particular attention has been paid in this work to account for a
possible systematic difference in measurements induced by the
distinct ELISA assays and thus between studies. Being interested in
the longevity of the long-term immunity induced by the two-dose
heterologous vaccine, similarly to Pasin et al.16, we mainly focused
our analysis on immunogenicity measurements assessed after the
second vaccination.

Statistical analysis
A preliminary descriptive analysis was performed on the baseline
and demographic characteristics of the 487 participants to
describe and summarize the basic features of the data. Statistical
differences among groups of participants were evaluated using
classic t-tests (Welch’s t-test in case of unequal variance, identified
by a F-test, and Student t-test otherwise) implemented in R, and p-
values were adjusted for test multiplicity with Benjamini and
Hochberg correction20 using the built-in R function p.adjust.
Because of the difference in antibody concentrations measured by
the distinct laboratories, comparisons of immunogenicity data
between trials were not possible.
Finally, Spearman correlations between antibody concentra-

tions measured 21 days after the second vaccination and

Fig. 7 Design of EBOVAC 1 (EBL 1001, 1003, 1004, and 3001) and EBOVAC 2 (EBL 2001 and 2002) trials for participants receiving Ad26,
MVA D57 as vaccine regimen. Immunogenicity measurements provide the concentration of IgG-binding antibodies against Ebola, as
measured by ELISA (ELISA units/mL).
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longer-term humoral responses were evaluated by integrating
adjustment for test multiplicity on p-values.

Mathematical model of antibody kinetics
To analyze the humoral immune response induced by the two-
dose heterologous vaccine regimen Ad26.ZEBOV, MVA-BN-Filo
against Ebola virus and evaluate the long-term immunogenicity,
we used a mechanistic model divided into three parts. First of all, a
mathematical model based on ordinary differential equations is
defined to describe the dynamics of plasma cells and antibodies3.
As shown in Fig. 2, antibodies are assumed to be produced by two
plasma cell populations differentiated by their lifespan: short- and
long-lived antibody-secreting cells (ASCs). Consequently, the
ordinary differential equation (ODE) system contains three
compartments: the short-lived ASCs (labeled S), the long-lived
ASCs (labeled L) and the antibodies (Ab). Based on the hypothesis
that antibody-secreting cells peaked at day 7 post-infection/
vaccination21,22, time was rescaled to consider only the antibody
dynamics from 7 days after the second vaccination (day 64) during
which plasma cells only decreased over time (t= time observation
−64). As demonstrated by Pasin et al.16, the model can be written
as a single equation (1).

dAb
dt ¼ ϕSe

�δSt þ ϕLe
�δLt � δAbAb

Abðt ¼ 0Þ ¼ Ab0 ¼ AbD64

(
(1)

with δS, δL and δAb representing the average decay rates of SL
ASCs, LL ASCs and antibodies, respectively. The parameters ϕS and
ϕL are, respectively, the influx of SL and LL ASCs defined as
ϕS= θSS0 and ϕL= θLL0, where S0= S(t= 0)= SD64 and L0= L(t=
0)= LD64 are the initial conditions at 7 days after the second
vaccination and θS and θL are their respective antibody production
rates. The initial antibody concentration Ab0 is defined by the
individual measure of antibody concentration at 7 days after the
second vaccination. Keeping in mind that the antibody concen-
tration can be unobserved at day 64 for some participants
(see Fig. 7) while the decrease of the dynamics of ASCs is still
assumed to start 7 days post-vaccination, an individual lag-time Ti
was introduced in Eq. (1). This lag-time represents the individual
time interval between day 64 and the first observation following
this specific time. The equation can then be written as follows.

dAb
dt ¼ ϕSe

�δSðtþTiÞ þ ϕLe
�δLðtþTiÞ � δAbAb

Abðt ¼ 0Þ ¼ fAb0 ¼ AbD64þ

(
(2)

Based on this equation, time was rescaled for each individual such
that the initial condition (Ab(t= 0)) coincided with the first
observation following day 64 (AbD64+), given: time= time
observation−64−Ti. Therefore, for a participant with a first
measurement at day 64 and observations at days {64, 78, 180,
240, 360}, the lag-time is null (Ti= 0), rescaled time points of
observations are given by {0, 14, 116, 179, 296} and AbD64+ is
equal to measurement at day 64, AbD64. For a participant with a
first measurement at day 78 and observations at days {78, 180,
240, 360}, the lag-time Ti= 78−64= 14, rescaled time points of
observations are then given by {0, 102, 162, 282} and AbD64+ is
equal to measurement at day 78, AbD78. We estimated the five
following biological parameters Ψ= (ϕS, δS, ϕL, δL, δAb). To account
for inter-individual variability, we used a statistical model on which
the five model parameters are assumed to be log-transformed, to
ensure their positivity. Each parameter is then described by a
mixed-effects model which depends on covariates. Each individual
parameter Ψi

k for the participant i can be defined as follows, for
k= {1,⋯ , 5}.

log Ψi
k

� � ¼ logðΨk;0Þ þ βkZ
i
k þ uik (3)

where Ψ0 is the fixed effect, Zk and βk are, respectively, the vectors
of explanatory variables and regression coefficients related to the

biological parameter Ψk, and uik is the individual random effect
assumed to be normally distributed with the variance ω2

k . Random
effects were assumed to be independent from each other. Based
on results obtained in the previous work16, we assumed random
effects on the influx parameters, ϕL and ϕS, and on the decay rate
of antibodies δAb.
For the observation model, we modeled the observed IgG

binding antibody concentrations against the Kikwit glycoprotein
from the six studies by the antibody ODE-compartment. We
assumed an additive error model normally distributed on the log10
value of the antibody concentrations, with a variance σ2

Ab. The
antibody concentration for patient i at the jth time is given by

YðtijÞ ¼ log10 AbðΨi ; tijÞ
� �þ εij εij � Nð0; σ2

AbÞ (4)

Model estimation
Mathematical and practical identifiability has been assessed in
previous work16. Thus the parameter δL was estimated by profile
likelihood57 which consists of defining a grid of values for the
parameter, sequentially setting the parameter δL at one of those
different values, and estimating the model by maximizing the log-
likelihood, given that the value of δL. The resulting profile shows
the maximum possible log-likelihood for each value of δL and has
its maximum at the maximum likelihood estimate δ̂L. Other
parameters were estimated by a population approach in which
the model estimation relies on the estimation of the vector of
population parameters including the fixed effects (Ψ0), the
regression coefficients (β), the standard deviation of random
effects (ω) and the standard deviation of the error model (σAb).
Model estimation was performed by the Monolix ®software
versions 2019R1 and 2019R2. This software uses the Stochastic
Approximation Expectation-Maximization (SAEM) algorithm58,59 to
estimate the population parameters with likelihood computed by
importance sampling60 and the Fisher information matrix
calculated by stochastic approximation. Once population para-
meters are re-estimated, individual parameters are computed as
empirical Bayes estimates (EBEs) representing the most likely
values of the individual parameters, given individual data and
population parameters. EBEs are calculated as the mode of the
conditional parameter distribution by Markov-Chain Monte-Carlo
(MCMC) procedure61 using the Metropolis–Hasting algorithm62 to
compute the conditional distribution and the Nelder–Mead
Simplex algorithm63 to maximize it.

Evaluation of the model quality of prediction
The mechanistic model described by Eqs. (2)–(4), initially
estimated on Phase I data by Pasin et al.16, was validated on
data from the six trials according to its quality of prediction. To
this end, a two-step approach was applied: first, the robustness of
the model was assessed by evaluating its ability to predict
antibody dynamics from 7 days post-second vaccination to the
peak of the dynamics (i.e., the first local maximum) for all Phase I
and Phase II participants. Then, the ability of the model to forecast
short-term (i.e., from the peak to 1 year after the first vaccination)
and long-term antibody concentration (i.e., beyond 1 year
following the first vaccination) was evaluated. Because validation
of the mechanistic model estimated on Phase I data is sought
here, no modification of the observation model defined in Eq. (4)
was considered here to account for possible laboratory-induced
effects in the measurement of antibody concentrations.
To investigate the robustness of the model initially estimated

on Phase I data, only data restricted to the first year following the
first vaccination were used to stay in the scope of applicability of
the model (see Table 2 for a detailed description of the number of
observations available at each time point). Consequently, for each
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participant, the peak of its dynamics was sought during the first
year (see Table 3 for a detailed description of individual times of
peak in each trial). Assuming fixed effects and regression
coefficients of the population parameters (Ψk,0 and βk, ∀ k∈ {1,⋯
, 5}), distribution of random effects (ωk, ∀ k∈ {1,⋯ , 5}), as well as
the standard deviation of the error model (σAb) as fixed to
previously obtained values, we evaluated individual parameters
for the 487 participants, via the variables uik , using the empirical
Bayes estimates (EBEs) approach implemented in Monolix. As
shown in Table 4, we fixed the decay rate of antibodies (δAb), SL
ASCs (δS) and LL ASCs (δL) at values corresponding to half-lives of
24 days, 3 days and 6 years, respectively. The parameter ϕS was
fixed at 2755 ELISA units/mL/day while ϕL was fixed at 16.6 ELISA
units/mL/day for African participants and 70.7 ELISA units/mL/day
for Europeans. East and West African participants were assumed to
share the same value of LL ASCs influx. Finally, standard deviations
of the inter-individual variability on the three parameters ϕS, ϕS

and δAb were chosen as ωϕS
¼ 0:92;ωϕL

¼ 0:85 and ωδAb ¼ 0:30.
The parameter σAb was fixed at 0.10 (see ref. 16 or Table 4). To stay
consistent with the model built on Phase I data, we included an
adjustment for geographic region in the statistical model (binary
variable equal to 0 in Africa and 1 in Europe) on ϕL, as shown in
the following equation:

logðϕi
LÞ ¼ logðϕL;0Þ þ βϕL;Eur

´1i2Eur þ uiϕL
(5)

For each individual, the 95% prediction interval64 of the antibody
dynamics was calculated and the percent coverage, defined as the
percent of observations falling within the prediction interval, was
assessed. Through these results, we highlighted the ability of the
model to predict the very first antibody concentration measure-
ments from 7 days post-second vaccination. Once these predic-
tions were validated, individual parameters estimated on the early
phase of the follow-up were used in the second step to quantify
both the short- and long-term forecast skills of the model. To this
end, we used the model to make individual predictions of
antibody concentration between the peak and 2 years after the
first vaccination. Predictions were then compared to observations
and the percent of observations falling within the 95% individual
prediction intervals was quantified.
Thereafter, the two-step approach was also applied for

evaluating: first, the ability of the model to predict antibody
dynamics from 7 days post-second vaccination to 1 year after the
first vaccination (instead of the peak), and second, its ability to
forecast antibody concentration beyond 1 year. This additional
analysis was performed to identify whether the estimation of
individual parameters on a longer follow-up can improve long-
term predictions.
K-means clustering for longitudinal data65 was performed to

identify distinct trajectories of the dynamics of the humoral
response. Using the kml R package66, trajectories of antibody
concentration from 7 days after the second vaccination to 2 years
after the first vaccination were sequentially clustered into two and
more clusters. Thereafter, we evaluated the percent coverage and
the RMSE to investigate potential differences in prediction abilities
according to underlying trajectories for each resulting partition.

Update and re-estimation of the model
Once the quality of prediction of the mechanistic model was
evaluated, an update of the model was performed in order to
improve biological knowledge about the longevity of the long-
term immune response induced by the two-dose heterologous
vaccine regimen, Ad26.ZEBOV, MVA-BN-Filo. The low number of
participants included in the three Phase I trials (177 participants, of
whom only 44 received the Ad26/MVA D57 vaccine regimen) as
well as the short-term follow-up of their immune response up to 1
year after the first vaccination tended to limit the precision of the
estimation of the model parameters in the work conducted only

on Phase I trials. Despite the validation of the model according to
its quality of prediction on additional data coming from the three
Phase II trials (EBL 2001, 2002 and 3001), a re-estimation of the
model using antibody dynamics from the 487 participants was
performed to enhance and reinforce our understanding of the
underlying biological processes leading to the long-term immu-
nity following vaccination against Ebola. To account for the
difference in measurements induced by the three distinct ELISA
assays performed at Battelle, Focus and Q2 Solutions laboratories,
we assumed in the observation model an adjustment for
laboratory effects, as shown on the following equation:

YðtijÞ ¼ log10 α ´AbðΨi; tijÞ
� �þ εij εij � Nð0; σ2

AbÞ

α ¼
1 if i 2 Battelle

αfocus if i 2 Focus

αQ2sol if i 2 Q2 Solutions

8><
>:

(6)

with α representing the proportional scaling factor (in natural
scale) between the three laboratories, considering Battelle as the
reference, and where the two parameters αfocus and αQ2sol are
estimated with the five other biological parameters (Ψ). To ensure
their positivity, both of them are assumed to be log-transformed.
Further investigations with other link-functions between Y and Ab
were conducted to model laboratory effects, such as a propor-
tional relationship in the log10 scale, or with more complex
functions like nonlinear sigmoid functions applied either in the
natural or log10 scale. The function leading to the best model (i.e.,
lowest BICc value) before any covariate adjustment was kept. We
also tested whether the accuracy of the three assays differed using
different measurement error models. However, this modeling did
not improve the fit and was therefore not retained (result not
shown).
Participants from Phase I clinical studies, being monitored only

during the first year following the first vaccination, provided
information only on the early phase of the humoral response. In
particular, the lack of information on long-term immunity made
the estimation of the decay rate of the long-lived ASCs difficult.
Long-lived ASCs are persistent plasma cells with a lifespan ranging
from several months to the end of an individual’s lifetime23,67–69,
therefore only an approximation of the lower bound of the
confidence interval of their half-life (logð2Þ=δL) was possible. Using
additional data from Phase II studies and, in particular, the
humoral response measurements beyond 1 year, we performed a
profile likelihood to identify whether enough information was
available to precisely estimate the parameter δL. Considering the
statistical model found by Pasin et al.16, the model was estimated
for multiple values of LL ASCs half-life ranging from 1 to 40 years.
The profile likelihood was then drawn by maximizing the log-
likelihood, computed by importance sampling60, for each of those
related models.
As a first estimation, a sequential Bayesian estimation was

envisaged, that is using information provided by Phase I studies
only through informative prior distribution for parameters.
Maximum a posteriori (MAP) estimates, corresponding to a
penalized maximum likelihood estimation70, should then be
obtained using humoral responses from only the 443 Phase II
participants. However, the difference in sampling between Phase I
and II studies, in particular the absence of data from 7 to 21 days
after the second vaccination for Phase II participants (see Table 2),
made estimation of the model difficult. The lack of information at
the early stage of the dynamics induced practical identifiability
issues for the parameters δS and ϕS. To tackle this difficulty, all
data were used to update the model. Random effects found on
Phase I trials were kept, considering inter-individual variability on
the parameter δAb as well as on the ASCs influx, ϕL and ϕS.
The statistical model was updated by performing a covariate

selection. We applied the classic stepwise covariate modeling
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(SCM) algorithm71,72 which is a stepwise procedure with a forward
selection followed by a backward elimination. In the forward
selection, each parameter–covariate relationship is tested in turn
and the relationship improving the model criteria (a corrected
version of the Bayesian information criterion, BICc) the most is
kept (the lower the better). Then the addition of a second
covariate is tested. In the backward elimination, the removal of
each parameter-covariate relationship selected in the first step is
tested in an univariate manner. To verify the robustness of the
results, two other algorithms of covariate selection in non-linear
mixed effects models were performed, using BICc as model
selection criteria: (1) the conditional sampling use for a stepwise
approach based on correlation tests (COSSAC)72, and (2) the
stochastic approximation for model building algorithm (SAMBA)73.
The three algorithms were independently applied on an initial
model without any covariates and tested the addition of the seven
following potential covariates: Sex (=0 for women and =1 for
men), Age, Weight, BMI, Continent (=0 for Africa and =1
for Europe), Region (=0 for East Africa, =1 for West Africa and
=2 for Europe) and EBL3001 (=1 for participants from EBL3001
and 0 otherwise). Covariates such as Age, BMI, and Weight were
centered around the mean value of the studied population (see
Table 1). The parameter δL, facing some identifiability issues due
to the lack of measurements beyond two years, was removed
from the covariate selection procedure. Based on their definition,
the parameters αfocus and αQ2sol were also excluded from this
selection. The statistical significance of selected covariates was
then evaluated using a Wald test. EBL3001 was the only study that
had a follow-up beyond 1 year after the first vaccination and
which was conducted in a single country (Sierra Leone). Therefore,
the robustness of the results was analyzed to verify the short-term
relevance of the selected covariates. To this end, the same
procedure was performed on the model already adjusted for the
selected covariates but considering only data up to 1 year after
the first vaccination. At the end of the covariate selection
procedure, an optimal model was obtained with the following
statistical model (see section “Results” subsection “Additional
insight on longevity of the humoral immune response” for more
details).

logðϕi
LÞ ¼ logðϕL;0Þ þ βϕL;Eur

´1i2Eur þ uiϕL

logðϕi
SÞ ¼ logðϕS;0Þ þ βϕS;Age

´ Agei � Age
� �þ uiϕS

logðδiAbÞ ¼ logðδAb;0Þ þ βδAb;Men
´1i2Men þ uiδAb

8>><
>>: (7)

where Agei and Age are, respectively, the age of the participant i
and the average age of the participants and with uiϕL

�
Nð0;ω2

ϕL
Þ; uiϕS

� Nð0;ω2
ϕS
Þ and uiδAb � Nð0;ω2

ϕS
Þ. Once the opti-

mal model selected, its goodness of fit was checked and the
robustness of the convergence of the estimation was assessed by
using the convergence assessment tool implemented in Monolix
which evaluated the robustness of the SAEM algorithm for
numerous initial conditions.
The predictive quality of the newly estimated model was

assessed by performing a Monte-Carlo cross-validation74. Partici-
pants from the overall dataset were randomly split into a training
and a testing dataset, given a particular train-test split percentage.
We ensure that the same ratio of participants in each trial was
maintained within each of the two sub-datasets. Once the model
was fitted on training data, EBEs resulting from this model were
evaluated on test data, followed by the prediction of the
individual antibody dynamics. Two criteria were then calculated
on the testing dataset to estimate how accurately the predictive
model performs: the percent coverage (the higher the better) and
the RMSE (the lower the better). For each of the seven train-test
split percentages {20%, 30%, 40%, 50%, 60%, 70%, 80%}, the pro-
cedure was replicated 1000 times.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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