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ABSTRACT The persistence of the long-term immune response induced by the heterologous Ad26.ZEBOV,MVA-14

BN-Filo two-dose vaccination regimen against Ebola has been investigated in several clinical trials. Longitudinal15

data on IgG-binding antibody concentrations were analyzed from 487 participants enrolled in six Phase I and16

Phase II clinical trials conducted by the EBOVAC1 and EBOVAC2 consortia. A model based on ordinary differential17

equations describing the dynamics of antibodies and short- and long-lived antibody-secreting cells (ASCs) was18

used to model the humoral response from 7 days after the second vaccination to a follow-up period of 2 years.19

Using a population-based approach, we first assessed the robustness of themodel, whichwas originally estimated20

based on Phase I data, against all data. Then we assessed the longevity of the humoral response and identified21

factors that influence these dynamics. We estimated a half-life of the long-lived ASC of at least 15 years and22

found an influence of geographic region, sex, and age on the humoral response dynamics, with longer antibody23

persistence in Europeans and women and higher production of antibodies in younger participants.24

KEYWORDS: Antibody response longevity, Ebola, mechanistic modeling, vaccine25

INTRODUCTION26

The 2014-2016 Ebola virus disease (EBOV) outbreak in West Africa and the current SARS-CoV-2 pandemic have led27

to accelerated development of vaccines to control the spread of infection and reduce the severity of disease in28

infected individuals. As a result, effective vaccines were developed and became available quickly after the start29

of these two epidemics. In the case of Ebola, the recombinant replication-competent vesicular stomatitis viral30

vectored vaccine (Ervebo) was approved by the FDA in December 2019 (1) and used during epidemics in a ring31

vaccination strategy. The two-dose heterologous strategy, combining immunizations with Ad26.ZEBOV (Zabdeno)32

andMVA-BN-Filo (Mvabea), was approved by the European Commission in July 2020 (2) under exceptional circum-33

stances for use in children and adults. An important question for those who have already been vaccinated, and for34

using the vaccines for a preventive strategy to control the occurrence of outbreaks, is the duration of protection35

conferred by vaccination.36

In the context of rapid vaccine development, long-term follow-up in large populations of vaccinated persons,37

as with older vaccines, is not possible (3, 4). When data are sparse, mathematical modelling is helpful because38

it can provide estimates of the duration of response by using additional information from biological knowledge39
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about the vaccine mechanism and biological parameters. It is also helpful in quantifying the effect of factors40

that influence the response to the vaccine. This type of work is performed by modelling the dynamics of one or41

several markers that could be considered as good correlates of protection (5). Vaccine efficacy and mechanisms42

of action, or optimal immunogenic vaccine doses, have been evaluated for various infectious diseases, such as43

influenza (6, 7, 8), yellow fever (9, 10), Zika (11), tuberculosis (12), andmore recently SARS-CoV-2 (13). In the case of44

the Ad26.ZEBOV and MVA-BN-Filo vaccine strategy, the concentration of binding antibodies is considered a good45

correlate of protection based on work performed in non-human primates (14). It was agreed with the FDA to be46

suitable for use in a Biological Licensing Application under the Animal Rule (15) and it was the basis for marketing47

authorization in the EU.48

In a previous publication (16), we used a mathematical model for antibody-secreting cell (ASC) dynamics that49

distinguishes between short-lived and long-lived cells (SL and LL, respectively), and we estimated the model pa-50

rameters using the data from the available first Phase I studies. We found that antibody production is maintained51

by the population of long-lived cells with an estimated half-life of at least 5 years. New data from three Phase II52

studies (17, 18, 19) conducted in two international consortia (EBOVAC1 and EBOVAC2) provided an opportunity to53

validate the model and better characterise factors associated with the variation of the antibody response.54

RESULTS55

Descriptive analysis of the data The baseline and demographic characteristics of the 487 participants in-56

cluded in the study are shown in Table 1. In all results hereafter, Benjamini and Hochberg correction (20) for57

multiple testing has been used (see section Methods for more details). Comparable baseline characteristic in58

terms of age, body mass index (BMI) and weight are observed in European participants across the Phase I and59

II clinical studies (all p-values > 0.80). Similarly, no differences are observed in Africa across trials and sites in60

term of weight, however BMI appears significantly higher in East African participants (+6%, p-value=0.007) than in61

West African ones. European participants were significantly older than African (41 vs 29 years, p-value < 0.001)62

and consequently participants in EBL2002 tended to be older (34 vs 27 years, p-value < 0.001). BMI and weight63

(p-values <0.001 in both cases) were significantly higher in European participants (+13% and +18%, respectively)64

than in African participants.65

Figure 1 shows the dynamics of antibody concentrations (median and interquartile ranges) 7 days after the66
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Table 1 – Demographic and baseline characteristics of participants
Phase I trials Phase II trials

Europe East Africa Europe East Africa West Africa West Africa
UK Kenya Tanz./Ug. UK/France Ken./Tanz. BFA/IVC Sierra Leone

EBL1001 EBL1003 EBL1004 EBL2001 EBL2002 EBL3001 Total
Part., no. 14 15 15 71 79 58 235 487
Sex
Men 4 (29%) 11 (73%) 10 (67%) 32 (45%) 45 (57%) 44 (75%) 203 (86%) 349 (72%)
Women 10 (71%) 4 (27%) 5 (33%) 39 (55%) 34 (43%) 14 (24%) 32 (14%) 138 (28%)

Age (yrs) 37.6 (9.3) 23.7 (2.8) 26.5 (6.8) 41.2 (14.7) 34.1 (13.5) 34.1 (10.8) 27.2 (10.0) 31.3 (12.4)
BMI (kg/m2) 26.1 (3.3) 22.5 (4.1) 22.9 (4.2) 25.4 (4.5) 23.8 (4.0) 23.0 (3.4) 21.9 (3.3) 23.0 (3.9)
Weight (kg) 73.7 (13.7) 63.3 (12.7) 63.5 (11.7) 74.7 (14.7) 63.9 (10.2) 67.2 (9.9) 62.4 (9.4) 65.4 (11.7)

Data are n (%) or mean (SD). Only healthy adults receiving Ad26.ZEBOV followed by MVA-BN-Filo 56 days later were selected within each
of the 6 trials. Part.: Participants, no.: number, yrs: years, kg: kilograms, m: meter, UK: United Kingdom, Tanz.: Tanzania, Ug.: Uganda,
BFA: Burkina Faso, IVC: Ivory Coast.

second vaccination for each study according to the assay used to quantify the binding antibodies. In addition, Ta-67

ble 2 summarizes antibody concentrations observed at predefined sampling time points. Only participants who68

had received both the first and second vaccinations were included in both the descriptive and the modeling an-69

alyzes. Similar kinetics were observed in all studies, with the highest binding antibody concentrations observed70

at 21 days post-dose 2 (hereafter referred to as "peak"), followed by a biphasic decline up to 1 year after the first71

vaccination. Furthermore, the longer-term dynamics observed in EBL3001 suggest a durable immune response72

after the biphasic decline.73

74

Mechanistic model of the humoral response To better identify the factors associated with the dynamic75

of the antibody response and to predict its duration, we used a model initially applied by (16) in Phase I trials76

evaluating the two-dose heterologous Ad26.ZEBOV, MVA-BN-Filo vaccine regimen. In this mechanistic model, an-77

tibodies are assumed to be produced by plasma cells (antibody-secreting cells, ASCs) divided into two distinct sub-78

populations characterized by their lifespan: short-lived (SL) and long-lived (LL). For various infectious diseases, a79

rapid expansion of antigen-specific ASCs in blood peaking on day 7 post-infection or vaccination, followed by a80

fast depletion is observed (21, 22). Therefore, strictly decreasing dynamics were considered from 7 days after81

the second vaccination for the two compartments of plasma cells assuming no additional exposure to the anti-82

gen. A schematic diagram of the mathematical model used to describe the humoral response from 7 days after83

the second vaccination is displayed in Figure 2. This simple model relied on three biological processes. LL and84

SL ASCs decay with time at rate δL and δS , respectively, and produce antibodies at rates θL and θS , respectively.85
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Table 2 – Ebola glycoprotein-specific antibody concentrations (in log10 ELISA units/mL) in each trial from 7 days after
the second vaccination to study completion.

Phase I trials Phase II trials
EBL1001 EBL1003 EBL1004 EBL2001 EBL2002 EBL3001
(n=14)1 (n=15)1 (n=15)1 (n=71)1 (n=137)2 (n=235)3

Day 64 (7 days after the 2nd vaccination, MVA-BN-Filo)
Number Part. 14 15 15
Positive Part.4 14 (100%) 15 (100%) 15 (100%)
Missing data 0 (0%) 0 (0%) 0 (0%)
Mean [IQR] 3.19 [2.99 ; 3.48] 3.33 [2.90 ; 3.73] 3.09 [2.55 ; 3.58]
Day 78 (21 days after the 2nd vaccination, MVA-BN-Filo)
Number Part. 14 15 15 70 137 231
Positive Part.4 14 (100%) 15 (100%) 15 (100%) 70 (100 %) 137 (100%) 231 (100%)
Missing data 0 (0%) 0 (0%) 0 (0%) 1 (1%) 0 (0%) 4 (2%)
Mean [IQR] 3.88 [3.64 ; 4.10] 4.21 [3.96 ; 4.45] 4.03 [3.80 ; 4.31] 4.00 [3.79 ; 4.43] 3.88 [3.62 ; 4.16] 3.60 [3.34 ; 3.88]
Day 156 (155 days after the 1st vaccination, Ad26.ZEBOV)
Number Part. 425
Positive Part.4 42 (100%)
Missing data 1 (2%)
Mean [IQR] 2.73 [2.54 ; 3.00]
Day 180 (179 days after the 1st vaccination, Ad26.ZEBOV)
Number Part. 12 15 15 236
Positive Part.4 12 (100%) 15 (100%) 15 (100%) 23 (100%)
Missing data 2 (14%) 0 (0%) 0 (0%)
Mean [IQR] 3.47 [3.29 ; 3.60] 3.00 [2.67 ; 3.20] 2.97 [2.71 ; 3.25] 2.70 [2.47 ; 2.85]
Day 240 (239 days after the 1st vaccination, Ad26.ZEBOV)
Number Part. 13 15 15
Positive Part.4 13 (100 %) 15 (100%) 15 (100%)
Missing data 1 (7%) 0 (0%) 0 (0%)
Mean [IQR] 3.35 [3.20 ; 3.41] 2.66 [2.22 ; 2.93] 2.83 [2.56 ; 3.09]
Day 360/365 (1 year after the 1st vaccination, Ad26.ZEBOV)
Number Part. 12 15 15 51 134 207
Positive Part.4 12 (100%) 15 (100%) 15 (100%) 51 (100%) 134 (100%) 205 (99%)
Missing data 2 (14%) 0 (0%) 0 (0%) 20 (28%) 3 (2%) 28 (12 %)
Mean [IQR] 3.24 [3.09 ; 3.33] 2.61 [2.40 ; 2.96] 2.74 [2.46 ; 3.06] 3.07 [2.89 ; 3.28] 2.54 [2.26 ; 2.78] 2.44 [2.11 ; 2.68]
Day 540 (539 days after the 1st vaccination, Ad26.ZEBOV)
Number Part. 335
Positive Part.4 33 (100%)
Missing data 10 (23%)
Mean [IQR] 2.43 [2.15 ; 2.68]
Day 720 (2 years after the 1st vaccination, Ad26.ZEBOV)
Number Part. 190
Positive Part.4 184 (97%)
Missing data 45 (19 %)
Mean [IQR] 2.45 [2.19 ; 2.69]

IQR: Interquartile range = 75% confidence intervals, Part.: Participants. 1 Participants receiving the 2nd vaccination in the protocol-
defined window of 57 ± 1 day. 2 Participants receiving the 2nd vaccination in the protocol-defined window of 57 ± 3 days. 3 Participants
receiving the 2nd vaccination in the protocol-defined window of 57 ± 1 week. 4 Refers to the number of participants with antibody con-
centration above the lower limit of quantification (LLOQ), expressed as n/N (%) where n is the number of participants with concentration
above the LLOQ (i.e., 36.11 EU/mL for Battelle lab, 26.22 EU/mL for Focus lab and 36.11 EU/mL for Q2 Solutions lab) at that timepoint
and N the the total number of participants with data at the first and the second vaccination and at that time point. 5 Refers only to 43
participants enrolled in a substudy to receive a third dose (Ad26.ZEBOV) two years after the first vaccination. 6 Refers to participants
enrolled in EBL 2002 having an additional timepoint, initially scheduled for participants who do not receive a second vaccination because
of a study pause.
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Finally, antibodies are assumed to decay over time at rate δAb . Since the baseline level of ASCs is unknown, the86

parameters φL = θLL0 and φS = θSS0 were defined, which represent the influx of LL and SL ASCs, respectively (see87

Mathematical model of antibody kinetics for more details).88

89

Quality ofmodel prediction Using parameter estimations obtained by Pasin et al. (16) on humoral response90

observed in Phase I trials, we evaluated the robustness of the model and its predictive abilities.91

First, we looked at the capacity of the model to capture the dynamic of the antibodies during the early phase92

following vaccination, based on the previously estimated parameters, in a new population of participants. Fixing93

the antibody, short- and long-lived ASCs half-lives at 24 days, 3.0 days and 6.0 years, respectively, as well as the94

SL ASC influx parameter at 2,755 ELISA units/mL/day and the LL ASC influx parameter at 16.6 and 70.7 ELISA95

units/mL/day for African and European participants (see Methods - Evaluation of the model quality of prediction96

for more details), only random effects (i.e. individual deviation from population mean) for the 487 participants97

were evaluated using empirical Bayes estimates (EBEs).98

When restricted from7days post-second vaccination to the peak of individual dynamics, themodel predictions99

fit well with observed antibody concentrations (see Table 3). The overall percent of observations falling within the100

95% individual prediction intervals (also referred as the percent of coverage) was evaluated at 100%. The root101

mean squared error (RMSE) was consistent with a relatively small average difference between observations and102

predictions estimated at 0.012 log10 ELISA units/ml (RMSE=0.028 log10 ELISA units/ml in Phase I studies accounting103

for two observations). The model provided similar goodness of predictions when observations extended to the104

first year following vaccination were used to update EBEs (Supplementary Table 1). The percent of coverage was105

evaluated at 100% and the RMSE at 0.045 log10 ELISA units/ml (RMSE=0.066 and 0.038 log10 ELISA units/ml in Phase106

I and Phase II studies, respectively). These results confirmed the ability of the model, estimated using only data107

from Phase I trials, to capture the antibody response in all additional participants included in Phase II trials.108

Then, we looked at the ability of the model to predict antibody concentrations beyond the peak of the dynam-109

ics. Individual parameters assessed for the early part of the dynamics of humoral responses were then used to110

predict both short-term antibody responses between the peak and 1 year after the first vaccination, and long-term111

antibody responses between 1 year and 2 years. As described in Table 2, while participants from all trials were112

included in the analysis of short-term predictions, only participants from the EBL3001 clinical trial contributed to113
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Table 3 – Evaluation of the robustness and the quality of prediction of the model developed by Pasin et al. (16). The
model was estimated on Phase I data and individual parameters were assessed, for each participant of Phase I and Phase II
trials, using observation from 7 days post-second vaccination (day 64) to the peak of individual dynamics.

Phase I trials Phase II trialsAll trials EBL1001 EBL1003 EBL1004 EBL2001 EBL2002 EBL3001
Time of Peak1
Mean [95% CI] 15.0 [5.0 ; 21.0] 13.4 [11.6 ; 14.6] 14.4 [13.0 ; 18.2] 13.4 [12.0 ; 14.0] 14.3 [13.0 ; 16.3] 14.0 [12.4 ; 15.0] 16.0 [3.9 ; 22.2]

Number of timepoints2
Mean [Min-Max] 1.09 [1.0 ; 2.0] 2.0 [2.0 ; 2.0] 2.0 [2.0 ; 2.0] 2.0 [2.0 ; 2.0] 1.0 [1.0 ; 1.0] 1.0 [1.0 ; 1.0] 1.0 [1.0 ; 1.0]

Predictions from 7 days post-2nd vaccination to the peak
RMSE3 0.012 0.034 0.023 0.026 0.005 0.006 0.006
Coverage (%) 100 100 100 100 100 100 100
Bias3 0.002 0.018 -0.003 0.006 0.001 0.001 0.000
95% PI width 0.410 0.547 0.502 0.510 0.389 0.389 0.387

Short-term forecast from the peak to 1 year
RMSE3 0.471 0.218 0.539 0.361 0.442 0.460 0.515
Coverage (%) 98.1 100 93.3 100 100 98.7 97.6
Bias3 0.251 0.014 0.239 0.077 0.293 0.224 0.328
95% PI width 2.297 2.097 2.124 2.184 2.502 2.358 2.298

Long-term forecast beyond 1 year
RMSE3 0.518 0.518
Coverage (%) 97.8 97.8
Bias3 0.253 0.253
95% PI width 2.479 2.479

CI: Confidence interval, PI: Prediction interval, RMSE: Root mean squared error. 1Time delay in days (Mean [95% CI]) from 7 day post-
vaccination (day 64) to the peak (first local maximum). 2Number of observations from 7 days post-vaccination to the peak. 3Criteria
calculated on the median of individual predictions.

the analysis of long-term predictions because they were the only ones with a follow-up beyond 12 months. As114

shown in Figure 3 and Table 3, the model demonstrated a high quality of short- and long-term predictions with a115

total of 98% of the observed antibody concentrations falling within the 95% individual prediction intervals. Never-116

theless, the high width of 95% prediction intervals (2.297 and 2.479 log10 ELISA units/mL for short- and long-term117

forecast, respectively) highlights a large uncertainty in individual model parameters and explain the high percent118

of coverage. Plots of individual predictions for the more participants having at least two observations from 7 days119

post-second vaccination are given in Supplementary Figures 1-3. Similar work was done to evaluate the ability of120

the model to predict long-term antibody concentrations beyond 12 months when data from 7 days post-second121

vaccination to 1 year were used to estimate individual parameters (see Supplementary Figures 4-6). These results122

highlight the benefit of using an additional short-term observation to improve long-term predictions (beyond 1123

year after the second vaccination). The uncertainty of predictions was much lower (65% reduction in the size of124

prediction intervals) leading to a fair but smaller coverage (90% vs 98%) and a significant improvement of the125

quality of the predictions (RMSE: 0.298 instead of 0.518; bias: -0.017 instead of 0.253).126
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127

Additional insight on longevity of the humoral immune response The model performed well in forecast-128

ing short- and long-term humoral response. However, the increase in RMSE and the width of 95% prediction129

intervals, and the decrease in the percent coverage beyond 12 months (see Table 3 and Supplementary Table 1)130

motivated an update of the parameters using all available data from both the Phase I and Phase II trials. First,131

the model was modified to include laboratory effects (Battelle, Focus or Q2 Solutions) in the observation model.132

Among the four observation models tested (see Methods - Update and re-estimation of the model for more de-133

tails), none was able to outperform the model without adjustment for laboratories. However, since laboratory134

effects reflects an observable reality, the adjusted observation model was constrained and the model including a135

scaling factor between the observations and the compartment Ab in natural scale, providing the lowest corrected136

Bayesian Information Criteria (BICc), was chosen. We secondly focused on the half-life of LL ASCs, log(2)/δL . The137

estimation of the lower bound of the loss rate of LL ASCs δL was performed with a profile likelihood. Thanks to138

the longer follow-up available, the previous estimation of 5 years for the lower bound of the half-life of LL ASCs139

was updated to 15 years (Figure 4). The method used to achieve this estimation is described in Supplementary140

Methods. In other words, since long-lived antibody secreting cells are non-proliferating cells (23), half of these141

antibody-secreting cells, which are produced at 7 days after the second vaccination, should persist for at least 15142

years. Given this result, further estimations were performed with the parameter δL as fixed at the value corre-143

sponding to a lifespan of 15 years.144

The application of three algorithms of covariate selection (SCM, COSSAC and SAMBA; see Methods - Update145

and re-estimation of the model for more details) enabled us to identify factors influencing the dynamics of the146

humoral response. Although methods of covariate search differ from one algorithm to another, the adjustment147

of the biological parameters of the model for baseline characteristics, including demographics, selected by the148

different methods were quite consistent. All procedures led to the selection of an effect of continent, sex and age149

on antibody responses. The same covariates were identified in the model without adjustment for laboratories.150

The best model estimated an effect of continent on φL (see Table 4 presenting a summary of parameter151

estimations). The mean value of φL was estimated at 36.6 ELISA units/mL/days in Europe compared to 10.2 ELISA152

unit/mL/days in African participants. These results are in accordance with those previously obtained with Phase I153

trial data (16).154
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By adding more information with Phase II trial data, we also identified sex as another significant covariate155

for explaining the inter-individual variability of the decay rate of antibodies. Indeed, we estimated that antibodies156

have a significantly higher half-life in women (p-value estimated byWald test <0.001) with an increase of the decay157

rate of 41% (95% confidence interval (CI): [24%; 60%]) for men as compared to women.158

We also found that older age was associated with a decrease of the influx of short-lived ASCs (parameter φS ).159

For example, a 31 year old participant (ages are assumed to be centered, see Table 1) displayed a mean value160

of SL ASCs influx of 3057 ELISA units/mL/days (see Table 4). Each additional year from this mean age induces a161

division of the resulting influx of SL ASCs by 7% (95% CI: [5%; 9%]). Therefore, for a participant 10 years older, its162

influx of SL ASCs will then be divided by 49% (see Table 4 footnote), corresponding to a decrease of the peak of its163

dynamics of 0.23 [0.22; 0.25] log10 EU/mL.164

165

Once the optimal structure was identified, we estimated the value of the parameters of the model as shown166

in Table 4, providing the model parameters estimated by Pasin et al. (16) on Phase I data as well as the model167

parameters obtained on combined Phase I and II data. Figure 5 displays the dynamics estimated by the model,168

highlighting the goodness-of-fit of the data (the reader can refer to Supplementary Figures 7 and 8 for additional169

results about model estimation and its goodness-of-fit).170

Compared with the estimates we obtained from the Phase I data, the new estimates show a decrease in the171

magnitude of the φL parameter. This decrease is likely due to the significant increase in the half-life of the LL172

ASC from 6 to 15 years. Nevertheless, the mean φL remained four times higher in Europe than in Africa, similar173

to the approximation previously obtained using Phase I data (16), where the mean φL was 4.3 times higher in174

Europe than in Africa. For the dynamics of SL ASCs, the parameter estimates remained quite stable, between the175

newly estimated model and the earlier estimates. As noted above, the information gained from longer follow-up176

allowed an update of the lower bound of the LL ASC decay rate. Similarly, the use of 443 additional participants177

improved the precision of the model parameter estimates. Indeed, the confidence intervals in the new estimates178

have become narrower, for each parameter φL , φS , or δS , and are mostly included within the confidence intervals179

of the old estimates. Moreover, comparison of the model estimates showed a slight increase in inter-individual180

variability for parametersφL and δAb in the newmodel comparedwith the old one. The lattermay be due to the use181

of additional data collected in a more heterogeneous population than in Phase I studies. However, adjustment of182
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Table 4 – Model parameters estimated on Phase I participants by Pasin et al. (16) and the new estimates obtained
on pooled Phase I and Phase II data and considering adjustment for laboratory effects.

Phase I data Phase I & II data
Parameter Meaning Mean 95% CI Mean 95% CI
Fixed Effects
δAb antibody decay rate (day−1) 0.029 [0.027 ; 0.033]
Women 0.0251 [0.0223 ; 0.0283]
Men 0.0353 [0.0296 ; 0.0421]
log (2)/δAb antibody half-life (days) 24 [22 ; 26]
Women 27.6 [24.5 ; 31.1]
Men 19.6 [16.4 ; 23.4]

δS SL ASCs decay rate (day−1) 0.231 [0.15 ; 0.36] 0.333 [0.326 ; 0.340]log (2)/δS SL ASCs half-life (days) 3.0 [1.9 ; 4.7] 2.08 [2.04 ; 2.13]
δL LL ASCs decay rate (year−1) 3.16 × 10−4 [1.46 ; 7.03] ×10−4 1.25 × 10−4log (2)/δL LL ASCs half-life (years) 6.0 [2.7 ; 13] 15.0
φS SL ASCs influx (EU/mL/day) 2755 [1852 ; 4100]
Mean Age (31.3 years) 3057 [2418 ; 3865]
FC ∆Age = + 1year1 0.934 [0.915 ; 0.954]

φL LL ASCs influx (EU/mL/day)
African Part. 16.6 [13.7 ; 20.1] 10.2 [9.01 ; 11.4]
Eur. Part. 70.7 [54.0 ; 92.7] 36.6 [27.3 ; 49.2]

α scaling factor - Lab effects
αf ocus 1.04 [0.93 ; 1.16]
αQ2sol 1.00 [0.98 ; 1.02]
Random Effects
ωφS

Sd of RE on φS 0.92 [0.83 ; 1.01] 0.84 [0.56 ; 1.13]
ωφL

Sd of RE on φL 0.85 [0.78 ; 0.92] 0.88 [0.81 ; 0.96]
ωδAb Sd of RE on δAb 0.30 [0.24 ; 0.36] 0.35 [0.29 ; 0.41]
Error Model
σAb Sd of error model 0.10 [0.10 ; 0.10] 0.107 [0.101 ; 0.112]

CI: Confidence interval, EU: ELISA units, Eur.: European, FC: Fold change, LL ASCs: long-lived antibody secreting cells, Part.: Participants,
RE: Random effects, SL ASCs: short-lived antibody secreting cells, Sd: Standard deviation. 1 Represents the multiplicative factor to
apply to the value of φS , obtained for the mean age, for an increase in participant age of 1 year: φS (Mean Age + 1 year) = φS (Mean
Age)× FC(∆Age=+1). Therefore, the percentage of decrease of φS for a participant X years older than the mean age is given by 100×(1-
FC(∆Age=+1)X ).

the parameter φS for the age of the participants reduced the unexplained inter-individual variability for the same183

parameter by 24%. Finally, it can be noticed the absence of effects of laboratory adjustment, with the two scaling184

factors αf ocus and αQ2Sol estimated as non-significantly different from 1.00, at 1.04 and 1.00, respectively.185

In order to evaluate the impact of fixing the parameter δL , we performed a model averaging analysis (24, 25),186

which integrates model uncertainty in the value of δL in the calculation of the parameter confidence intervals.187

Results shown in Supplementary Tables 2 and 3 indicate very stable estimation.188

We examined the ability of our model to predict the response for new participants by performingMonte Carlo189
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cross-validation (MCCV) and using RMSE and percent coverage as quality criteria for prediction. (See Methods -190

Update and re-estimation of the model for more details). The results of this analysis are summarised in Figure191

6, where these two criteria are displayed as functions of the percent of participants used in the training dataset.192

Finally, despite the wide range of percentages tested for the split of train and test, the quality of the model pre-193

diction was very stable. The mean RMSE gradually decreased from 0.0870 to 0.0828 log10 ELISA units/mL until it194

reached the values of 0.0843 log10 ELISA units/mL when 100% of the data are used to estimate the models. The195

mean percent coverage remained higher than 95% even when only 20% of participants were used to estimate the196

model. Consequently, the model showed reasonably good quality in predicting the humoral immune response197

from 7 days after the second vaccination to two years after the first vaccination.198

DISCUSSION199

With this modeling work we evaluated the quality of long-term predictions of themechanistic model developed by200

Pasin et al. (16) which considers two populations of ASCs. We demonstrated with new data and a longer follow-up201

from phase 2 trials that the model, developed with a small number of participants from phase 1 trials, provides202

long-term predictions of the antibody response with a high validity. Re-estimation of themodel with a longer-term203

follow-up allowed us to update the value of the lower limit of the LL ASC half-life and showed that the longevity204

of LL plasma cells is much longer than previously estimated.205

One advantage of this modelling work is the ability to distinguish the half-life of the antibodies from that of206

ASCs. The estimated values obtained for the half-life of the antibodies (δAb ) were in the range of those reported in207

the literature of 20 to 50 days (26, 27, 28, 29, 30, 31, 32). References on ASC half-lives are more difficult to figure208

out because these cells are circulating in various compartments (lymphoid, bone marrow) and the survival of the209

cells may vary greatly according to the infectious agents (33). Hence, estimates of short-lived ASC vary from days210

(34) to several weeks (3, 35). The half-life of long-lived ASCs is even more variable and reflects the variability of211

the antibody dynamics according to infectious agents and type of vaccines (36). The updated estimate for the212

long-lived ASCs calculated in the present study is particularly encouraging with a half-life of at least 15 years. This213

is comparable to the half-life estimated for long-lived ASCs induced by the Hepatitis A virus vaccine (3). The long-214

term humoral immunity is maintained through the memory B cells and the long-lived plasma cells (37). These215

latter cells, residing preferentially in the bone marrow, produce antibodies in absence of antigenic stimulation.216
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Interestingly, it has been recently demonstrated that these cells are intrinsically long-lived and can maintain the217

secretion of antibodies without replenishment of the pool of memory B cells (38). Specific niches in the bone218

marrow promote cell survival through various factors (36).219

The model was able to capture inter-individual variation of the antibody dynamics. A part of this variability220

was associated with the geographic region, age and sex. The cause of the influence of geographic region on221

the humoral response to vaccine is still unknown. Concomitant malaria infection is suspected to play a role in222

compromising the immune response (39, 40, 41). Nevertheless, these results should be interpreted cautiously,223

as simple nonspecific cross-reactivity within the assays used could also be responsible for this association (40).224

Chronic parasitic infections, such a schistosomiasis (42), have also been suspected to play a role in dampening225

immune response to vaccination (43). Both hypotheses are currently explored in the EBOVAC consortia. The226

less pronounced decline of antibodies observed in women is consistent with several reports from other vaccines,227

including SARS-CoV-2 (44, 45), Ebola (46) and Flu (47). The biological mechanism behind the lower clearance of228

binding antibodies in women remains an area of research and may differ from vaccine to vaccine (47). It could229

also be a limitation of the modelling work in identifying precisely enough which compartment is influenced by sex230

differences in absence of more immunological measurements. The influence of age on the response to vaccine is231

known (48), but the characterisation of its effect through the production of short-lived antibody secreting cells is232

novel and requires further confirmation. Pritz et al. (49) has noted an age-related decline in the number of plasma233

cells in human bone marrow. Here also, identifiability of this effect could has been compromised because of a234

restricted range of participant ages because none of them were older than 65 years.235

In conclusion, the dynamical model constructed from early Phase I data has demonstrated its predictive ca-236

pacity, with longer follow-up and updated estimates giving promising results for the duration of the immune re-237

sponse. Nevertheless, the simplicity of thismodel significantly limits its use to fully describe the immune response238

induced by a multi-dose vaccine strategy. Indeed, the model focuses exclusively on the decrease in antibody con-239

centrations following vaccination, without modeling the establishment of the immune response triggered by each240

injection. Thereafter, more complex versions of this model have been proposed to model the establishment, re-241

activation, and persistence of the humoral immune responses induced by vaccination (50, 51). In particular, these242

models integrate the stimulation of the immune system triggered by vaccine antigens and the role of immunolog-243

ical memory resulting from interactions with memory B cells and plasma cells.244
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The main findings obtained in this modeling work are not necessarily specific to the Ad26.ZEBOV, MVA-BN-Filo245

vaccine strategy. Some parameters, such as the long-lived ASCs half-life, could be found with other vaccine regi-246

mens. Nevertheless, the value and the interpretation of the parameters are dependent on the model structure247

and assumptions. For instance, in the modeling work conducted by Clairon et al. (51) to model antibody dynam-248

ics induced by mRNA vaccine strategies against SARS-CoV-2, the absence of long-term persistence of antibody249

responses required an adaptation of the model for monophasic trajectories. In our work, the biphasic nature of250

the model fitted antibody trajectories perfectly, resulting in the estimation of the long-lived ASCs half-life.251

The sporadic nature of Ebola outbreaks makes the identification of correlates of protection difficult (52). Cur-252

rently, neither a universal Ebola immune correlate of protection, nor a binding antibody concentration threshold253

which would ensure a high probability of protection against EBOV, has been identified. Nevertheless, studies per-254

formed in non-human primates (14) identified vaccine-induced binding antibody concentrations as the immune255

parameter most highly correlated with survival after EBOV challenge. Due to the shorter disease course and full256

lethality of the Ebola diseasemodel in non-human primates, the extrapolation of these results from animals to hu-257

mans remains difficult. Consequently, no protective threshold of post-vaccination binding antibody concentration258

was derived for the Ad26.ZEBOV, MVA-BN-Filo vaccine.259

METHODS260

Ethics statement The Phase I UK trial protocol and study documents were approved by the UK National Re-261

search Ethics Service. The Phase I Kenya trial protocol and study documents were reviewed and approved by the262

local Ethics Committee and the Kenyan regulatory authority. The Phase I Uganda/Tanzania trial protocol and study263

documents were reviewed and approved by the Tanzanian Medical Research Coordinating Committee of the Na-264

tional Institute for Medical Research, the Tanzania Food and Drugs Authority, the Uganda Virus Research Institute265

Research and Ethics Committee, the Uganda National Council for Science and Technology, the Uganda National266

Drug Regulatory Authority, and the Ethics Committee of the London School of Hygiene and Tropical Medicine. The267

Phase II UK/France trial protocol and study documents were approved by the French national Ethics Committee268

(CPP Ile de France III; 3287), the FrenchMedicine Agency (150646A-61), the UKMedicines and Healthcare Products269

Regulatory Agency (MHRA), and the UK National Research Ethics Service (South Central, Oxford; A 15/SC/0211).270

The Phase II Kenya/Uganda/Burkina Faso/Ivory Coast trial protocol and study documents were approved by local271
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and national independent Ethics Committees and Institutional Review Boards. The Phase II Sierra Leone trial pro-272

tocol and study documents were approved by The study was approved by the Sierra Leone Ethics and Scientific273

Review Committee, the Pharmacy Board of Sierra Leone, and the London School of Hygiene & Tropical Medicine274

ethics committee.275

These trials were conducted in accordance with the principles of good clinical practice and the Declaration of276

Helsinki, and all participants gave formal, written consent before undergoing any trial-related procedure.277

278

Immunogenicity measurements We considered data from six studies aiming at evaluating the safety, toler-279

ability and immunogenicity of two-dose vaccine regimens with Ad26.ZEBOV and MVA-BN-Filo. Ad26.ZEBOV is a280

monovalent, recombinant, E1/E3-deleted, replication-defective, adenovirus type 26 vector vaccine encoding Ebola281

virus Mayinga variant GP, produced in PER.C6 human cells and injected as a single dose of 5 × 1010 viral particles.282

MVA-BN-Filo is a recombinant, replication-defective, modified vaccinia Ankara vector vaccine encoding Mayinga283

variant GP, Sudan virus Gulu variant GP, Marburg virus Musoke variant GP, and Tai Forest nucleoprotein. This284

multivalent vaccine was produced in chicken fibroblasts and injected at a dose of 1 × 108 Infectious Units (Inf. U).285

Three of the six studies are randomized, observer-blinded, placebo-controlled Phase I trials on healthy volunteers286

aged 18 to 50 years. These studies were performed in four countries: the United-Kingdom (UK), Kenya, Tanzania287

and Uganda. Results of the trials were previously described by Milligan et al. (53) and Winslow et al. (54) for the288

UK (study registered at ClinicalTrials.gov, NCT02313077, and labelled EBL1001 here) , Mutua et al. (55) for Kenya289

(study registered at ClinicalTrials.gov, NCT02376426, and labelled EBL1003 here), and Anywaine et al. (56) for290

Tanzania/Uganda (study registered at ClinicalTrials.gov, NCT02376400, and labelled EBL1004 here). In addition,291

we considered data from two randomized, observer-blinded placebo-controlled, parallel-group Phase II trials on292

healthy volunteers aged 18 to 65 or 75 years. These studies were performed in 6 countries: the UK, France, Kenya,293

Uganda, Burkina Faso and Ivory Coast. We refer to Pollard et al. (17) for detailed description of results in the Eu-294

ropean trial and to Barry et al. (18) for the African trial (two studies registered at ClinicalTrials.gov, NCT02416453295

and NCT02564523, and labelled EBL2001 and EBL2002 here respectively for the European and African studies).296

The last study is a combined open-label, non-randomized stage 1, and a randomized, observer-blinded, placebo-297

controlled stage 2 Phase II trial on healthy adults. This study conducted in Sierra Leone also aimed to evaluate298

the long-term immunogenicity and the humoral immunememory induced by the vaccine regimen. Results of this299
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trial were described by Ishola et al. (19) (study registered at ClinicalTrials.gov, NCT02509494, and labelled EBL3001300

here).301

In Phase I trials, participants were equally randomized into four vaccination regimens: two with MVA-BN-Filo302

as first vaccination at day 1, followed by Ad26.ZEBOV on day 29 or 57, and two with Ad26.ZEBOV as prime vaccine303

on day 1, followed by MVA-BN-Filo on day 29 or 57. Within each regimen, participants received either active304

vaccine or placebo in a 5:1 ratio. In the study EBL2001, participants in Cohorts I-III were equally randomized into305

three parallel groups in which they received Ad26.ZEBOV as first vaccine on day 1, followed by MVA-BN-Filo on306

day 29, 57 or 85. This first cohort was excluded from the analysis as participants were enrolled to provide data307

only on safety and the timing of anti-Ebola virus GP ASCs responses. Within each group, participants received308

active vaccines or placebo in a 14:1 or 10:3 ratios in cohorts II and III respectively. In the study EBL2002, healthy309

adults (Cohort I) were equally randomized into the same three parallel groups with an active vaccine: placebo310

ratio of 5:1. Adults HIV-infected patients (Cohort IIa) and healthy children (Cohorts IIb and III) were not included in311

the analysis. Finally, in the study EBL3001, participants received either Ad26.ZEBOV as first vaccination on day 1312

followed by MVA-BN-Filo on day 57, or MenACWY vaccine on day 1 and placebo on day 57, with a ratio of 1:0 and313

3:1 in stage 1 and 2 respectively. In this work, only participants receiving Ad26.ZEBOV as first vaccination on day 1314

and MVA-BN-Filo as second vaccination in the protocol-defined window of 57 ± X days (Ad26/MVA D57; with X=1315

for Phase I trials and EBL2001, 3 for EBL2002 and 7 for EBL3001) were included. Based on these criteria, a total of316

487 participants over all studies were included (among the 725 participants enrolled to receive Ad26/MVA D57, a317

total of 238 participants were excluded for not receiving their second dose (n=108) or outside the protocol-defined318

window (n=130)), 44 of whom where in Phase I studies, 71 in EBL2001, 137 in EBL2002 and 235 in EBL3001. In319

addition, the 168 participants receiving placebo as vaccine strategy were excluded.320

Participants were followed up to 1 year after the first vaccination in all the studies, with longitudinal immuno-321

genicity measurements performed on blood samples. As shown in Figure 7, for the vaccine regimen of interest,322

immunogenicity samples were collected in all participants immediately before the administration of the first vac-323

cination (Ad26.ZEBOV) on day 1, before the second vaccination (MVA-BN-Filo) on day 57, then 21 days after the324

second dose at day 78 and 1 year after the first dose (at day 360 or 365 according to the trial). In Phase I trials,325

additional samples were taken at days 7, 29, 64, 180 and 240, while immunological assays were done on blood326

samples taken at day 180 and day 156 in EBL2002 and EBL3001 respectively. Participants enrolled in EBL3001327
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were additionally followed up to 2 years after the first vaccination, with blood samples collected every 6 months328

after the first year. We analyzed total IgG Ebola virus GP-specific binding antibody concentrations measured by329

an Ebola virus GP (Kikwit strain) Filovirus Animal Non-Clinical Group (FANG) ELISA assay. The FANG ELISA assays330

were performed at three different accredited laboratories: (a) at Battelle Biomedical Research Center (Columbus,331

OH, USA; hereafter referred to as Battelle) for the studies EBL1001 and EBL1004, (b) at Focus Diagnostics (San332

Juan Capistrano, CA, USA; hereafter referred to as Focus) for the study EBL1003, and (c) at Q2 Solutions laboratory333

(San Juan Capistrano, CA, USA; formerly Focus Diagnostics; hereafter referred to as Q2 Solutions) for the studies334

EBL2001, EBL2002 and EBL3001. Particular attention has been paid in this work to account for a possible system-335

atic difference in measurements induced by the distinct ELISA assays and thus between studies. Being interested336

in the longevity of the long-term immunity induced by the two-dose heterologous vaccine, similarly to Pasin et337

al. (16), wemainly focused our analysis on immunogenicity measurements assessed after the second vaccination.338

339

Statistical analysis A preliminary descriptive analysis was performed on the baseline and demographic char-340

acteristics of the 487 participants to describe and summarize the basic features of the data. Statistical differences341

among groups of participants were evaluated using classic t-tests (Welch’s t-test in case of unequal variance, iden-342

tified by a F-test, and Student t-test otherwise) implemented in R, and p-values were adjusted for test multiplicity343

with Benjamini and Hochberg correction (20) using the built-in R function p.adjust. Because of the difference of344

antibody concentrations measured by the distinct laboratories, comparisons of immunogenicity data between345

trials were not possible.346

Finally, Spearman correlations between antibody concentrations measured 21 days after the second vaccina-347

tion and longer-term humoral responses were evaluated integrating adjustment for test multiplicity on p-values.348

349

Mathematical model of antibody kinetics To analyze the humoral immune response induced by the two-350

dose heterologous vaccine regimen Ad26.ZEBOV, MVA-BN-Filo against Ebola virus and evaluate the long-term351

immunogenicity, we used a mechanistic model divided into three parts. First of all, a mathematical model based352

on ordinary differential equations is defined to describe the dynamics of plasma cells and antibodies (3). As shown353

in Figure 2, antibodies are assumed to be produced by two plasma cell populations differentiated by their lifes-354

pan: short- and long-lived antibody secreting cells (ASCs). Consequently, the ordinary differential equation (ODE)355
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system contains three compartments: the short-lived ASCs (labelled S), the long-lived ASCs (labelled L) and the356

antibodies (Ab). Based on the hypothesis that antibody secreting cells peaked at day 7 post-infection/vaccination357

(21, 22), time was rescaled to consider only the antibody dynamics from 7 days after the second vaccination (day358

64) during which plasma cells only decrease over time (t = time observation - 64). As demonstrated by Pasin et al.359

(16), the model can be written as a single equation (1).360


dAb

d t
= φSe

−δS t + φLe
−δL t − δAbAb

Ab (t = 0) = Ab0 = AbD64

(1)361

with δS , δL and δAb representing the average decay rates of SL ASCs, LL ASCs and antibodies, respectively. The362

parameters φS and φL are, respectively, the influx of SL and LL ASCs defined as φS = θSS0 and φL = θLL0, where363

S0 = S (t = 0) = SD64 and L0 = L (t = 0) = LD64 are the initial conditions at 7 days after the second vaccination364

and θS and θL are their respective antibody production rates. The initial antibody concentration Ab0 is defined by365

the individual measure of antibody concentration at 7 days after the second vaccination. Keeping in mind that366

the antibody concentration can be unobserved at day 64 for some participants (see Figure 7) while the decrease367

of the dynamics of ASCs is still assumed to start 7 days post-vaccination, an individual lag-timeTi was introduced368

in equation (1).This lag-time represents the individual time interval between day 64 and the first observation369

following this specific time. The equation can then be written as follows.370


dAb

d t
= φSe

−δS (t+Ti ) + φLe
−δL (t+Ti ) − δAbAb

Ab (t = 0) = Ãb0 = AbD64+

(2)371

Based on this equation, time was rescaled for each individual such that the initial condition (Ab (t = 0)) coincided372

with the first observation following day 64 (AbD64+), given: time = time observation - 64 - Ti . Therefore, for a373

participant with a first measurement at day 64 and observations at days {64, 78, 180, 240, 360}, the lag-time is null374

(Ti=0), rescaled time points of observations are given by {0, 14, 116, 179, 296} and AbD64+ is equal to measurement375

at day 64, AbD64. For a participant with a first measurement at day 78 and observations at days {78, 180, 240, 360},376

the lag-time Ti = 78 − 64 = 14, rescaled time points of observations are then given by {0, 102, 162, 282} and377

AbD64+ is equal to measurement at day 78, AbD78. We estimated the five following biological parameters Ψ =378

(φS , δS ,φL, δL, δAb ). To account for inter-individual variability, we used a statistical model on which the five model379

parameters are assumed to be log-transformed, to ensure their positivity. Each parameter is then described by380
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a mixed-effects model which depends on covariates. Each individual parameter Ψi
k for the participant i can be381

defined as follows, for k = {1, · · · , 5}.382

log(Ψi
k ) = log(Ψk ,0) + βk Z

i
k + u ik (3)383

where Ψ0 is the fixed effect, Zk and βk are, respectively, the vectors of explanatory variables and regression co-384

efficients related to the biological parameter Ψk , and u ik is the individual random effect assumed to be normally385

distributed with the variance ω2
k . Random effects were assumed to be independent from each other. Based on386

results obtained in the previous work (16), we assumed random effects on the influx parameters, φL and φS , and387

on the decay rate of antibodies δAb .388

For the observation model, we modeled the observed IgG binding antibody concentrations against the Kikwit gly-389

coprotein from the six studies by the antibody ODE-compartment. We assumed an additive error model normally390

distributed on the log10 value of the antibody concentrations, with a variance σ2
Ab . The antibody concentration for391

patient i at the j th time is given by392

Y (t i j ) = log10 [Ab (Ψi , t i j )
]
+ εi j εi j ∼ N(0,σ2

Ab ) (4)393

394

395

Model estimation Mathematical and practical identifiability has been assessed in previous work (16). Thus396

the parameter δL was estimated by profile likelihood (57) which consists of defining a grid of values for the parame-397

ter, sequentially setting the parameter δL at one of those different values, and estimating themodel bymaximizing398

the log-likelihood, given that value of δL . The resulting profile shows themaximumpossible log-likelihood for each399

value of δL and has its maximum at the maximum likelihood estimate δ̂L . Other parameters were estimated by a400

population approach in which the model estimation relies on the estimation of the vector of population parame-401

ters including the fixed effects (Ψ0), the regression coefficients (β ), the standard deviation of random effects (ω)402

and the standard deviation of the error model (σAb ). Model estimation was performed by the Monolix ®software403

versions 2019R1 and 2019R2. This software uses the Stochastic Approximation Expectation-Maximization (SAEM)404

algorithm (58, 59) to estimate the population parameters with likelihood computed by importance sampling (60)405
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and the Fisher information matrix calculated by stochastic approximation. Once population parameters are re-406

estimated, individual parameters are computed as Empirical Bayes estimates (EBEs) representing the most likely407

values of the individual parameters, given individual data and population parameters. EBEs are calculated as408

the mode of the conditional parameter distribution by Markov-Chain Monte-Carlo (MCMC) procedure (61) using409

the Metropolis-Hasting algorithm (62) to compute the conditional distribution and the Nelder-Mead Simplex algo-410

rithm (63) to maximize it.411

412

Evaluation of themodel quality of prediction Themechanistic model described by equations 2, 3 and 4, ini-413

tially estimated on Phase I data by Pasin et al. (16), was validated on data from the six trials according to its quality414

of prediction. To this end, a two-step approach was applied: first, the robustness of the model was assessed by415

evaluating its ability to predict antibody dynamics from 7 days post-second vaccination to the peak of the dynam-416

ics (i.e., the first local maximum) for all Phase I and Phase II participants. Then, the ability of the model to forecast417

short-term (i.e, from the peak to 1 year after the first vaccination) and long-term antibody concentration (i.e, be-418

yond 1 year following the first vaccination) was evaluated. Because validation of themechanistic model estimated419

on Phase I data is sought here, no modification of the observation model defined in equation 4 was considered420

here to account for possible laboratory-induced effects in the measurement of antibody concentrations.421

To investigate the robustness of the model initially estimated on Phase I data, only data restricted to the first year422

following the first vaccinationwere used to stay in the scope of applicability of themodel (see Table 2 for a detailed423

description of the number of observations available at each time point). Consequently, for each participant the424

peak of its dynamics was sought during the first year (see Table 3 for a detailed description of individual times of425

peak in each trial). Assuming fixed effects and regression coefficients of the population parameters (Ψk ,0 and βk ,426

[k ∈ {1, · · · , 5}), distribution of random effects (σk , [k ∈ {1, · · · , 5}), as well as the standard deviation of the error427

model (σAb ) as fixed to previously obtained values, we evaluated individual parameters for the 487 participants,428

via the variables u ik , using the empirical Bayes estimates (EBEs) approach implemented in Monolix. As shown in429

Table 4, we fixed the decay rate of antibodies (δAb ), SL ASCs (δS ) and LL ASCs (δL ) at values corresponding to half-430

lives of 24 days, 3 days and 6 years, respectively. The parameter φS was fixed at 2,755 ELISA units/mL/day whileφL431

was fixed at 16.6 ELISA units/mL/day for African participants and 70.7 ELISA units/mL/day for Europeans. East and432

West African participants were assumed to share the same value of LL ASCs influx. Finally, standard deviations of433
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the inter-individual variability on the three parameters φS , φS and δAb were chosen as ωφS = 0.92, ωφL = 0.85 and434

ωδAb = 0.30. The parameter σAb was fixed at 0.10 (see (16) or Table 4). To stay consistent with the model built on435

Phase I data, we included an adjustment for geographic region in the statistical model (binary variable equal to 0436

in Africa and 1 in Europe) on φL , as shown on the following equation:437

log(φi
L) = log(φL,0) + βφL,Eur × 1i ∈Eur + u iφL

(5)438

For each individual, the 95% prediction interval (64) of the antibody dynamics was calculated and the percent cov-439

erage, defined as the percent of observations falling within the prediction interval, was assessed. Through these440

results, we highlighted the ability of the model to predict the very first antibody concentration measurements441

from 7 days post-second vaccination. Once these predictions were validated, individual parameters estimated on442

the early phase of the follow-up were used in the second step to quantify both the short- and long-term forecast443

skills of the model. To this end, we used the model to make individual predictions of antibody concentration be-444

tween the peak and 2 years after the first vaccination. Predictions were then compared to observations and the445

percent of observations falling within the 95% individual prediction intervals was quantified.446

Thereafter, the two-step approachwas also applied for evaluating: first, the ability of themodel to predict antibody447

dynamics from 7 days post-second vaccination to 1 year after the first vaccination (instead of the peak), and448

second, its ability to forecast antibody concentration beyond 1 year. This additional analysis was performed to449

identify whether the estimation of individual parameters on a longer follow-up can improve long-term predictions.450

K-means clustering for longitudinal data (65) was performed to identify distinct trajectories of the dynamics of451

the humoral response. Using the kml R package (66), trajectories of antibody concentration from 7 days after the452

second vaccination to 2 years after the first vaccination were sequentially clustered into two and more clusters.453

Thereafter, we evaluated the percent coverage and the RMSE to investigate potential differences in prediction454

abilities according to underlying trajectories for each resulting partition.455

456

Update and re-estimation of the model Once the quality of prediction of the mechanistic model was evalu-457

ated, an update of the model was performed in order to improve biological knowledge about the longevity of the458

long-term immune response induced by the two-dose heterologous vaccine regimen, Ad26.ZEBOV, MVA-BN-Filo.459

The low number of participants included in the three Phase I trials (177 participants, of whom only 44 received460
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the Ad26/MVA D57 vaccine regimen) as well as the short-term follow-up of their immune response up to 1 year461

after the first vaccination tended to limit the precision of the estimation of the model parameters in the work462

conducted only on Phase I trials. Despite the validation of the model according to its quality of prediction on ad-463

ditional data coming from the three Phase II trials (EBL 2001, 2002 and 3001), a re-estimation of the model using464

antibody dynamics from the 487 participants was performed to enhance and reinforce our understanding of the465

underlying biological processes leading to the long-term immunity following vaccination against Ebola. To account466

for the difference in measurements induced by the three distinct ELISA assays performed at Battelle, Focus and467

Q2 Solutions laboratories, we assumed in the observation model an adjustment for laboratory effects, as shown468

on the following equation:469

Y (t i j ) = log10 [α × Ab (Ψi , t i j )
]
+ εi j εi j ∼ N(0,σ2

Ab )

α =


1 if i ∈ Battelle
αf ocus if i ∈ Focus
αQ2sol if i ∈ Q2 Solutions

(6)470

with α representing the proportional scaling factor (in natural scale) between the three laboratories, consider-471

ing Battelle as the reference, and where the two parameters αf ocus and αQ2sol are estimated with the five other472

biological parameters (Ψ). To ensure their positivity, both of them are assumed to be log-transformed. Further473

investigations with other link-functions betweenY and Ab were conducted to model laboratory effects, such as a474

proportional relationship in log10 scale, or with more complex functions like nonlinear sigmoid functions applied475

either in natural or log10 scale. The function leading to the bestmodel (i.e., lowest BICc value) before any covariate476

adjustment was kept. We also tested whether the accuracy of the three assays differed using different measure-477

ment error models. However, this modeling did not improve the fit and was therefore not retained (result not478

shown).479

Participants from Phase I clinical studies, being monitored only during the first year following the first vaccination,480

provided information only on the early phase of the humoral response. In particular, the lack of information on481

the long-term immunity made the estimation of the decay rate of the long-lived ASCs difficult. Long-lived ASCs482

are persistent plasma cells with a lifespan ranging from several months to the end of an individual’s lifetime483

(67, 68, 69, 23), therefore only an approximation of the lower bound of the confidence interval of their half-life484

(log(2)/δL ) was possible. Using additional data from Phase II studies and, in particular, the humoral response485
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measurements beyond 1 year, we performed a profile likelihood to identify whether enough information was486

available to precisely estimate the parameter δL . Considering the statistical model found by Pasin et al. (16), the487

model was estimated for multiple values of LL ASCs half-life ranging from 1 to 40 years. The profile likelihood was488

then drawn by maximizing the log-likelihood, computed by importance sampling (60), for each of those related489

models.490

As a first estimation, a sequential Bayesian estimation was envisaged, that is using information provided by491

Phase I studies only through informative prior distribution for parameters. Maximum a posteriori (MAP) esti-492

mates, corresponding to a penalizedmaximum likelihood estimation (70), should then be obtained using humoral493

responses from only the 443 Phase II participants. However, the difference in sampling between Phase I and II494

studies, in particular the absence of data from 7 to 21 days after the second vaccination for Phase II participants495

(see Table 2), made estimation of the model difficult. The lack of information at the early stage of the dynamics496

induced practical identifiability issues for the parameters δS and φS . To tackle this difficulty, all data were used497

to update the model. Random effects found on Phase I trials were kept, considering inter-individual variability on498

the parameter δAb as well as on the ASCs influx, φL and φS .499

The statistical model was updated by performing a covariate selection. We applied the classic stepwise co-500

variate modeling (SCM) algorithm (71, 72) which is a stepwise procedure with a forward selection followed by a501

backward elimination. In the forward selection, each parameter-covariate relationship is tested in turn and the502

relationship improving the model criteria (a corrected version of the Bayesian information criterion, BICc) the503

most is kept (the lower the better). Then the addition of a second covariate is tested. In the backward elimination,504

the removal of each parameter-covariate relationship selected in the first step is tested in an univariate manner.505

To verify the robustness of the results, two other algorithms of covariate selection in non-linear mixed effects506

models were performed, using BICc as model selection criteria: 1) the conditional sampling use for stepwise ap-507

proach based on correlation tests (COSSAC) (72), and 2) the stochastic approximation formodel building algorithm508

(SAMBA) (73). The three algorithms were independently applied on an initial model without any covariates and509

tested the addition of the seven following potential covariates: Sex (=0 for women and =1 for men), Age, Weight,510

BMI, Continent (=0 for Africa and =1 for Europe), Region (=0 for East Africa, =1 for West Africa and =2 for Europe)511

and EBL3001 (=1 for participants from EBL3001 and 0 otherwise). Covariates such as Age, BMI and Weight were512

centered around the mean value of the studied population (see Table 1). The parameter δL , facing some iden-513
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tifiability issues due to the lack of measurements beyond two years, was removed from the covariate selection514

procedure. Based on their definition, the parameters αf ocus and αQ2sol were also excluded from this selection. The515

statistical significance of selected covariates was then evaluated using a Wald test. EBL3001 was the only study516

which had a follow-up beyond 1 year after the first vaccination andwhich was conducted in a single country (Sierra517

Leone). Therefore, the robustness of the results was analyzed to verify the short term relevance of the selected518

covariates. To this end, the same procedure was performed on the model already adjusted for the selected co-519

variates but considering only data up to 1 year after the first vaccination. At the end of the covariate selection520

procedure, an optimal model was obtained with the following statistical model (see section Results - Additional521

insight on longevity of the humoral immune response for more details).522



log(φi
L) = log(φL,0) + βφL,Eur × 1i ∈Eur + u iφL

log(φi
S ) = log(φS ,0) + βφS ,Age ×

(
Age i − Age

)
+ u iφS

log(δ iAb ) = log(δAb,0) + βδAb,Men × 1i ∈Men + u iδAb

(7)523

where Age i and Age are respectively the age of the participant i and the average age of the participants and524

with u iφL
∼ N(0,ω2

φL
), u iφS

∼ N(0,ω2
φS
) and u iδAb ∼ N(0,ω2

φS
). Once the optimal model selected, its goodness of fit525

was checked and the robustness of the convergence of the estimation was assessed by using the convergence526

assessment tool implemented in Monolix which evaluated the robustness of the SAEM algorithm for numerous527

initial conditions.528

Thepredictive quality of the newly estimatedmodelwas assessedbyperforming aMonte-Carlo cross-validation529

(74). Participants from the overall dataset were randomly split into a training and a testing dataset, given a partic-530

ular train-test split percentage. We ensure that the same ratio of participants in each trial was maintained within531

each of the two sub-datasets. Once the model was fitted on training data, EBEs resulting from this model were532

evaluated on test data, followed by the prediction of the individual antibody dynamics. Two criteria were then533

calculated on the testing dataset to estimate how accurately the predictive model performs: the percent cover-534

age (the higher the better) and the RMSE (the lower the better). For each of the seven train-test split percentages535

{20%, 30%, 40%, 50%, 60%, 70%, 80%}, the procedure was replicated 1,000 times.536
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FIGURE LEGENDS577

- Figure 1.Dynamics of EbolaGP-specificbindingantibody concentrations, in log10 scale (ELISAunits/mL,578

EU/mL) for each clinical study from 7 days after the second vaccination.579

Each subplot represents the antibody dynamics measured in one of the three accredited laboratories: Bat-580

telle (left side), Focus (middle) and Q2 Solutions (right side). Each color corresponds to a clinical study581

(red: EBL1001, dark blue: EBL1003, light blue: EBL1004, orange: EBL2001, turquoise: EBL2002, light green:582

EBL3001). Solid and dashed lines represent medians in European and African participants, respectively. Cir-583

cles correspond to Phase I studies and triangles to Phase II studies. Error bars correspond to 25th-75th584

confidence intervals. The vertical dotted line represents the first year after the first vaccination (309 days585

after the 2nd vaccination). The horizontal dot-dashed lines represent the LLOQ values considered for each586

laboratory (36.60 EU/mL, 26.22 EU/mL and 36.11 EU/mL, at Battelle, Focus and Q2 Solutions, respectively).587

- Figure 2. Schematic diagramof themodel describing the humoral immune response from7days after588

the 2nd vaccination.589

S and L stand for short- and long-lived ASCs, respectively and Ab for antibodies. The parameters δS , δL590

and δAb are respectively the decay rates of SL ASCs, LL ASCs and antibodies while θS and θL represent the591

production rates of antibodies by SL and LL ASCs.592

- Figure 3. Individual antibody concentrations predicted by the model, estimated on Phase I data, for593

a random sample of participants from the 6 clinical studies.594

Each subplot represents the individual antibody dynamics (in log10 ELISA units/mL) from 7 days after the 2nd595

vaccination. For each participant, the vertical dashed line represents the time limit (individual peak of dy-596

namics) between the predictions (on the left) and the forecasts (short-term in blue and long-term in orange).597

Plain dots correspond to observations used to evaluate individual parameters while circles are observations598

not used in parameter estimation. Shaded areas correspond to 95% individual prediction intervals (account-599

ing for the uncertainty on the individual parameter estimation and the measurement error) and the solid600

lines correspond to the prediction of the model.601

- Figure 4. Profile likelihood on parameter δL .602
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The y-axis corresponds to the non-penalized log-likelihood computed by importance sampling for several603

values of LL ASCs half-life which needs to be maximized. The blue dotted vertical line represents the lower604

bound of the LL ASCs half-life estimated by profile likelihood by (16) on Phase I data. The red dashed vertical605

line represents the newly estimated lower bound using both Phase I and II data.606

- Figure 5. Individual antibody concentrations estimated by the model for random sample of partici-607

pants from the 6 clinical studies.608

Each subplot represents the individual antibody dynamics (in log10 ELISA units/mL) from 7 days after the 2nd609

vaccination to 2 years. Colored circles correspond to observations used to estimate the model. The thick610

solid lines correspond to the individual dynamics and the 95% individual confidence intervals (accounting611

for the uncertainty of the estimation of the individual parameters only) are delimited by the shaded areas.612

- Figure 6. Evaluationof theability of themodel topredict unseendatausingMonte-Carlo cross-validation.613

The predictive quality was assessed by the evaluation of two criteria: the RMSE (left side) and the percent614

coverage (right side). The x-axis corresponds to the percent of participants randomly selected for the training615

dataset and the y-axis to the value of criteria calculated on the testing dataset. One hundred replicates were616

performed for each train-test split percentage. Solid lines display the values of criteria and dashed lines, the617

95% confidence intervals. The horizontal red dotted line on the right side displays the threshold of 95%.618

- Figure 7. Design of EBOVAC 1 (EBL 1001, 1003, 1004 and 3001) and EBOVAC 2 (EBL 2001 and 2002) trials619

for participants receiving Ad26, MVA D57 as vaccine regimen.620

Immunogenicity measurements provide the concentration of IgG binding antibodies against Ebola, as mea-621

sured by ELISA (ELISA units/mL).622
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